导航:首页 > 研究方法 > 工具分析法常用的方法

工具分析法常用的方法

发布时间:2022-11-04 18:27:55

A. 市场分析工具和方法都有哪些

什么地方场合 如果朋友在一起聚一聚 没关系的 工作中就不要这样了 啰嗦有时候很让人反感 如果是在对待追女孩当中 劲量少说话 要说就要带点内涵 或...

B. 目前常用的战略分析工具有哪些

战略分析工具是企业战略咨询及管理咨询实务中经常使用的一些分析方法

(一)SWOT分析法:SWOT是一种分析方法,用来确定企业本身的竞争优势(strength),竞争劣势(weakness),机会(opportunity)和威胁(threat),从而将公司的战略与公司内部资源、外部环境有机结合。因此,清楚的确定公司的资源优势和缺陷,了解公司所面临的机会和挑战,对于制定公司未来的发展战略有着至关重要的意义。

(二)内部因素评价法:又称做为内部因素评价矩阵(IFE矩阵)是一种对内部因素进行分析的工具。其做法是从优势和劣势两个方面找出影响企业未来发展的关键因素,根据各个因素影响程度的大小确定权数,再按企业对各关键因素的有效反应程度对各关键因素进行评分,最后算出企业的总加权分数。

(三)外部要素评价法:又称做外部因素评价矩阵(EFE矩阵)是一种对外部环境进行分析的工具,其做法是从机会和威胁两个方面找出影响企业未来发展的关键因素,根据各个因素影响程度的大小确定权数,再按企业对各关键因素的有效反应程度对各关键因素进行评分,最后算出企业的总加权分数。

(四)竞争态势评价法:又称做竞争态势矩阵(CPM矩阵)用于确认企业的主要竞争对手及相对于该企业的战略地位,以及主要竞争对手的特定优势与弱点。CPM矩阵与IFE矩阵的权重和总加权分数的涵义相同。编制矩阵的方法也一样。但是,CPM矩阵中的因素包括外部和内部两个方面的问题,评分则表示优势和弱点。

(五)波士顿矩阵法:波士顿矩阵又称市场增长率-相对市场份额矩阵、波士顿咨询集团法、四象限分析法、产品系列结构管理法(BCG)等。

(2)工具分析法常用的方法扩展阅读:

战略分析工具是企业战略咨询及管理咨询实务中经常使用的一些分析方法。战略分析的目的是通过一定的手段和方法从复杂的信息与线索中,清理出重点影响客户战略形成的因素,以便于下一步的战略选择和制定。

C. 常用的分析方法及模型有哪些

质量及生产管理工具

1.TPM:生产改善过程中的重要工具之一

2.TQM:一项持续变革的有效管理体系

3.定置管理:强化现场管理和谋求系统改善的科学管理方法

4.5S现场管理法:现场科学管理的基础工具

5.六西格玛:世界最先进的质量管理法

6.JIT生产方式:使生产有效进行的新型生产方式

7.QFD法:一种顾客驱动的先进质量管理应用技术

8.田口方法:质量管理利器、企业技术创新不可或缺的工具

9.甘特图:最常用的项目控制管理的有效工具

10.OPT:改善生产管理技术的新方式

11.PDCA:循环有效控制管理过程和工作质量的工具

12.AUDIT法:保证产品质量的先进质量管理控制方法

13.大规模定制:21世纪最重要的、最具竞争优势的生产模式

D. 工具变量法分析方法,学习资料,问题求助

#计量经济学的定义
计量经济学是以一定的经济理论和统计资料为基础,运用数学、统计学方法与电脑技术,以建立经济计量模型为主要手段,定量分析研究具有随机性特性的经济变量关系。主要内容包括理论计量经济学和应用经济计量学。
#计量经济学的研究步骤和方法
确定变量和数学关系式-模型设定;分析变量间具体的数量关系-估计参数;检验所得结论的可靠性-模型检验;经济分析和预测-模型应用
#分布滞后模型估计的困难有哪几个
A.自由度问题。自由度过分损失,到时估计偏差增大,显着性检验失效。
B.多重共线性问题。滞后变量常存在多重共线性。
C.滞后长度难以确定。
#工具变量法
1.与所代替的解释变量高度相关
2.与随机扰动项不相关
3.与其他解释变量不相关,以免出现多重共线性
#虚拟变量的基本概念
虚拟变量是人工构造的取值为0和1的作为属性变量代表的变量
#联立方程模型的区别
A.联立方程组模型由几个单一方程组成。被解释变量不只一个。
B.模型里有随机方程,也有确定性方程,但必含有随机方程。
C.被解释变量和解释变量之间不仅是单向因果关系,也可能互为因果。
D.解释变量可能与随机扰动项相关。
#非完全多重共线性后果:
1.参数估计量方差增大
2.对参数区间估计时,置信区间趋于变大
3.严重时,假设检验容易作出错误判断
4.严重时,可能r2较大和f检验显着性高,但t检验可能不显着,得出错误结论
#多重共线性检验:
1.简单相关系数检验
2.方差扩大因子法
3.直观判断,如回归系数标准差大,或与经济理论背离
4.逐步回归法
#自相关:
经济系统的惯性。经济活动滞后效应。数据处理造成的相关。蛛网现象。模型设定偏误。零均值,低估参数估计值的方差,对模型预测的影响,高估t,f,r2不可靠,对模型影响,降低预测精度。
#异方差:
模型中省略某些重要解释变量。模型设定误差。测量误差的变化。截面数据中总体各单位的差异。无偏,一致,非有效,夸大估计参数的统计显着性,对预测影响,Y的预测非有效。

E. 做分析有哪些方法

方法/步骤

1/5
比较分析法

是统计分析中最常用的方法。是通过有关的指标对比来反映事物数量上差异和变化的方法。指标分析对比分析方法可分为静态比较和动态比较分析。静态比较是同一时间条件下不同总体指标比较,如不同部门、不同地区、不同国家的比较,也叫横向比较;动态比较是同一总体条件不同时期指标数值的比较,也叫纵向比较。这两种方法既可单独使用,也可结合使用。

2/5

分组分析法

统计分析不仅要对总体数量特征和数量关系进行分析,还要深入总体的内部进行分组分析。分组分析法就是根据统计分析的目的要求,把所研究的总体按照一个或者几个标志划分为若干个部分,加以整理,进行观察、分析,以揭示其内在的联系和规律性。

统计分组法的关键问题在于正确选择分组标值和划分各组界限。

3/5

回归分析法

回归分析法是依据事物发展变化的因果关系来预测事物未来的发展走势,它是研究变量间相互关系的一种定量预测方法,回归分析中,当研究的因果关系只涉及因变量和一个自变量时,叫做一元回归分析;当研究的因果关系涉及因变量和两个或两个以上自变量时,叫做多元回归分析。此外,回归分析中,又依据描述自变量与因变量之间因果关系的函数表达式是线性的还是非线性的,分为线性回归分析和非线性回归分析。



4/5

因素分析法

因素分析法的最大功用,就是运用数学方法对可观测的事物在发展中所表现出的外部特征和联系进行由表及里、由此及彼、去粗取精、去伪存真的处理,从而得出客观事物普遍本质的概括。其次,使用因素分析法可以使复杂的研究课题大为简化,并保持其基本的信息量。



5/5

工具:

除了各种科学分析法,在过网络推广时,我们还会用到各种工具:

一、 各种数据分析工具。其实大部分数据分析可以用EXCEL解决,再高阶一点可以用SPSS、SAS等软件。《谁说菜鸟不会数据分析》一书就详细分析了各种工具和实用方法,公众号<shop123电商>里有一些关于这本书的研究,有兴趣可以关注下。

二、  关键词提取。如何从一大推杂乱的信息中提取出关键信息?如何利用这些关键信息去推广自己的产品/网站?光年有一款简单好用的关键词提取工具,可以通过分析文本内容提取出关键信息,从而应用到SEO做关键词研究、优化文章标题或文案、PPC关键词选择等各种应用场景。

F. 战略管理常用的6种分析工具

战略管理常用的6种分析工具

下面我为大家介绍六种常用的战略管理分析工具,希望帮助到大家。

一、战略管理分析工具之波特五力分析模型

五力分析模型是迈克尔·波特(Michael Porter)于80年代初提出的战略管理分析工具,对企业战略制定产生全球性的深远影响。用于竞争战略的分析,可以有效的分析客户的竞争环境。五力分别是:供应商的讨价还价能力、购买者的讨价还价能力、潜在竞争者进入的能力、替代品的替代能力、行业内竞争者现在的竞争能力。五种力量的不同组合变化最终影响行业利润潜力变化。

二、战略管理分析工具之安迪·格鲁夫的六力分析模型

六力分析的概念是英特尔前总裁安迪·格鲁夫(Andrew S. Grove),以波特的五力分析架构为出发点,重新探讨并定义产业竞争的六种影响力。他认为影响产业竞争态势的因素分别是:

1.现存竞争者的影响力、活力、能力;

2.供货商的影响力、活力、能力;

3.客户的影响力、活力、能力;

4.潜在竞争者的影响力、活力、能力;

5.产品或服务的替代方式;

6.协力业者的力量。

透过此六种竞争力量的战略管理分析,有助于厘清企业所处的竞争环境,点出产业中竞争的关键因素,并界定最能改善产业和企业本身获利能力的策略性创新。

三、战略管理分析工具之新7S原则

新7S原则(Principal of New 7S),由美国管理大师达·维尼提出,强调的是企业能否打破现状、抓住主动权和建立一系列暂时的优势。新7S原则的经营思维架构,具体包括:这里的“7S”指的是:(1)更高的股东满意度(Stockholder satisfaction)。这里的“股东”是一个十分广泛的概念,即客户的概念,包括过去企业最重视的股东、市场导向管理中迅速得到重视的顾客以及近几年人本管理的主角即员工。

(2)战略预测(Strategic soothsaying)。要做到客户满意,公司就必须用到战略预测。了解市场和技术的未来演变,就能看清下一个优势会出现在哪里,从而率先创造出新的机会。

(3)速度定位(Speed)。在如今超强竞争环境下,成功与否在于能否创造出一系列的暂时优势,所以公司快速从一个优势转移到另一个优势的'能力非常重要。速度让公司可以捕捉需求、设法破坏现状、瓦解竞争对手的优势,并在竞争对手采取行动之前就创造出新的优势。

(4)出其不意的定位(Surprise)。经营者们要做的工作,是探寻价值创新的道路,而很少去控制和管理现有的业务运作。

(5)改变竞争规则(Shifting the rules against the Competition)。改变竞争规则可以打破产业中既有的观念和标准模式。亦步亦趋,是被动应战,常常取不到好的效果。

(6)告示战略意图(Signaling Strategic intent)。向公众及产业内同行公布你的战略意图和未来行动,有助于告诫竞争对手,不要侵入你的市场领域;同时,还可以在顾客中有效地形成“占位效应”,即有购买意图的顾客会等待告示公司的该种产品研制生产出来后再购买,而不去购买市场上已有的其他公司的同类产品。

(7)同时的、一连串的战略出击(Simultaneous and sequential Strategic thrusts)。仅有静态的能力,或是仅有优良的资源都是不够的,资源需要有效地加以运用。公司战略成功的关键,在于将知识和能力妥善运用,以一连串的行动夺取胜利,并将优势迅速移到不同的市场。

四、战略管理分析工具之蓝海战略(Blue Ocean Strategy)

蓝海战略(Blue Ocean Strategy)是由W·钱·金(W. Chan Kim)和莫博涅(Mauborgne)提出的。

蓝海战略认为,聚焦于红海等于接受了商战的限制性因素,即在有限的土地上求胜,却否认了商业世界开创新市场的可能。运用蓝海战略,视线将超越竞争对手移向买方需求,跨越现有竞争边界,将不同市场的买方价值元素筛选并重新排序,从给定结构下的定位选择向改变市场结构本身转变。

蓝海以战略行动(Strategic Move)作为分析单位,战略行动包含开辟市场的主要业务项目所涉及的一整套管理动作和决定,在研究1880年~2000年30多个产业150次战略行动的基础上,指出价值创新(Value Innovation)是蓝海战略的基石。价值创新挑战了基于竞争的传统教条即价值和成本的权衡取舍关系,让企业将创新与效用、价格与成本整合一体,不是比照现有产业最佳实践去赶超对手,而是改变产业景框重新设定游戏规则;不是瞄准现有市场“高端”或“低端”顾客,而是面向潜在需求的买方大众;不是一味细分市场满足顾客偏好,而是合并细分市场整合需求。

五、战略管理分析工具之战略十步骤系统

战略管理十步骤系统是有助于企业从受众的角度发现市场的一种工具,十步骤系统模型包括:企业理念、环境分析、竞争控制、客户分析、自身状况分析、潜力分析、目标描述、视觉化/工作程序化、市场营销战略、市场营销控制。每一部分的内容自成体系。

六、战略管理分析工具之四种战略类型

雷蒙德·迈尔斯(Raymond Miles)和查尔斯·斯诺(Charles Snow)在1978年《组织战略、结构和方法》(Organization Strategy, Structure, and Process)一书中认为, 企业战略并不是取决于组织的类型或风格,而是取决于那些需要战略解决的基本性问题:

事业问题(Entrepreneurial problem): 企业如何管理市场份额。工程问题(Engineering Problem): 企业如何执行解决事业问题的方案。

行政问题(Administrative Problem):企业应该如何架构以适应解决前两个问题的需要。

基于这三种类型的问题,他们将企业分为四种战略类型:

1、防御者(Defender)。作为成熟行业中的成熟企业,采用高效生产、严格控制、连续、可靠的手段,努力寻求保护自己的市场地位。

2、 探索者(Prospector)。一种致力于发现和发掘新产品和新市场机会的企业。它的核心技能是市场能力和研发能力,它可以拥有较多的技术类型和较长的产品线。

3、分析者(Analyser)。这是一类规避风险同时又能够提供创新产品和服务的企业。它致力于有限的一些产品和技术,以质量提高为手段,力争超越竞争对手。

4、反应者(Reactor)。这是一类对企业外部环境缺乏控制的企业,它既缺乏适应外部竞争的能力,又缺乏有效的内部控制机能。它没有一个系统化的战略设计与组织规划。

G. 大数据分析方法解读以及相关工具介绍

大数据分析方法解读以及相关工具介绍
要知道,大数据已不再是数据大,最重要的现实就是对大数据进行分析,只有通过分析才能获取很多智能的,深入的,有价值的信息。
越来越多的应用涉及到大数据,这些大数据的属性,包括数量,速度,多样性等等都是呈现了大数据不断增长的复杂性,所以,大数据的分析方法在大数据领域就显得尤为重要,可以说是决定最终信息是否有价值的决定性因素。基于此,大数据分析方法理论有哪些呢?
大数据分析的五个基本方面
(预测性分析能力)
数据挖掘可以让分析员更好的理解数据,而预测性分析可以让分析员根据可视化分析和数据挖掘的结果做出一些预测性的判断。
(数据质量和数据管理)
数据质量和数据管理是一些管理方面的最佳实践。通过标准化的流程和工具对数据进行处理可以保证一个预先定义好的高质量的分析结果。
AnalyticVisualizations(可视化分析)
不管是对数据分析专家还是普通用户,数据可视化是数据分析工具最基本的要求。可视化可以直观的展示数据,让数据自己说话,让观众听到结果。
SemanticEngines(语义引擎)
我们知道由于非结构化数据的多样性带来了数据分析的新的挑战,我们需要一系列的工具去解析,提取,分析数据。语义引擎需要被设计成能够从“文档”中智能提取信息。
DataMiningAlgorithms(数据挖掘算法)
可视化是给人看的,数据挖掘就是给机器看的。集群、分割、孤立点分析还有其他的算法让我们深入数据内部,挖掘价值。这些算法不仅要处理大数据的量,也要处理大数据的速度。
假如大数据真的是下一个重要的技术革新的话,我们最好把精力关注在大数据能给我们带来的好处,而不仅仅是挑战。
大数据处理
大数据处理数据时代理念的三大转变:要全体不要抽样,要效率不要绝对精确,要相关不要因果。具体的大数据处理方法其实有很多,但是根据长时间的实践,笔者总结了一个基本的大数据处理流程,并且这个流程应该能够对大家理顺大数据的处理有所帮助。整个处理流程可以概括为四步,分别是采集、导入和预处理、统计和分析,以及挖掘。
采集
大数据的采集是指利用多个数据库来接收发自客户端的数据,并且用户可以通过这些数据库来进行简单的查询和处理工作。比如,电商会使用传统的关系型数据库MySQL和Oracle等来存储每一笔事务数据,除此之外,Redis和MongoDB这样的NoSQL数据库也常用于数据的采集。
在大数据的采集过程中,其主要特点和挑战是并发数高,因为同时有可能会有成千上万的用户来进行访问和操作,比如火车票售票网站和淘宝,它们并发的访问量在峰值时达到上百万,所以需要在采集端部署大量数据库才能支撑。并且如何在这些数据库之间进行负载均衡和分片的确是需要深入的思考和设计。
统计/分析
统计与分析主要利用分布式数据库,或者分布式计算集群来对存储于其内的海量数据进行普通的分析和分类汇总等,以满足大多数常见的分析需求,在这方面,一些实时性需求会用到EMC的GreenPlum、Oracle的Exadata,以及基于MySQL的列式存储Infobright等,而一些批处理,或者基于半结构化数据的需求可以使用Hadoop。统计与分析这部分的主要特点和挑战是分析涉及的数据量大,其对系统资源,特别是I/O会有极大的占用。
导入/预处理
虽然采集端本身会有很多数据库,但是如果要对这些海量数据进行有效的分析,还是应该将这些来自前端的数据导入到一个集中的大型分布式数据库,或者分布式存储集群,并且可以在导入基础上做一些简单的清洗和预处理工作。也有一些用户会在导入时使用来自Twitter的Storm来对数据进行流式计算,来满足部分业务的实时计算需求。导入与预处理过程的特点和挑战主要是导入的数据量大,每秒钟的导入量经常会达到百兆,甚至千兆级别。
挖掘
与前面统计和分析过程不同的是,数据挖掘一般没有什么预先设定好的主题,主要是在现有数据上面进行基于各种算法的计算,从而起到预测的效果,从而实现一些高级别数据分析的需求。比较典型算法有用于聚类的K-Means、用于统计学习的SVM和用于分类的Naive Bayes,主要使用的工具有Hadoop的Mahout等。该过程的特点和挑战主要是用于挖掘的算法很复杂,并且计算涉及的数据量和计算量都很大,还有,常用数据挖掘算法都以单线程为主。
大数据分析工具详解 IBM惠普微软工具在列
去年,IBM宣布以17亿美元收购数据分析公司Netezza;EMC继收购数据仓库软件厂商Greenplum后再次收购集群NAS厂商Isilon;Teradata收购了Aster Data 公司;随后,惠普收购实时分析平台Vertica等,这些收购事件指向的是同一个目标市场——大数据。是的,大数据时代已经来临,大家都在摩拳擦掌,抢占市场先机。
而在这里面,最耀眼的明星是hadoop,Hadoop已被公认为是新一代的大数据处理平台,EMC、IBM、Informatica、Microsoft以及Oracle都纷纷投入了Hadoop的怀抱。对于大数据来说,最重要的还是对于数据的分析,从里面寻找有价值的数据帮助企业作出更好的商业决策。下面,我们就来看以下八大关于大数据分析的工具。
EMC Greenplum统一分析平台(UAP)
Greenplum在2010年被EMC收购了其EMC Greenplum统一分析平台(UAP)是一款单一软件平台,数据团队和分析团队可以在该平台上无缝地共享信息、协作分析,没必要在不同的孤岛上工作,或者在不同的孤岛之间转移数据。正因为如此,UAP包括ECM Greenplum关系数据库、EMC Greenplum HD Hadoop发行版和EMC Greenplum Chorus。
EMC为大数据开发的硬件是模块化的EMC数据计算设备(DCA),它能够在一个设备里面运行并扩展Greenplum关系数据库和Greenplum HD节点。DCA提供了一个共享的指挥中心(Command Center)界面,让管理员可以监控、管理和配置Greenplum数据库和Hadoop系统性能及容量。随着Hadoop平台日趋成熟,预计分析功能会急剧增加。
IBM打组合拳提供BigInsights和BigCloud
几年前,IBM开始在其实验室尝试使用Hadoop,但是它在去年将相关产品和服务纳入到商业版IBM在去年5月推出了InfoSphere BigI云版本的 InfoSphere BigInsights使组织内的任何用户都可以做大数据分析。云上的BigInsights软件可以分析数据库里的结构化数据和非结构化数据,使决策者能够迅速将洞察转化为行动。
IBM随后又在10月通过其智慧云企业(SmartCloud Enterprise)基础架构,将BigInsights和BigSheets作为一项服务来提供。这项服务分基础版和企业版;一大卖点就是客户不必购买支持性硬件,也不需要IT专门知识,就可以学习和试用大数据处理和分析功能。据IBM声称,客户用不了30分钟就能搭建起Hadoop集群,并将数据转移到集群里面,数据处理费用是每个集群每小时60美分起价。

Informatica 9.1:将大数据的挑战转化为大机遇
Informatica公司在去年10月则更深入一步,当时它推出了HParser,这是一种针对Hadoop而优化的数据转换环境。据Informatica声称,软件支持灵活高效地处理Hadoop里面的任何文件格式,为Hadoop开发人员提供了即开即用的解析功能,以便处理复杂而多样的数据源,包括日志、文档、二进制数据或层次式数据,以及众多行业标准格式(如银行业的NACHA、支付业的SWIFT、金融数据业的FIX和保险业的ACORD)。正如数据库内处理技术加快了各种分析方法,Informatica同样将解析代码添加到Hadoop里面,以便充分利用所有这些处理功能,不久会添加其他的数据处理代码。
Informatica HParser是Informatica B2B Data Exchange家族产品及Informatica平台的最新补充,旨在满足从海量无结构数据中提取商业价值的日益增长的需求。去年, Informatica成功地推出了创新的Informatica 9.1 for Big Data,是全球第一个专门为大数据而构建的统一数据集成平台。

甲骨文大数据机——Oracle Big Data Appliance
甲骨文的Big Data Appliance集成系统包括Cloudera的Hadoop系统管理软件和支持服务Apache Hadoop 和Cloudera Manager。甲骨文视Big Data Appliance为包括Exadata、Exalogic和 Exalytics In-Memory Machine的“建造系统”。Oracle大数据机(Oracle Big Data Appliance),是一个软、硬件集成系统,在系统中融入了Cloudera的Distribution Including Apache Hadoop、Cloudera Manager和一个开源R。该大数据机采用Oracle Linux操作系统,并配备Oracle NoSQL数据库社区版本和Oracle HotSpot Java虚拟机。Big Data Appliance为全架构产品,每个架构864GB存储,216个CPU内核,648TBRAW存储,每秒40GB的InifiniBand连接。Big Data Appliance售价45万美元,每年硬软件支持费用为12%。
甲骨文Big Data Appliance与EMC Data Computing Appliance匹敌,IBM也曾推出数据分析软件平台InfoSphere BigInsights,微软也宣布在2012年发布Hadoop架构的SQL Server 2012大型数据处理平台。
统计分析方法以及统计软件详细介绍
统计分析方法有哪几种?下面我们将详细阐述,并介绍一些常用的统计分析软件。

一、指标对比分析法指标对比分析法
统计分析的八种方法一、指标对比分析法指标对比分析法,又称比较分析法,是统计分析中最常用的方法。是通过有关的指标对比来反映事物数量上差异和变化的方法。有比较才能鉴别。单独看一些指标,只能说明总体的某些数量特征,得不出什么结论性的认识;一经过比较,如与国外、外单位比,与历史数据比,与计划相比,就可以对规模大小、水平高低、速度快慢作出判断和评价。
指标分析对比分析方法可分为静态比较和动态比较分析。静态比较是同一时间条件下不同总体指标比较,如不同部门、不同地区、不同国家的比较,也叫横向比较;动态比较是同一总体条件不同时期指标数值的比较,也叫纵向比较。这两种方法既可单独使用,也可结合使用。进行对比分析时,可以单独使用总量指标或相对指标或平均指标,也可将它们结合起来进行对比。比较的结果可用相对数,如百分数、倍数、系数等,也可用相差的绝对数和相关的百分点(每1%为一个百分点)来表示,即将对比的指标相减。
二、分组分析法指标对比分析法
分组分析法指标对比分析法对比,但组成统计总体的各单位具有多种特征,这就使得在同一总体范围内的各单位之间产生了许多差别,统计分析不仅要对总体数量特征和数量关系进行分析,还要深入总体的内部进行分组分析。分组分析法就是根据统计分析的目的要求,把所研究的总体按照一个或者几个标志划分为若干个部分,加以整理,进行观察、分析,以揭示其内在的联系和规律性。
统计分组法的关键问题在于正确选择分组标值和划分各组界限。
三、时间数列及动态分析法
时间数列。是将同一指标在时间上变化和发展的一系列数值,按时间先后顺序排列,就形成时间数列,又称动态数列。它能反映社会经济现象的发展变动情况,通过时间数列的编制和分析,可以找出动态变化规律,为预测未来的发展趋势提供依据。时间数列可分为绝对数时间数列、相对数时间数列、平均数时间数列。
时间数列速度指标。根据绝对数时间数列可以计算的速度指标:有发展速度、增长速度、平均发展速度、平均增长速度。
动态分析法。在统计分析中,如果只有孤立的一个时期指标值,是很难作出判断的。如果编制了时间数列,就可以进行动态分析,反映其发展水平和速度的变化规律。
进行动态分析,要注意数列中各个指标具有的可比性。总体范围、指标计算方法、计算价格和计量单位,都应该前后一致。时间间隔一般也要一致,但也可以根据研究目的,采取不同的间隔期,如按历史时期分。为了消除时间间隔期不同而产生的指标数值不可比,可采用年平均数和年平均发展速度来编制动态数列。此外在统计上,许多综合指标是采用价值形态来反映实物总量,如国内生产总值、工业总产值、社会商品零售总额等计算不同年份的发展速度时,必须消除价格变动因素的影响,才能正确的反映实物量的变化。也就是说必须用可比价格(如用不变价或用价格指数调整)计算不同年份相同产品的价值,然后才能进行对比。
为了观察我国经济发展的波动轨迹,可将各年国内生产总值的发展速度编制时间数列,并据以绘制成曲线图,令人得到直观认识。
四、指数分析法
指数是指反映社会经济现象变动情况的相对数。有广义和狭义之分。根据指数所研究的范围不同可以有个体指数、类指数与总指数之分。
指数的作用:一是可以综合反映复杂的社会经济现象的总体数量变动的方向和程度;二是可以分析某种社会经济现象的总变动受各因素变动影响的程度,这是一种因素分析法。操作方法是:通过指数体系中的数量关系,假定其他因素不变,来观察某一因素的变动对总变动的影响。
用指数进行因素分析。因素分析就是将研究对象分解为各个因素,把研究对象的总体看成是各因素变动共同的结果,通过对各个因素的分析,对研究对象总变动中各项因素的影响程度进行测定。因素分析按其所研究的对象的统计指标不同可分为对总量指标的变动的因素分析,对平均指标变动的因素分析。
五、平衡分析法
平衡分析是研究社会经济现象数量变化对等关系的一种方法。它把对立统一的双方按其构成要素一一排列起来,给人以整体的概念,以便于全局来观察它们之间的平衡关系。平衡关系广泛存在于经济生活中,大至全国宏观经济运行,小至个人经济收支。平衡种类繁多,如财政平衡表、劳动力平衡表、能源平衡表、国际收支平衡表、投入产出平衡表,等等。平衡分析的作用:一是从数量对等关系上反映社会经济现象的平衡状况,分析各种比例关系相适应状况;二是揭示不平衡的因素和发展潜力;三是利用平衡关系可以从各项已知指标中推算未知的个别指标。
六、综合评价分析
社会经济分析现象往往是错综复杂的,社会经济运行状况是多种因素综合作用的结果,而且各个因素的变动方向和变动程度是不同的。如对宏观经济运行的评价,涉及生活、分配、流通、消费各个方面;对企业经济效益的评价,涉及人、财、物合理利用和市场销售状况。如果只用单一指标,就难以作出恰当的评价。
进行综合评价包括四个步骤:
1.确定评价指标体系,这是综合评价的基础和依据。要注意指标体系的全面性和系统性。
2.搜集数据,并对不同计量单位的指标数值进行同度量处理。可采用相对化处理、函数化处理、标准化处理等方法。
3.确定各指标的权数,以保证评价的科学性。根据各个指标所处的地位和对总体影响程度不同,需要对不同指标赋予不同的权数。
4.对指标进行汇总,计算综合分值,并据此作出综合评价。
七、景气分析
经济波动是客观存在的,是任何国家都难以完全避免的。如何避免大的经济波动,保持经济的稳定发展,一直是各国政府和经济之专家在宏观调控和决策中面临的重要课题,景气分析正是适应这一要求而产生和发展的。景气分析是一种综合评价分析,可分为宏观经济景气分析和企业景气调查分析。
宏观经济景气分析。是国家统计局20世纪80年代后期开始着手建立监测指标体系和评价方法,经过十多年时间和不断完善,已形成制度,定期提供景气分析报告,对宏观经济运行状态起到晴雨表和报警器的作用,便于国务院和有关部门及时采取宏观调控措施。以经常性的小调整,防止经济的大起大落。
企业景气调查分析。是全国的大中型各类企业中,采取抽样调查的方法,通过问卷的形式,让企业负责人回答有关情况判断和预期。内容分为两类:一是对宏观经济总体的判断和预期;一是对企业经营状况的判断和预期,如产品订单、原材料购进、价格、存货、就业、市场需求、固定资产投资等。
八、预测分析
宏观经济决策和微观经济决策,不仅需要了解经济运行中已经发生了的实际情况,而且更需要预见未来将发生的情况。根据已知的过去和现在推测未来,就是预测分析。
统计预测属于定量预测,是以数据分析为主,在预测中结合定性分析。统计预测的方法大致可分为两类:一类是主要根据指标时间数列自身变化与时间的依存关系进行预测,属于时间数列分析;另一类是根据指标之间相互影响的因果关系进行预测,属于回归分析。
预测分析的方法有回归分析法、滑动平均法、指数平滑法、周期(季节)变化分析和随机变化分析等。比较复杂的预测分析需要建立计量经济模型,求解模型中的参数又有许多方法。

H. 数据分析常用的4大分析方法

1. 描述型分析:发生了什么?


这是最常见的分析方法。在业务中,这种方法向数据分析师提供了重要指标和业务的衡量方法。


例如,每月的营收和损失账单。数据分析师可以通过这些账单,获取大量的客户数据。了解客户的地理信息,就是“描述型分析”方法之一。利用可视化工具,能够有效的增强描述型分析所提供的信息。


2. 诊断型分析:为什么会发生?


描述性数据分析的下一步就是诊断型数据分析。通过评估描述型数据,诊断分析工具能够让数据分析师深入地分析数据,钻取到数据的核心。


良好设计的BI dashboard能够整合:按照时间序列进行数据读入、特征过滤和钻取数据等功能,以便更好的分析数据。


3. 预测型分析:可能发生什么?


预测型分析主要用于进行预测。事件未来发生的可能性、预测一个可量化的值,或者是预估事情发生的时间点,这些都可以通过预测模型来完成。


预测模型通常会使用各种可变数据来实现预测。数据成员的多样化与预测结果密切相关。在充满不确定性的环境下,预测能够帮助做出更好的决定。预测模型也是很多领域正在使用的重要方法。


4. 指令型分析:需要做什么?


数据价值和复杂度分析的下一步就是指令型分析。指令模型基于对“发生了什么”、“为什么会发生”和“可能发生什么”的分析,来帮助用户决定应该采取什么措施。通常情况下,指令型分析不是单独使用的方法,而是前面的所有方法都完成之后,最后需要完成的分析方法。


关于数据分析常用的4大分析方法的内容,青藤小编就和您分享到这里了。如果您对大数据工程有浓厚的兴趣,希望这篇文章可以为您提供帮助。如果您还想了解更多关于数据分析师、大数据工程师的技巧及素材等内容,可以点击本站的其他文章进行学习。

I. 分析常用的方法有哪些

工作分析的方法
(一)访谈法
访谈法又称为面谈法,是一种应用最为广泛的职务分析方法。是指工作分析人员就某一职务或者职位面对面地询问任职者、主管、专家等人对工作的意见和看法。在一般情况下,应用访谈法时可以以标准化访谈格式记录,目的是便于控制访谈内容及对同一职务不同任职者的回答相互比较。
(二)问卷调查法
问卷调查法是工作分析中最常用的一种方法,具体来说,由有关人员事先设计出一套职务分析的问卷,再由随后工作的员工来填写问卷,也可由工作分析人员填写,最后再将问卷加以归纳分析,做好详细的记录,并据此写出工作职务描述。
(三)观察法
观察法是一种传统的职务分析方法,指的是工作分析人员直接到工作现场,针对特定对象(一个或多个任职者)的作业活动进行观察,收集、记录有关工作的内容、工作间的相互关系、人与工作的关系以及工作环境、条件等信息,并用文字或图标形式记录下来,然后进行分析与归纳总结的方法。
(四)工作日志法
工作日志法又称工作写实法,指任职者按时间顺序详细记录自己的工作内容与工作过程,然后经过归纳、分析,达到工作分析的目的的一种方法。
(五)资料分析法
为降低工作分析的成本,应当尽量利用原有资料,例如责任制人本等人事文件,以对每个项工作的任务、责任、权利、工作负荷、任职资格等有一个大致的了解,为进一步调查、分析奠定基础。
(六)能力要求法
指完成任何一项工作的技能都可由更基本的能力加以描述。
(七)关键事件法
关键事件法要求分析人员、管理人员、本岗位员工,将工作过程中的“关键事件”详细地加以记录,可在大量收集信息后,对岗位的特征要求进行分析研究的方法(关键事件是使工作成功或失败的行为特征或事件,如成功与失败、盈利或与亏损、高效与低产等)。

阅读全文

与工具分析法常用的方法相关的资料

热点内容
中式棉袄制作方法图片 浏览:71
五菱p1171故障码解决方法 浏览:866
男士修护膏使用方法 浏览:554
电脑图标修改方法 浏览:609
湿气怎么用科学的方法解释 浏览:545
910除以26的简便计算方法 浏览:813
吹东契奇最简单的方法 浏览:712
对肾脏有好处的食用方法 浏览:106
电脑四线程内存设置方法 浏览:520
数字电路通常用哪三种方法分析 浏览:27
实训课程的教学方法是什么 浏览:533
苯甲醇乙醚鉴别方法 浏览:90
苹果手机微信视频声音小解决方法 浏览:708
控制箱的连接方法 浏览:83
用什么简单的方法可以去痘 浏览:797
快速去除甲醛的小方法你知道几个 浏览:811
自行车架尺寸测量方法 浏览:132
石磨子的制作方法视频 浏览:160
行善修心的正确方法 浏览:411
薯仔炖鸡汤的正确方法和步骤 浏览:284