导航:首页 > 研究方法 > 图像分类方法研究

图像分类方法研究

发布时间:2022-01-15 06:54:19

Ⅰ 图像分类处理简介

数字图像的恢复、增强,乃至复合处理,归根到底只是改善图像的品质,提高图像的可解译性。但处理系统(计算机)并未对图像上地物的类别作出“判决”(解译)。由计算按一定的判别模式来自动完成这一“判决”,便是图像分类处理的过程。

图像分类处理的最终目标是智能化,使遥感图像处理发展成为一种人工智能系统。广义的分类处理,既包括波谱信息的分类,也包括空间信息的分类。后者一般包括图形识别、边缘和线条信息的检测与提取,以及纹理结构分析等,通常也称图像的空间信息分析。关于这一部分对于地质工作者显然感兴趣的内容,可参阅文献[3]等着作。限于篇幅,这里仅介绍按波谱信息分类的基本概念。

(一)图像分类的依据

一般来说,同一类地物有着相似的波谱,在多波段遥感的数字图像中,可以粗略地用它们在各个波段上的像元值的连线(亨利曲线)来表示(图4-29A);由于受光照条件、环境背景等因素的影响,在实际的多维波谱空间中,它们的像元值向量往往不是一个点,而是呈点群分布(集群),不同地物的点群处在不同的位置(图4-29B);不仅如此,在实际图像中,不同地物的波谱集群还存在有交叉过渡,受图像分辨力的限制,一个像元中可能包括有若干个地物类别,即所谓“混合像元”。因此,对不同集群的区分一般要依据它们的统计特征(统计量)。例如,集群位置用均值向量表示、点群的中心及离散度常用标准差或协方差来量度等等;数字图像常用的几种统计量见表4-4。

图4-29 索尔顿湖和因佩里亚谷地陆地卫星MSS数字图像上主要几种地物的光谱反射比曲线和集群分布

表4-4 数字图像常用的统计量

图像分类处理的实质就是按概率统计规律,选择适当的判别函数、建立合理的判别模型把这些离散的“集群”分离开来,并作出判决和归类。通常的做法是,将多维波谱空间划分为若干区域(子空间),位于同一区域内的点归于同一类。子空间划分的标准可以概括为两类:①根据点群的统计特征,确定它所应占据的区域范围。例如,以每一类的均值向量为中心,规定在几个标准差的范围内的点归为一类;②确定类别之间的边界,建立边界函数或判别函数。不论采取哪种标准,关键在于确定同一类别在多维波谱空间中的位置(类的均值向量)、范围(协方差矩陈)及类与类边界(判别函数)的确切数值。按确定这些数据是否有已知训练样本(样区)为准,通常把分类技术分为监督和非监督两类。

(二)非监督分类

非监督分类是在没有已知类别的训练数据及分类数的情况下,依据图像数据本身的结构(统计特征)和自然点群分布,按照待分样本在多维波谱空间中亮度值向量的相似程度,由计算机程序自动总结出分类参数,进而逐一对像元作归类,通常也称聚类(集群)分析。使用的方法有图形识别、系统聚类、分裂法和动态聚类等。

其中,比较实用的是动态聚类。它是首先根据经验和分类数,选定若干个均值向量,作为“种子”,建立一批初始中心,进行初步概略的分类,然后根据规定的参数(阈值)检验分类结果,逐步修改调整分类中心,再重新分类,并根据各类离散性统计量(如均方差等)和不同类别之间可分离性统计量(如类间标准化距离等),进行类的合并或分裂;此后再修改中心,直至分类结果合理为止。动态聚类中,聚类中心和分类数可以按客观的波谱特征自动调整,分类效果一般比较好,但分类结果的确切含义(类别的属性)需另作分析,从实况调查或已有的地面资料中去确定它们的地物类型。

非监督分类由于事先不需训练样本,故处理速度较快,较客观,并能为监督分类的训练样区选择提供参照,一般在有目的的监督分类之前进行。

(三)监督分类

监督分类一般是先在图像中选取已知样本(训练区)的统计数据,从中找出分类的参数、条件,建立判别函数,然后对整个图像或待分类像元作出判别归类。遥感图像处理中常用的监督分类方法有最小距离法、费歇尔线性判别法、贝叶斯线性和非线性判别法(最大似然法)等。

其中,最小距离法在算法上比较简单:首先在图像显示屏上选出训练样区,并且从图像数据中求出训练样区各个波段的均值和标准差;尔后再去计算其它各像元的亮度值向量到训练样区波谱均值向量之间的距离。如果距离小于指定的阈值(一般取标准差的倍数),且与某一类的距离最近,遂将该像元归为某类。该分类法的精度取决于训练样区(地物类别)的多少和样本区的统计精度。由于计算简便,并可按像元顺序逐一扫描归类,一般分类效果也较好,因而是较常用的监督分类方法。

最大似然法也是常用的监督分类方法之一。它是用贝叶斯判别原则进行分析的一种非线性监督分类。简单地说,它可以假定已知的或确定的训练样区典型标准的先验概率,然后把某些特征归纳到某些类型的函数中,根据损失函数的情况,在损失最小时获得最佳判别。该法分类效果较好,但运算量较大。

监督分类的结果明确,分类精度相对较高,但对训练样本的要求较高,因此,使用时须注意应用条件,某一地区建立的判别式对别的地区不一定完全适用。此外,有时训练区并不能完全包括所有的波谱样式,会造成一部分像元找不到归属。故实际工作中,监督分类和非监督分类常常是配合使用,互相补充的。

图像分类处理目前在农林、土地资源遥感调查中应用较广。对于地质体的分类,由于干扰因素较大,不容易取得十分理想的效果,故在地质应用上尚不很普遍。但最近已陆续出现了一批使用分类技术的遥感地质应用成果,较多的是用经变换(比值、K-L等)处理的图像再作分类处理,用于岩性填图或热液蚀变填图等,是值得重视的发展方向。

Ⅱ 遥感图像分类法

图像分类是与图像信息提取和增强不同的遥感图像处理中另一重要的方面,与图像增强后仍需人为解译不同,它企图用计算机做出定量的决定来代替人为视觉判译步骤。因此,分类处理后输出的是一幅专题图像。在此图像中,原来图像中的每一个象元依据不同的统计决定准则被划归为不同的地表覆盖类,由于是一种统计决定,必然伴随着某种错误的概率。因此,在逻辑上的合理要求是,对每一个象元所做的决定,应是使整个被分类面积即对大量单个象元的分类的某个错误判据为最小。

以下是几种常用的遥感图像分类方法:

1.最大似然分类(maximum likelihood classification)

最大似然分类是一种基于贝叶斯判别准则的非线性监督分类方法,需要知道已知的或确定的训练样区典型标准的先验概率P(wi)和条件概率密度函数P(wi,x)。P(wi)通常根据各种先验知识给出或假定它们相等:P(wix)则是首先确定其分布形式,然后利用训练样本估计其参数。一般假设为正态分布,或通过数学方法化为正态分布。其判别函数集为:

Di(x)=P(wix),i=1,2,…,m (2-2)

如果Di(x)≥ Dj(x),则x属于wi类。其中,j≠i,j=1,2,…,m。m为类别数。

从上述最大似然分类的说明看,其关键就在于已知类别的定义,先验概率的确定,参与分类的变量的好坏和结果误差评价。直到现在,最大似然分类至少还有两个缺点:一是事先大量人力已知光谱类的选择和定义:二是需要长时间的计算机分类计算时间。实际上这也使得最大似然分类法遥感应用受到了限制,因此许多人专门研究改进算法以便解决和缩减图像分类的时间,提高分类的精度。Solst和Lillesand(1991)为了解决已知类别定义消耗大量人力的缺点,发展了半自动训练法进行已知光谱类的定义。Fabio Maselli等(1992)利用Skidmore和Tumer提出的非参数分类器计算出各已知类训练集的先验概率,然后将它们插入常规的最大似然分类过程中进行分类。该方法融合了非参数和参数分类过程的优点,提高了分类的精度。

通常情况下,地形会影响到训练集数据,这样训练集光谱数据就偏离了最大似然分类的假设条件正态分布,从而常规的最大似然分类法在地形起伏较大的地区效果并不太好。为了解决这一问题,C.Conese和G.Maracchi和F.Maselli(1993)提出了一种改进的最大似然分类算法,即去掉每一类数据集中与第一主成分相关的信息(地形信息)然后再进行分类。通过试验,这种方法是有效的,分类精度得到了提高。

K.Arai(1993)用光谱和空间信息进行分类改进了最大似然分类方法。该方法简单易行,大大提高了正确分类的概率。C.Conese和Fabio Maselli(1992)用误差矩阵提高最大似然分类面积估计的精度。Irina Kerl(1996)加最大似然分类精度的一种方法,即多概率比较法。他对同一遥感数据的原始波段、主成分和植被指数的22种组合进行了最大似然分类,发现没有一种波段组合的分类能给出图像中所有土地利用类型的精确分类,每一波段组合仅对图像中的一两类土地利用类型分类有效。因此他提出将能有效区分出所要决定的土地利用类型的几个波段组合的分类结果进行组合来进行图像分类,并称这种方法为多概率比较法,这种方法的基础就是图像数据不同波段组合的分类结果之间分类概率大小的比较。应用这种方法提高了分类的精度。

2.最小距离分类(minimum distance classification)

最小距离分类是一种线性判别监督分类方法,也需要对训练区模式样本进行统计分析,是大似然分类法中的一种极为重要的特殊情况。最小距离分类在算法上比较简单,首先需选出要区分类别的训练样区,并且从图像数据中求出各类训练样区各个波段的均值和标准差,然后再计算图像中其他各个象元的灰度值向量到各已知类训练样区均值向量之间的距离。如果距离小于指定的阈值(一般取标准差的倍数),且与某一类的距离最近,就将该象元划归为某类。因此称为最小距离分类。该方法的精度主要取决于已知类训练样区的多少和样本区的统计精度。另外,距离度量的方法不同,分类的结果也不相同,常见的有:

(1)明氏距离(minkowski distance)

中亚地区高光谱遥感地物蚀变信息识别与提取

式中Tij=-Tij

③经过①②步后,随机象元X被划归为正确的类。

另外,通过对参与计算变量的排序和部分一总和逻辑的考虑,可大大降低该算法计算的时间。与最小距离(欧氏距离)和最大似然分类器相比,整体平均分类器所用时间最少,分类精度与最小距离大致相同,对像农田面积和森林这样的名义类型的分类十分有效。

Haluk Cetin(1996)提出了一种分类方法:类间距离频率分布法(interclass distance frequency dis-tribution),这是多光谱数据非参数分类方法的一种。类间距离频率分布过程简单,是一种有力的可视化技术,它图形地显示多光谱数据和类分布。首先选择感兴趣的类,这些类的统计信息从典型的训练样区可获得。利用类的平均测量矢量计算多光谱数据中每个象元的距离,并存放在一个两维数据分布数组中。选择其他类的训练区,训练区数据的分布通过距离计算可获得。通过可视化地检查结果,建立分类查询表(look-up table),然后利用分类查询表进行多光谱图像数据的分类,具体细节请参见原文。

H.N.Srikanta Prakash等(1996)改进了遥感数据凝聚聚类分析,这是一种基于相互近邻概念,用来进行多光谱数据分类的非参数、层次、凝聚聚类分析算法。该方法定义了围绕象元的感兴趣区域(area of interest around each pixel),然后在它内部寻找分类时初始合并操作需要的k最近邻,将象元的特征值、波段值和象元的相对位置值一起考虑,提出了改进的距离量度,这样,大大减少了计算的时间和内存的需求,降低了分类的误差概率。

Steven E.Franklin和Bradley A.Wilson(1992)设计了3阶段分类器进行遥感图像的分类,它由一个基于四叉树的分割算子、一个高斯最小距离均值测试和一个包括辅助地理网数据和光谱曲线测量的最终测试构成。与最大似然分类技术相比,3阶段分类器的总体分类精度得到了提高,减少计算时间,另外仅需最少的训练样区数据(它们在复杂地形区很难获得)。

Ⅲ 高光谱影像分类技术研究现状

遥感影像分类是对影像中包含的多个目标地物进行区分,并给出单个像元的对应特征类别。按照是否需要先验样本,分为监督分类和非监督分类。

1.2.1.1 高光谱影像监督分类方法

针对高光谱影像监督分类,可以把现有的分类算法分为光谱特征匹配分类、统计模型分类、同质地物提取分类、纹理信息辅助分类、面向对象分类、决策树分类、模糊聚类方法、专家系统分类、神经网络分类、支持向量机分类、流行学习分类、集成学习分类、基于云模型分类等方法。

(1)光谱特征匹配分类方法

根据已知光谱数据,采用匹配分析算法区分待测光谱的类别,从而实现影像分类。它可以是整波段光谱匹配,也可以是部分感兴趣波段光谱匹配。如Geotz(1990)提出了二值编码匹配算法,通过设定阈值,将像元光谱转换为编码序列,在一定程度上压缩了原始光谱,但也降低了光谱区分度。常见的二值编码算法有分段编码、多门限编码和特征波段编码等。Clark et al.(1998)提出了一种拟合算法,通过计算像元光谱与样本光谱的拟合度来确定像元隶属于样本的概率。Kruse et al.(1993a)通过计算待测光谱和参考光谱的矢量夹角来比较其相似程度,并认为两条光谱的角度越小,表明相近程度越大。另外包络线去除法影像分类也是一种光谱匹配方法,它是通过对单个像元光谱进行包络线生成,并通过包络线比值法、光谱微分技术和曲线拟合技术,突出光谱曲线的峰谷特性,进而提取出反映某个问题的敏感波段,之后利用敏感波段进行分类研究。白继伟等(2003)认为,包络线去除法分类技术可以很好地抑制噪声,提高分类准确率,特别适用于植被识别。Meeret al.(1997)设计了交叉相关光谱匹配技术(Cross Correlogram Spectral Mapping,CCSM),该算法通过计算测试光谱和参考光谱的相关系数、偏度系数和相关显着性标准来综合评价光谱的匹配程度。Kruse et al.(1990)利用半波长宽度、波长位置和吸收深度等特征参数进行光谱匹配。

(2)统计模型分类方法

McIver et al.(2002)认为最大似然分类是最常用的基于统计模型的分类方法,该方法假设各地物在影像上出现的概率服从多维正态分布(Swain et al.,1978)。杨国鹏等(2008)构建了核Fisher判别分析方法,通过分类实验,认为该方法优于SVM分类方法。

(3)基于同质地物提取的分类方法

一般的分类方法往往没有考虑待测像元与其周围相邻像元的关系,因为受影像空间分辨率的限制,单像元光谱所代表的地面信息一小部分来自于本地物像元,其他很大一部分来自于其周围相邻像元。Kettig et al.(1976)设计了基于同质地物提取与分类方法(Ex-traction and Classification of Homogeneous Objects,ECHO),该方法充分考虑了待测像元和临近像元的关系。

(4)纹理信息辅助下的分类方法

纹理信息是地物特性的有效表达,基于纹理信息可识别不同地物。Haralick et al.(1973)提出的灰度共生矩阵(Gray Level Co-occurrence Matrix,GLCM)是一种应用广泛的纹理分析技术,通过计算影像统计特性,来表达其灰度密度分布规律。基于变换的傅立叶分析将影像空间域信号变换到频率域(Augusteijn et al.,1995),利用能量谱、振幅谱和相位谱对影像进行纹理特性描述,用以分类。舒宁(2004)利用主成分变换,提取影像纹理特征,进行分类,他们认为PCA可以提高分类精度。

(5)面向对象的分类方法

区别于传统的基于像元的分类方法,面向对象分类方法的处理单元为图像对象,也称图斑对象。Benz et al.(2004)将图斑对象定义为空间形态和光谱特征相似的独立区域。影像分割技术是面向对象分类的实质,影像分割技术的发展在一定程度上决定了面向对象分类技术的发展。Kwon et al.(2007)设计了完全四叉树(Quad-tree Decomposition,QTD)高光谱影像分割方法。Shah et al.(2002)提出了改进的独立成分分析高光谱影像分割方法。Acito et al.(2003)提出了基于高斯混合模型(Gaussian Mixture Model,GMM)的统计分割方法。

(6)决策树分类方法

决策树分类法通过制定每一层树节点的判别规则,逐层进行比较分类。Hansen et al.(1996)认为决策树分类对分布特性不规则、不可参数化的训练数据有较好的分类效果。王圆圆等(2007)利用决策树对高光谱数据进行分类研究,认为经特征选择后,可使其分类精度提高。

(7)模糊聚类方法

模糊分类基于事物表现的不确定性,通过分析这种模糊性,概括和发现规律从而实现分类。遥感影像像元也存在某种模糊性,针对遥感影像的模糊分类最初由Wang(1990)和Carpenteret al.(1992)人提出。闫永忠等(2005)结合绝对指数,利用模糊聚类法对高光谱影像分类,分类精度较高。

(8)专家系统分类方法

专家系统是利用多种经验知识和判别规则,借助于计算机分析对比待测知识和专家知识的匹配程度来进行分类。国外,很多学者开发了高光谱影像专家分类系统,如Lyon etal.(1990)研制了Stanexpert专家系统,对矿物进行自动识别。利用分类规则,Kruse etal.(1993b)开发了功能强大的光谱识别系统。Kimes则开发了VEG系统用于植被光谱识别。

(9)神经网络分类方法

人工神经网络(Artificial Neural Network,ANN)利用数学和物理方法,从信息处理的角度,对人脑的思维过程进行模拟,并建立某种简化模型(韩力群,2006)。在高光谱遥感领域,ANN多用于物质生化组分的定量分析。Toivanen et al.(2003)利用SOFM神经网络从多光谱影像中提取边缘,并指出该方法可应用于大数据量影像边缘的提取;Moshou et al.(2006)根据5137个叶片的光谱数据,利用SOFM神经网络识别小麦早期黄锈病,准确率高达99%。谭琨等(2008)通过提取OMIS II高光谱影像数据的特征成分,组成60维分量数据,分类精度达到69.27%。宋江红等(2006)提出了基于独立成分分析和神经网络结合的高光谱数据分类。周前祥等(2005)等设计了一种非线性网络,根据高光谱数据的纹理和光谱特征进行分类。

(10)支持向量机分类方法

支持向量机由Vapnik(1995)提出,SVM应用在高光谱影像分类方面,国内学者做了很多研究,如,马毅等(2006)基于航空高光谱数据,提出了基于SVM的赤潮生物优势物种识别模型,认为该方法不受数据的高维限制。李祖传等(2011)提出了一种改进的随机场模型SVM-CRF,并对AVIRIS高光谱数据进行了分类实验,精度较高。李海涛等(2007)提出了基于最小噪声分离变换和SVM的高光谱影像分类方法,并采用OMIS1数据进行实验研究,总体分类精度高达94.85%。沈照庆等(2009)利用最近点算法(NPA),提出了无惩罚参数的SVM算法,通过对AVIRIS数据的分类实验,认为该方法提高了分类精度和速度。

(11)流行学习分类方法

流行学习(Manifold Learning,ML)是从高维采样数据中恢复低维流行结构,并求出相应的嵌入映射,实现数据维数约简。流行学习是模式识别的基本方法,有线性流行学习和非线性流行学习。其算法有等距映射、拉普拉斯映射、局部线性嵌入、局部切空间排列算法等。目前,国内很少有人研究其在高光谱影像分类方面的应用。Ma L et al.(2010a~c)认为流行学习比较适用于二分类问题,可以区分复杂地物,他们研究了基于k临近算法的流行学习方法、局部切空间排列的流行学习方法及广义监督分类的流行学习方法在高光谱影像异常检测和分类中的应用。杜培军等(2011)利用全局化等距映射(Iso-map)算法进行高光谱数据降维,效果良好。

(12)集成学习分类方法

集成学习在学习时采用多个学习器,并将输出结果按照自定义的规则进行综合,进而获得优于单个学习器的效果。集成学习方法可分为异态集成(如,叠加法和元学习法)和同态集成(朴素贝叶斯集成、决策树集成、人工神经网络集成、K-近邻集成等)。集成学习作为机器学习的前沿,目前,应用在遥感图像处理方面的研究甚少,而在高光谱影像分类方面更是凤毛麟角,但是该技术在本领域的研究前景非常广阔。

(13)基于云模型的分类方法

李万臣等(2011)提出了一种基于云模型的高光谱影像分类技术,通过生成地物样本的多维云模型,结合极大判别法则进行样本分类,分类精度较高。

1.2.1.2 高光谱影像非监督分类方法

针对高光谱影像非监督分类,现有的算法主要为K均值算法、ISODATA算法。

(1)K均值法

Tou和Gonzalez(1974)认为K均值算法是在待分类问题的类别数已知的情况下,从样本中确定聚类核心,样本其他元素按某种方式预先分到不同的类别中,然后进行聚类中心的调整,当中心稳定后结束聚类。

(2)ISODATA法

Ball和Hall(1965)提出了一种迭代自组织聚类方法(Iterative Self-organizing Data Analysis Techniques Algorithm,ISODATA)。该方法自主对地物类别进行“合并” 与“分裂”,从而得到较好的分类结果。

Ⅳ 图像分类的方法有哪些

可以按照格式,比如PNG,gif,jpg等等
也可以按照图片大小
还可以按照图片的时间
名称也能分类

Ⅳ 求一篇:图像识别的主要方法及其特点的比较的开题报告。速度!!十万火急,就这么多分!!

利用计算机进行遥感信息的自动提取则必须使用数字图像,由于地物在同一波段、同一地物在不同波段都具有不同的波谱特征,通过对某种地物在各波段的波谱曲线进行分析,根据其特点进行相应的增强处理后,可以在遥感影像上识别并提取同类目标物。早期的自动分类和图像分割主要是基于光谱特征,后来发展为结合光谱特征、纹理特征、形状特征、空间关系特征等综合因素的计算机信息提取。
常用的信息提取方法是遥感影像计算机自动分类。首先,对遥感影像室内预判读,然后进行野外调查,旨在建立各种类型的地物与影像特征之间的对应关系并对室内预判结果进行验证。工作转入室内后,选择训练样本并对其进行统计分析,用适当的分类器对遥感数据分类,对分类结果进行后处理,最后进行精度评价。遥感影像的分类一般是基于地物光谱特征、地物形状特征、空间关系特征等方面特征,目前大多数研究还是基于地物光谱特征。
在计算机分类之前,往往要做些预处理,如校正、增强、滤波等,以突出目标物特征或消除同一类型目标的不同部位因照射条件不同、地形变化、扫描观测角的不同而造成的亮度差异等。
利用遥感图像进行分类,就是对单个像元或比较匀质的像元组给出对应其特征的名称,其原理是利用图像识别技术实现对遥感图像的自动分类。计算机用以识别和分类的主要标志是物体的光谱特性,图像上的其它信息如大小、形状、纹理等标志尚未充分利用。
计算机图像分类方法,常见的有两种,即监督分类和非监督分类。监督分类,首先要从欲分类的图像区域中选定一些训练样区,在这样训练区中地物的类别是已知的,用它建立分类标准,然后计算机将按同样的标准对整个图像进行识别和分类。它是一种由已知样本,外推未知区域类别的方法;非监督分类是一种无先验(已知)类别标准的分类方法。对于待研究的对象和区域,没有已知类别或训练样本作标准,而是利用图像数据本身能在特征测量空间中聚集成群的特点,先形成各个数据集,然后再核对这些数据集所代表的物体类别。
与监督分类相比,非监督分类具有下列优点:不需要对被研究的地区有事先的了解,对分类的结果与精度要求相同的条件下,在时间和成本上较为节省,但实际上,非监督分类不如监督分类的精度高,所以监督分类使用的更为广泛。
细小地物在影像上有规律地重复出现,它反映了色调变化的频率,纹理形式很多,包括点、斑、格、垅、栅。在这些形式的基础上根据粗细、疏密、宽窄、长短、直斜和隐显等条件还可再细分为更多的类型。每种类型的地物在影像上都有本身的纹理图案,因此,可以从影像的这一特征识别地物。纹理反映的是亮度(灰度)的空间变化情况,有三个主要标志:某种局部的序列性在比该序列更大的区域内不断重复;序列由基本部分非随机排列组成;各部分大致都是均匀的统一体,在纹理区域内的任何地方都有大致相同的结构尺寸。这个序列的基本部分通常称为纹理基元。因此可以认为纹理是由基元按某种确定性的规律或统计性的规律排列组成的,前者称为确定性纹理(如人工纹理),后者呈随机性纹理(或自然纹理)。对纹理的描述可通过纹理的粗细度、平滑性、颗粒性、随机性、方向性、直线性、周期性、重复性等这些定性或定量的概念特征来表征。
相应的众多纹理特征提取算法也可归纳为两大类,即结构法和统计法。结构法把纹理视为由基本纹理元按特定的排列规则构成的周期性重复模式,因此常采用基于传统的Fourier频谱分析方法以确定纹理元及其排列规律。此外结构元统计法和文法纹理分析也是常用的提取方法。结构法在提取自然景观中不规则纹理时就遇到困难,这些纹理很难通过纹理元的重复出现来表示,而且纹理元的抽取和排列规则的表达本身就是一个极其困难的问题。在遥感影像中纹理绝大部分属随机性,服从统计分布,一般采用统计法纹理分析。目前用得比较多的方法包括:共生矩阵法、分形维方法、马尔可夫随机场方法等。共生矩阵是一比较传统的纹理描述方法,它可从多个侧面描述影像纹理特征。
图像分割就是指把图像分成各具特性的区域并提取出感兴趣目标的技术和过程,此处特性可以是像素的灰度、颜色、纹理等预先定义的目标可以对应单个区域,也可以对应多个区域。
图像分割是由图像处理到图像分析的关键步骤,在图像工程中占据重要的位置。一方面,它是目标表达的基础,对特征测量有重要的影响;另一方面,因为图像分割及其基于分割的目标表达、特征抽取和参数测量的将原始图像转化为更抽象更紧凑的形式,使得更高层的图像分析和理解成为可能。
图像分割是图像理解的基础,而在理论上图像分割又依赖图像理解,彼此是紧密关联的。图像分割在一般意义下是十分困难的问题,目前的图像分割一般作为图像的前期处理阶段,是针对分割对象的技术,是与问题相关的,如最常用到的利用阈值化处理进行的图像分割。
图像分割有三种不同的途径,其一是将各象素划归到相应物体或区域的象素聚类方法即区域法,其二是通过直接确定区域间的边界来实现分割的边界方法,其三是首先检测边缘象素再将边缘象素连接起来构成边界形成分割。
阈值是在分割时作为区分物体与背景象素的门限,大于或等于阈值的象素属于物体,而其它属于背景。这种方法对于在物体与背景之间存在明显差别(对比)的景物分割十分有效。实际上,在任何实际应用的图像处理系统中,都要用到阈值化技术。为了有效地分割物体与背景,人们发展了各种各样的阈值处理技术,包括全局阈值、自适应阈值、最佳阈值等等。
当物体与背景有明显对比度时,物体的边界处于图像梯度最高的点上,通过跟踪图像中具有最高梯度的点的方式获得物体的边界,可以实现图像分割。这种方法容易受到噪声的影响而偏离物体边界,通常需要在跟踪前对梯度图像进行平滑等处理,再采用边界搜索跟踪算法来实现。
为了获得图像的边缘人们提出了多种边缘检测方法,如Sobel, Canny edge, LoG。在边缘图像的基础上,需要通过平滑、形态学等处理去除噪声点、毛刺、空洞等不需要的部分,再通过细化、边缘连接和跟踪等方法获得物体的轮廓边界。
对于图像中某些符合参数模型的主导特征,如直线、圆、椭圆等,可以通过对其参数进行聚类的方法,抽取相应的特征。
区域增长方法是根据同一物体区域内象素的相似性质来聚集象素点的方法,从初始区域(如小邻域或甚至于每个象素)开始,将相邻的具有同样性质的象素或其它区域归并到目前的区域中从而逐步增长区域,直至没有可以归并的点或其它小区域为止。区域内象素的相似性度量可以包括平均灰度值、纹理、颜色等信息。
区域增长方法是一种比较普遍的方法,在没有先验知识可以利用时,可以取得最佳的性能,可以用来分割比较复杂的图像,如自然景物。但是,区域增长方法是一种迭代的方法,空间和时间开销都比较大。
基于像素级别的信息提取以单个像素为单位,过于着眼于局部而忽略了附近整片图斑的几何结构情况,从而严重制约了信息提取的精度,而面向对象的遥感信息提取,综合考虑了光谱统计特征、形状、大小、纹理、相邻关系等一系列因素,因而具有更高精度的分类结果。面向对象的遥感影像分析技术进行影像的分类和信息提取的方法如下:
首先对图像数据进行影像分割,从二维化了的图像信息阵列中恢复出图像所反映的景观场景中的目标地物的空间形状及组合方式。影像的最小单元不再是单个的像素,而是一个个对象,后续的影像分析和处理也都基于对象进行。
然后采用决策支持的模糊分类算法,并不简单地将每个对象简单地分到某一类,而是给出每个对象隶属于某一类的概率,便于用户根据实际情况进行调整,同时,也可以按照最大概率产生确定分类结果。在建立专家决策支持系统时,建立不同尺度的分类层次,在每一层次上分别定义对象的光谱特征、形状特征、纹理特征和相邻关系特征。其中,光谱特征包括均值、方差、灰度比值;形状特征包括面积、长度、宽度、边界长度、长宽比、形状因子、密度、主方向、对称性,位置,对于线状地物包括线长、线宽、线长宽比、曲率、曲率与长度之比等,对于面状地物包括面积、周长、紧凑度、多边形边数、各边长度的方差、各边的平均长度、最长边的长度;纹理特征包括对象方差、面积、密度、对称性、主方向的均值和方差等。通过定义多种特征并指定不同权重,建立分类标准,然后对影像分类。分类时先在大尺度上分出"父类",再根据实际需要对感兴趣的地物在小尺度上定义特征,分出"子类"。

Ⅵ 图像分类处理原理

1. 图像分类处理的依据

图像分类处理的依据就是模式识别的过程,即通过对各类地物的遥感影像特征分析来选择特征参数,将特征空间划分为互不重叠的子空间并将图像内各个像元划分到各个子空间区,从而实现分类。这里特征参数是指能够反映地物影像特征并可用于遥感图像分类处理的变量,如多波段图像的各个波段、多波段图像的算术/逻辑运算结果、图像变换/增强结果、图像空间结构特征等; 特征空间是指由特征变量组成的多维空间。

遥感影像中同一类地物在相同的条件下 ( 纹理、地形、光照及植被覆盖等) ,应具有相同或相似的光谱信息特征和空间信息特征,从而表现出同类地物的某种内在的相似性。在多波段遥感的数字图像中,可以粗略地用它们在各个波段上的像元值的连线来表示其光谱信息 ( 图 4-22a) 。在实际的多维空间中,地物的像元值向量往往不是一个点,而是呈点群分布 ( 集群) 。同类地物的特征向量将集群在同一特征空间域,不同地物的光谱信息或空间信息特征不同,因而将集群在不同的特征的空间域 ( 图 4-22b) 。在实际图像中,不同地物的集群还存在有交叉过渡,受图像分辨率的限制,一个像元中可能包括有若干个地物类别,即所谓 “混合像元”,因此对不同集群的区分要依据它们的统计特征来完成。

2. 图像分类处理的关键问题

图像分类处理的关键问题就是按概率统计规律,选择适当的判别函数、建立合理的判别模型,把这些离散的 “集群”分离开来,并作出判决和归类。通常的做法是,将多维波谱空间划分为若干区域 ( 子空间) ,位于同一区域内的点归于同一类。子空间划分的标准可以概括为两类: ①根据点群的统计特征,确定它所应占据的区域范围。例如,以每一类的均值向量为中心,规定在几个标准差的范围内的点归为一类。②确定类别之间的边界,建立边界函数或判别函数。不论采取哪种标准,关键在于确定同一类别在多维波谱空间中的位置 ( 类的均值向量) 、范围 ( 协方差矩阵) 及类与类边界 ( 判别函数) 的确切数值。按确定这些数据是否有已知训练样本 ( 样区) 为准,通常把分类技术分为监督和非监督两类。非监督分类是根据图像数据本身的统计特征及点群的分布情况,从纯统计学的角度对图像数据进行类别划分的分类处理方法。监督分类是根据已知类别或训练样本的模式特征选择特征参数并建立判别函数,把图像中各个像元点划归至给定类中的分类处理方法。

图 4-22 某地数字图像上主要几种地物的光谱反射比曲线和集群分布

3. 监督分类与非监督分类的本质区别

监督分类与非监督分类的本质区别在于有无先验知识。非监督分类为在无分类对象先验知识的条件下,完全根据数据自身的统计规律所进行的分类; 监督分类指在先验知识( 训练样本的模式特征等先验知识) 的 “监督”之下进行分类。非监督分类的结果可作为监督分类训练样本选择的重要参考依据,同时,监督分类中训练样本的选择需要目视解译工作者、专家的地学知识与经验作为支撑。

4. 遥感图像分类的工作流程

①确定分类类别: 根据专题目的和图像数据特性确定计算机分类处理的类别数与类特征; ②选择特征参数: 选择能描述各类别的特征参数变量; ③提取分类数据: 提取各类别的训练 ( 样本) 数据; ④测定总体统计特征: 或测定训练数据的总体特征,或用聚类分析方法对特征相似的像元进行归类分析并测定其特征; ⑤分类: 用给定的分类基准对各个像元进行分类归并处理; ⑥分类结果验证: 对分类的精度与可靠性进行分析。

Ⅶ 遥感图像分类方法研究现状

http://www.cnki.com.cn/Article/CJFDTotal-YGXX200605023.htm

Ⅷ 图像处理与分类方法

(一)图像处理方法

全景钻孔摄像系统实现视频图像数字化的基础是用C++语言编制而成的采集软件和分析软件。采集软件使探测到的钻孔视频图像数字化,再通过分析软件对其中的信息图像进行识别,完成对数字图像和重要信息的存储和维护。

采集软件(图9-17)的主要功能如下:

1)捕获图像。通过新建gra格式的文件捕获视频数据,并形成数字图像。在进行图像捕获之前需设定视频数据的工作环境(钻孔孔径、探头直径等),以满足数据转换的要求。

2)实时显示。在进行图像捕获的同时将处理后的直观图像快速地显示出来,便于实时监控数据处理过程。

3)图像存储。将捕获后的数字图像以gra文件的格式存储于计算机硬盘中。

4)图像识别。对某帧或某些帧图像中的有用信息进行计算分析,从中获得具体数据,主要包括:识别罗盘图像并计算罗盘方位,识别深度数据。

5)深度修正。对视频图像中的深度数据与真实的深度进行修正。

图9-17 数据采集软件(BHImgCapt)

数据分析软件(图9-18)的主要功能如下:

1)形成三维图像。三维图像就是三维钻孔岩心图,它是通过钻孔孔壁图模拟出来的,也称为“虚拟”钻孔岩心图,形成的三维图像便于更直观地观测孔壁。

2)计算分析。计算分析的功能包括计算结构面产状和隙宽、建立结构面数据库、备注结构面的几何形态等,为进一步对结构面进行统计分析创造条件。

3)打印输出。统计分析形成的任何图像都可以彩色打印输出。

图9-18 数据分析软件(BHImgCapt)

(二)统计分类方法

为了更直观地展现经数据采集与分析软件获得的孔内结构面数据(结构面产状、深度、张开度及裂隙填充情况等)分布特征,首先借助 Microsoft Excel的数据统计功能将结构面数据按倾角和张开度大小进行分类汇总(表9-4和表9-5),然后用统计分析软件Origin和DIPS绘制裂隙的倾向玫瑰花图和产状极点密度图(图9-19和图9-20)。

表9-4 按倾角大小的分类汇总

表9-5 按隙宽大小的分类汇总

图9-19 Origin软件界面及倾向玫瑰花图

图9-20 Dips软件界面及产状极点密度图

Ⅸ 数字图像处理方法的研究

底层的图像处理包括增强,复原,编码,压缩等;
中层的图像分析包括预处理(增强,复原等),分割,特征提取,图像分类;
高层的图像理解包括预处理,图像描述,图像分析,图像理解。
数字图像处理的主要技术有:图像变换技术,图像增强技术,图像平滑技术,边缘锐化技术,图像分割技术,图像编码技术,图像识别技术。
各种技术有具体的方法研究。

Ⅹ 图像分类的分类方法

基于色彩特征的索引技术
色彩是物体表面的一种视觉特性,每种物体都有其特有的色彩特征,譬如人们说到绿色往往是和树木或草原相关,谈到蓝色往往是和大海或蓝天相关,同一类物体往拍几有着相似的色彩特征,因此我们可以根据色彩特征来区分物体.用色彩特特征进行图像分类一可以追溯到Swain和Ballard提出的色彩直方图的方法.由于色彩直方图具有简单且随图像的大小、旋转变化不敏感等特点,得到了研究人员的厂泛关注,目前几乎所有基于内容分类的图像数据库系统都把色彩分类方法作为分类的一个重要手段,并提出了许多改进方法,归纳起主要可以分为两类:全局色彩特征索引和局部色彩特征索引。
基于纹理的图像分类技术
纹理特征也是图像的重要特征之一,其本质是刻画象素的邻域灰度空间分布规律由于它在模式识别和计算机视觉等领域已经取得了丰富的研究成果,因此可以借用到图像分类中。
在70年代早期,Haralick等人提出纹理特征的灰度共生矩阵表示法(eo一oeeurrenee matrix representation),这个方法提取的是纹理的灰度级空间相关性(gray level Spatial dependenee),它首先基于象素之间的距离和方向建立灰度共生矩阵,再由这个矩阵提取有意义的统计量作为纹理特征向量。基于一项人眼对纹理的视觉感知的心理研究,Tamuar等人提出可以模拟纹理视觉模型的6个纹理属性,分别是粒度,对比度,方向性,线型,均匀性和粗糙度。QBIC系统和MARS系统就采用的是这种纹理表示方法。
在90年代初期,当小波变换的理论结构建一认起来之后,许多研究者开始研究
如何用小波变换表示纹理特征。smiht和chang利用从小波子带中提取的统计量(平均值和方差)作为纹理特征。这个算法在112幅Brodatz纹理图像中达到了90%的准确率。为了利用中间带的特征,Chang和Kuo开发出一种树型结构的小波变化来进一步提高分类的准确性。还有一些研究者将小波变换和其他的变换结合起来以得到更好的性能,如Thygaarajna等人结合小波变换和共生矩阵,以兼顾基于统计的和基于变换的纹理分析算法的优点。
基于形状的图像分类技术
形状是图像的重要可视化内容之一在二维图像空间中,形状通常被认为是一条封闭的轮廓曲线所包围的区域,所以对形状的描述涉及到对轮廓边界的描述以及对这个边界所包围区域的描述.目前的基于形状分类方法大多围绕着从形状的轮廓特征和形状的区域特征建立图像索引。关于对形状轮廓特征的描述主要有:直线段描述、样条拟合曲线、傅立叶描述子以及高斯参数曲线等等。
实际上更常用的办法是采用区域特征和边界特征相结合来进行形状的相似分类.如Eakins等人提出了一组重画规则并对形状轮廓用线段和圆弧进行简化表达,然后定义形状的邻接族和形族两种分族函数对形状进行分类.邻接分族主要采用了形状的边界信息,而形状形族主要采用了形状区域信息.在形状进行匹配时,除了每个族中形状差异外,还比较每个族中质心和周长的差异,以及整个形状的位置特征矢量的差异,查询判别距离是这些差异的加权和。
基于空间关系的图像分类技术
在图像信息系统中,依据图像中对象及对象间的空间位置关系来区别图像库中的不同图像是一个非常重要的方法。因此,如何存贮图像对象及其中对象位置关系以方便图像的分类,是图像数据库系统设计的一个重要问题。而且利用图像中对象间的空间关系来区别图像,符合人们识别图像的习惯,所以许多研究人员从图像中对象空间位置关系出发,着手对基于对象空间位置关系的分类方法进行了研究。早在1976年,Tanimoto提出了用像元方法来表示图像中的实体,并提出了用像元来作为图像对象索引。随后被美国匹兹堡大学chang采纳并提出用二维符号串(2D一String)的表示方法来进行图像空间关系的分类,由于该方法简单,并且对于部分图像来说可以从ZD一String重构它们的符号图,因此被许多人采用和改进,该方法的缺点是仅用对象的质心表示空间位置;其次是对于一些图像来
说我们不能根据其ZD一string完个重构其符号图;再则是上述的空间关系太简单,实际中的空间关系要复杂得多。,针对这些问题许多人提出了改进力一法。Jungert根据图像对象的最小包围盒分别在:x轴方向和y轴上的投影区间之间的交叠关系来表示对象之间的空间关系,随后Cllallg和Jungert等人又提出了广义ZD一string(ZDG一String)的方法,将图像对象进一步切分为更小的子对象来表示对象的空间关系,但是该方法不足之处是当图像对象数日比较多且空间关系比较复杂时,需要切分的子对象的数目很多,存储的开销太大,针对此Lee和Hsu等人提出了ZDC一string的方一法,它们采用Anell提出的13种时态间隔关系并应用到空间投影区问上来表达空间关系。在x轴方向和y轴方向的组合关系共有169种,他提出了5种基本关系转换法则,在此基础上又提出了新的对象切分方法。采用
ZDC一string的方法比ZDG一string切分子对象的数目明显减少。为了在空间关系中保留两个对象的相对空间距离和对象的大小,Huang等人提出了ZDC书string的方法提高符号图的重构精度,并使得对包含对象相对大小、距离的符号图的推理成为可能。上述方法都涉及到将图像对象进行划分为子对象,且在用符号串重构对象时处理时间的开销都比较大,为解决这些方法的不足,Lee等人又提出了ZDB一String的方法,它不要求对象进一步划分,用对象的名称来表示对象的起点和终点边界。为了解决符号图的重构问题,Chin一ChenCllang等人提出了面向相对坐标解决符号图的重构问题,Chin一ChenChang等人提出了面向相对坐标符号串表示(RCOS串),它们用对象最小外接包围盒的左下角坐标和右上角坐标来表示对象之间的空间关系.
对于对象之间的空间关系采用Allen提出的13种区间表示方法。实际上上述所有方法都不是和对象的方位无关,为此Huang等人又提出了RSString表示方法。虽然上述各种方法在对图像对象空间信息的分类起到过一定作用,由于它们都是采用对象的最小外接矩形来表示一个对象空间位置,这对于矩形对象来说是比较合适的,但是当两个对象是不规则形状,且它们在空间关系上是分离时,它们的外接矩形却存在着某种包含和交叠,结果出现对这些对象空间关系的错误表示。用上述空间关系进行图像分类都是定性的分类方一法,将图像的空间关系转换为图像相似性的定量度量是一个较为困难的事情。Nabil综合ZD一String方法和二维平面中对象之间的点集拓扑关系。提出了ZD一PIR分类方法,两个对象之间的相似与否就转换为两个图像的ZD一PIR图之间是否同构。ZD一PIR中只有图像对象之间的空间拓扑关系具有旋转不变性,在进行图像分类的时候没有考虑对象之间的相对距离。

阅读全文

与图像分类方法研究相关的资料

热点内容
磷钾肥真假鉴别方法 浏览:265
玉石镜面抛光正确方法怎么洗胶水 浏览:698
挂床沿的锻炼方法图解 浏览:844
交叉反应率计算方法 浏览:566
替代手机套餐的方法 浏览:501
不锈钢水缸安装方法视频 浏览:516
正确绘制电导滴定曲线的方法 浏览:666
富锂锰正极材料主体含量检测方法 浏览:1002
青松形体组合训练方法 浏览:977
心衰怎么治疗方法 浏览:265
装修公司用什么方法代理 浏览:997
土鳖虫怎么养殖方法 浏览:847
快速取鸡内金的方法 浏览:997
五个回归分析方法 浏览:953
污水的检测方法标准 浏览:317
才买的三角梅快速服盆方法 浏览:146
系统需求分析方法 浏览:896
龙眼快速熟的方法 浏览:987
热源检测方法优缺点 浏览:631
试剂检测方法性能首先验证什么 浏览:201