⑴ 如何提高多项选择题的正确率
1、抓重点
大部分多项选择题都是选哪些是正确的,哪些是不正确的,这个时候学员们可以在脑海中把这几个字圈起来,根据ABCD的顺序依次把错误和正确的区分开,再根据题干做选择。
2、相近法
把选项中表述一致的都选上,因为有可能出现三个选项表述是一致的,彼此互相支撑不可分离,那么这两个就都是答案。
3、矛盾法
多选题的题干往往很长,需要学员们自己去理解分析,如果实在难以理解就可以直攻选项了,如果发现有的选项是互相矛盾的那么相互对立的这两方一定有正确答案和错误答案,这时候再返回去分析题干就可以直接选择了。
⑵ SPSS 多选项如何分析
在SPSS分析的多重响应里设置多项题,将几个属于一个多项选择题的几个变量选入进去进行重新定义变量。然后还是在多重响应的地方做频次和卡方交互分析
⑶ spss多选项分析
作为分类变量输入就行了,分析的时候需要设置20个哑变量
⑷ 多元分析的分析方法
包括3类:①多元方差分析、多元回归分析和协方差分析,称为线性模型方法,用以研究确定的自变量与因变量之间的关系;②判别函数分析和聚类分析,用以研究对事物的分类;③主成分分析、典型相关和因素分析,研究如何用较少的综合因素代替为数较多的原始变量。 是把总变异按照其来源(或实验设计)分为多个部分,从而检验各个因素对因变量的影响以及各因素间交互作用的统计方法。例如,在分析2×2析因设计资料时,总变异可分为分属两个因素的两个组间变异、两因素间的交互作用及误差(即组内变异)等四部分,然后对组间变异和交互作用的显着性进行F检验。
优点
是可以在一次研究中同时检验具有多个水平的多个因素各自对因变量的影响以及各因素间的交互作用。其应用的限制条件是,各个因素每一水平的样本必须是独立的随机样本,其重复观测的数据服从正态分布,且各总体方差相等。 用以评估和分析一个因变量与多个自变量之间线性函数关系的统计方法。一个因变量y与自变量x1、x2、…xm有线性回归关系是指:
其中α、β1…βm是待估参数,ε是表示误差的随机变量。通过实验可获得x1、x2…xm的若干组数据以及对应的y值,利用这些数据和最小二乘法就能对方程中的参数作出估计,记为╋、勮…叧,它们称为偏回归系数。
优点
是可以定量地描述某一现象和某些因素间的线性函数关系。将各变量的已知值代入回归方程便可求得因变量的估计值(预测值),从而可以有效地预测某种现象的发生和发展。它既可以用于连续变量,也可用于二分变量(0,1回归)。多元回归的应用有严格的限制。首先要用方差分析法检验因变量y与m个自变量之间的线性回归关系有无显着性,其次,如果y与m个自变量总的来说有线性关系,也并不意味着所有自变量都与因变量有线性关系,还需对每个自变量的偏回归系数进行t检验,以剔除在方程中不起作用的自变量。也可以用逐步回归的方法建立回归方程,逐步选取自变量,从而保证引入方程的自变量都是重要的。 把线性回归与方差分析结合起来检验多个修正均数间有无差别的统计方法。例如,一个实验包含两个多元自变量,一个是离散变量(具有多个水平),一个是连续变量,实验目的是分析离散变量的各个水平的优劣,此变量是方差变量;而连续变量是由于无法加以控制而进入实验的,称为协变量。在运用协方差分析时,可先求出该连续变量与因变量的线性回归函数,然后根据这个函数扣除该变量的影响,即求出该连续变量取等值情况时因变量的修正均数,最后用方差分析检验各修正均数间的差异显着性,即检验离散变量对因变量的影响。
优点
可以在考虑连续变量影响的条件下检验离散变量对因变量的影响,有助于排除非实验因素的干扰作用。其限制条件是,理论上要求各组资料(样本)都来自方差相同的正态总体,各组的总体直线回归系数相等且都不为0。因此应用协方差分析前应先进行方差齐性检验和回归系数的假设检验,若符合或经变换后符合上述条件,方可作协方差分析。 判定个体所属类别的统计方法。其基本原理是:根据两个或多个已知类别的样本观测资料确定一个或几个线性判别函数和判别指标,然后用该判别函数依据判别指标来判定另一个个体属于哪一类。
判别分析不仅用于连续变量,而且借助于数量化理论亦可用于定性资料。它有助于客观地确定归类标准。然而,判别分析仅可用于类别已确定的情况。当类别本身未定时,预用聚类分析先分出类别,然后再进行判别分析。 解决分类问题的一种统计方法。若给定n个观测对象,每个观察对象有p个特征(变量),如何将它们聚成若干可定义的类?若对观测对象进行聚类,称为Q型分析;若对变量进行聚类,称为R型分析。聚类的基本原则是,使同类的内部差别较小,而类别间的差别较大。最常用的聚类方案有两种。一种是系统聚类方法。例如,要将n个对象分为k类,先将n个对象各自分成一类,共n类。然后计算两两之间的某种“距离”,找出距离最近的两个类、合并为一个新类。然后逐步重复这一过程,直到并为k类为止。另一种为逐步聚类或称动态聚类方法。当样本数很大时,先将n个样本大致分为k类,然后按照某种最优原则逐步修改,直到分类比较合理为止。
聚类分析是依据个体或变量的数量关系来分类,客观性较强,但各种聚类方法都只能在某种条件下达到局部最优,聚类的最终结果是否成立,尚需专家的鉴定。必要时可以比较几种不同的方法,选择一种比较符合专业要求的分类结果。 把原来多个指标化为少数几个互不相关的综合指标的一种统计方法。例如,用p个指标观测样本,如何从这p个指标的数据出发分析样本或总体的主要性质呢?如果p个指标互不相关,则可把问题化为p个单指标来处理。但大多时候p个指标之间存在着相关。此时可运用主成分分析寻求这些指标的互不相关的线性函数,使原有的多个指标的变化能由这些线性函数的变化来解释。这些线性函数称为原有指标的主成分,或称主分量。
主成分分析有助于分辨出影响因变量的主要因素,也可应用于其他多元分析方法,例如在分辨出主成分之后再对这些主成分进行回归分析、判别分析和典型相关分析。主成分分析还可以作为因素分析的第一步,向前推进就是因素分析。其缺点是只涉及一组变量之间的相互依赖关系,若要讨论两组变量之间的相互关系则须运用典型相关。 先将较多变量转化为少数几个典型变量,再通过其间的典型相关系数来综合描述两组多元随机变量之间关系的统计方法。设x是p元随机变量,y是q元随机变量,如何描述它们之间的相关程度?当然可逐一计算x的p个分量和y的q个分量之间的相关系数(p×q个), 但这样既繁琐又不能反映事物的本质。如果运用典型相关分析,其基本程序是,从两组变量各自的线性函数中各抽取一个组成一对,它们应是相关系数达到最大值的一对,称为第1对典型变量,类似地还可以求出第2对、第3对、……,这些成对变量之间互不相关,各对典型变量的相关系数称为典型相关系数。所得到的典型相关系数的数目不超过原两组变量中任何一组变量的数目。
典型相关分析有助于综合地描述两组变量之间的典型的相关关系。其条件是,两组变量都是连续变量,其资料都必须服从多元正态分布。
以上几种多元分析方法各有优点和局限性。每一种方法都有它特定的假设、条件和数据要求,例如正态性、线性和同方差等。因此在应用多元分析方法时,应在研究计划阶段确定理论框架,以决定收集何种数据、怎样收集和如何分析数据资料。
⑸ Spss的基本方法使用步骤
Spss的基本方法使用步骤
由于一次的调研工作,我们的数据分析采用spss的统计分析工具,然后我是一个新人,全都是一步一步从零开始操作的。在学习的过程中简单记录了一点笔记,既然写了,就觉得应该把它保存下来,所以来到了这里,为我的第一次spss操作做个马克。
因子分析方法:指标非常多,反映相同事情的进行聚合
设置的地方:
描述—— kmo
抽取 —— 主成分,碎石图
旋转——最大方差法
得分——保存为变量
选项——大小为变量、删除最小系数,特征值为0.6
kmo > 0.6 ——看是否有效,对原始数据的检验。
在SPSS软件统计结果中,不管是回归分析还是其它分析,都会看到“SIG”,SIG=significance,意为“显着性”,后面的值就是统计出的P值,如果P值0.01<P<0.05,则为差异显着,如果P<0.01,则差异极显着。
公因子方差——提取程度(损失的数据,如果损失低于40%即满意)
解释总方差:可以分成几类,然后提取主成分因子,累积方差贡献率,累积特征值大于等于85%(放宽70%).(损失率低于15%)
碎石图:类似于解释总方差,特征值大于1的就是主成分,对解释方差的解释和完善
成分矩阵——一般不考虑,不够充分,只是中间步骤
旋转后成分矩阵——成分1,成分2中大于0.6的归为一类,载荷大于设置的值才会把得分显示在视图。
可靠性分析(问卷问题分类正确的前提下)步骤:
分析→度量→可靠性分析→统计量→描述性(如果项已删除则进行度量)→继续(模型α)→确定
分析:可靠性统计量:0.7以上有效
可删除的分析:如果删除后信度变大,则可以考虑把这个因素删除
平均数:反应数量的中点
中位数:全体样本的中点
步骤:
均值:描述性统计分析→描述→导入变量→确定
中位数:比较均值→均值→导入变量→选项→导入中位数即可→确定
线性回归步骤:
分析→回归→线性→因变量→自变量→
统计量:估计→模型拟合度→共线性诊断→DW
绘制:Y:ZRESID, X:ZPRED; 直方图,正态概率图
保存:不操作
选项: 默认
→确定
模型汇总表
DW统计量代表自相关
DW = 2不存在为伪回归
DW < 2 正自相关
DW > 2 负相关
多选题可以考虑使用多重响应多重响应,多重响应数据本质上属于分类数据,但由于各选项均是对同一个问题的回答,之间存在一定的相关,将各选项单独进行分析并不恰当。因此对多选题最常见的分析方法是使用SPSS中的“多重响应”命令,通过定义变量集的方式,对选项进行简单的频数分析和交叉分析
作用1:进行简单的频数分析:可以直观明了的比较一道多选题的各个选项被选比例。
作用2:进行交叉分析:可以通过设置分层变量来进行某个选项控制下的分析。
步骤:
分析→多重响应→定义变量集(把多选题变成一个变量)→设置定义把多选题的选项放进集合中的变量→将变量编码设置为二分法,计数值为1→名称标签→添加 、
交叉表
行、列→定义范围→确定
⑹ 在spss多选项分析中,多选项二分法和多选项分类法有何区别
二分法 是你的每个选项 一般都是录的两个数,这个数没特别意义,无非是用来表示是否选择该项
分类法 是里面每个数字 都对应多选题的一个选项
两种方法不同,数据的录入和处理略有差别,但是结果是一样的
⑺ 在spss中对多选题可以做什么分析
“在线SPSS”SPSSAU中的多选题功能,可一键得到多选题分析结果,及智能结果解读。
还有其他关于多选题的分析技巧,可以参考资料:多选题的6种分析技巧-SPSSAU
⑻ 调研问卷中多选题的分析方法探讨
调研问卷中多选题的分析方法探讨
使用调研问卷的定量研究中,为了更全面地了解研究内容、更广泛地收集信息,经常会用到多选题,但由于多选题多指向性的特点,除了频数表和交叉表(只能与单选题做交叉),较少用到其他的分析方法,损失了很多有用的信息。其实,如果调研时能善用多选题,并在分析时选取适当的方法,就能够充分利用多选题包含的信息,得到更有价值的结论。
前两篇文章分别谈到调研问卷中带有分类性质的多选题、带有求和性质的多选题如何进行分析,本文将侧重说一下带有递进逻辑的多选题如何进行深入分析。
带有递进逻辑的多选题
问卷调研中,常会通过多选题考察用户在某个方面不同层次的情况,如对某个卖家产品各功能的使用情况(经常使用的功能)、使用的满意情况(满意的功能)、需要改进的情况(亟需改进的功能)等,题目与题目之间是同一个问题的不同层次,存在递进的逻辑关系,即使用频率高低与是否满意、是否亟需等,三者之间分别存在逻辑关系。
此时,这种存在递进逻辑的多选题,可以首先考察不同题目相同选项之间的相关性;其次,能够衍生出新的题目,进行深入分析,挖掘表面背后的原因。
其实,这种带有递进逻辑的多选题,可以采用量表的形式进行考察,而量表题涉及到N级量表,相当于每个项目(选项)都是一个题目,具有递进逻辑的项目之间,进行相关分析、衍生变量分析,更能深入挖掘用户在某一方面的综合情况。只是为了节约用户的填答成本,常用多选题代替。
另外,衍生出的新题目,也是可以通过直接询问的方式获得的,但通常题目带有递进逻辑时,需要用户深入全面思考,耗费的精力较大,也容易造成理解上的偏差,给研究结论带来较大的非抽样误差。因此,通过多个简单的题目,计算出带有递进逻辑的结果,更易行更有效。
带有递进逻辑的多选题一般具备以下几个特征:
1、题目与题目之间的递进逻辑存在分析价值,如对某个卖家产品各功能的考察中,卖家对产品功能是否满意与是否亟需改进之间的递进关系,对于产品改进的方向、改进的优先级等有较大的参考价值。如果是满意但亟需改进,表明该功能可能需要创新;若不满意但没有亟需改进,则说明该功能的改进优先级可以适当靠后。
2、相关题目之间的选项相同,选项若不对应,或部分对应,会造成递进逻辑关系不紧密,容易引起结果出现偏差。
会有特殊情况,如某产品经常使用的功能选项,除主要功能外,还有一个互斥的选项“不常用以上功能”;亟需改进的功能选项,除主要功能外,也有一个互斥的选项“均不需要改进”。这类情况中,题目多出来的互斥选项只是为了解决题目设置为必选时,满足某种特殊情况,主要功能仍然是一一对应的,不对应的互斥选项,后续不进入递进关系的分析。
3、相关题目的选项尽可能覆盖全面,选项尽量能够覆盖考察的主要细节点,以免用户过多地选择“其他”选项,削弱了分析递进关系的可能性。
4、相关题目的选项个数最好超过3个,如果选项只有3个或更少,将多选题改为量表题,用户的填答成本不太大,获得的信息会更多,后续利用递进关系进行分析时,可以更加深入。
5、相关题目设置限选时需考虑递进逻辑,若同时限选,限选的个数最好相同;由于递进关系通常是由弱到强,有时可以设置递进关系较弱的题目不限选,较强的题目限选,如满意的功能不限选,亟需改进的功能限选,可以分析递进关系中的强度。但如果递进关系较弱的题目限选,而递进关系较强的题目不限选,则容易造成解读上的偏差,带来不必要的麻烦。
6、数据为0/1格式,即每个选项一个变量,选中为1,未选中为0,多选题转换成此种格式,宜于做深入分析。
当调研问卷中设置了带有递进逻辑的多选题,就可以采用下文介绍的方法进行深入分析。
本文中的例子,采用年初时自主发起的《卖家旺铺选择研究》,研究中涉及两套递进关系的题目:
您目前已经在用的旺铺功能有哪些?(可多选)
您目前最需要的旺铺功能有哪些?(可多选,最多9项)
您目前使用旺铺主要解决了哪些问题?(可多选)
您最希望通过旺铺帮您解决哪些问题?(可多选,最多6项)
相关分析
本文的案例主要研究旺铺,根据版本分析更有价值。以使用拓展版旺铺的用户为例,分别计算已经在用的功能和最需要的功能,再对每一个功能在用的和最需要的变量做相关分析,能够得到如下结论(详见下图,数字略):
1、已经在用的高比例,同时最需要的也是高比例的功能,对于拓展版旺铺而言,是需要维持的功能。
2、需要维持的功能中,个性化店招、数据分析工具、宝贝30天销售量累积显示、自定义页面布局等功能,在用的与最需要的之间存在显着相关(图中已星号标注,*代表显着相关,**代表非常显着相关),从一个侧面表明,已经在用的用户尤为需要这些功能;而其中没有显着相关的功能,则不能得出这样的结论。
3、已经在用的比例不高,而最需要的比例较高的功能,对于拓展版旺铺而言,是需要加强的功能。
4、需要加强的功能中,营销工具组合、不限类型的旺铺装修模板等功能,在用的与最需要的之间存在显着相关,从一个侧面表明,已经在用的用户对这两个功能的期望较高,也特别需要这两个功能。
5、另外,从具体数据上可以看出,虽然拓展版用户已经在用高级发货、进销存管理、客户关系管理等功能的比例不高,但最需要这三个功能的比例远超过在用的比例,表明部分拓展版用户对这三个功能的需求很旺盛。而这三个功能是旗舰版的功能,反映了这部分用户应该选择更高版本的旺铺。
注:虽然高级版本的旺铺中包含一些特有的功能,但这些功能附属的工具可以单独购买,所以,会出现使用低版本旺铺的用户,已经在用某些高版本的功能。情况相对复杂,分析时需要注意,下文雷同,不再赘述。
衍生变量分析
以使用扶植版旺铺的用户为例,因为“目前使用旺铺解决了的问题”与“最希望通过旺铺帮助解决的问题”存在递进逻辑关系,可以衍生出两个比较关键的变量,即已经解决了且希望解决的问题、尚未解决但希望解决的问题。
有了这两个变量,可以更加深入地分析,希望解决的问题具体情况是怎样的,最终分析结论如下(详见下图,数字略):
1、提升店铺的流量、增加店铺的可信度、增加店铺的专业程度等,是使用扶植版旺铺的用户非常关注的问题,不论目前是否解决,都非常希望通过旺铺解决,表明这三方面是需要维持的利益点,也是宣传扶植版旺铺的重点。
2、装修更便利、店铺更美观等,是目前解决了,但仍希望通过旺铺解决的问题,表明这部分使用扶植版旺铺的用户,对装修的便利性、装修效果等更重视,希望能做到更好,可以对他们做相应的培训,或直接向他们推荐装修更灵活、呈现更多样的高版本旺铺。(之所以得到这样的结论,主要是因为最希望通过旺铺解决的问题是多选限选,可以根据以往研究经验,假设需求强度不大,已经解决了,就不会再选了。)
3、提升宝贝的转化率/成交量、增加宝贝的点击率、增加买家在店铺的停留时长等,是目前尚未解决,但希望能够通过旺铺解决的问题,表明这部分扶植版旺铺的用户比较直接、实际,非常看重流量和销量,可以对他们做相应的指导,也可推荐引流量的工具或服务。
利用衍生变量深入分析
本研究中在询问功能和解决的问题时,将多个版本的内容融合在一起,后续分析时,可以分析出目前使用某个版本的用户,目前是否适合当前版本,如果不适合,如何引导他们使用更适合的版本;如果适合,是否已经用得足够好,用得不好,如何帮助他们。这些疑问,可以利用衍生变量进行深入分析,从而得到答案。
以使用标准版旺铺的用户为例,首先要明确四个前提步骤:
Step1、由于功能和解决的问题是多个版本融合在一起,需要分清哪些功能是当前版本的,哪些是更高版本才有的,旺铺的高版本兼具低版本的功能。
Step2、分析中需要结合旺铺版本,衍生出一个变量,叫做“更适合的功能点”,即目前未使用,但最需要的功能,且这个功能又是更高版本的旺铺功能;
还需要衍生出另一个变量,叫做“未用好的功能点”,即目前未使用,但最需要的功能,且这个功能是当前版本具备的旺铺功能。
Step3、以往的定性调研表明,一个使用低版本旺铺的用户之所以选择更高版本,往往是看上了高版本的其中一个功能,如宝贝30天销量累积显示。
本例在判断部分使用当前版本的用户,实际上适合更高版本旺铺时,采用了保守的方式,找出前提2中排名前三位的“更适合的功能点”,取平均值,把它当做更适合高版本旺铺的当前版本用户的比例。主要基于假设,这些功能对他们相当重要,理想状态下,后续他们会因为这些功能转用高版本旺铺。
同样,适合但未用好当前版本的用户,也采用了类似的方式计算比例,此不赘述。
Step4、若判定部分当前版本用户适合更高版本旺铺,还需要有促使他们转换的利益点,这些利益点也可以由衍生变量得到,即目前使用旺铺未解决但最希望通过旺铺解决的问题。
最终可以得出标准版旺铺的用户,更适合高版本的比例,以及更适合他们的功能点是什么,促使他们转换的利益点是什么。从而指导后续工作,促使这部分用户成功转换到高版本旺铺。也可以找出适合当前版本但未用好的比例,摸清哪些功能点他们没有用好,能够更有针对性地培训,使其充分发挥旺铺的功能。
小结
综上所述,带有递进逻辑的多选题,分析的流程如下:
1、确定在设计问卷时,是否包含递进逻辑的多选题,并确保题目的递进关系存在解读价值、应用价值;
2、根据题目的特点,衍生出新的变量;
3、根据衍生变量的统计量,深入分析样本的相关情况;
4、可以根据其他关键变量(如旺铺版本、星级等)对衍生变量做进一步分析,从而得出更深入的研究结论。
以上是小编为大家分享的关于调研问卷中多选题的分析方法探讨的相关内容,更多信息可以关注环球青藤分享更多干货
⑼ 多元统计分析方法的作用是什么
多元统计分析方法的作用使实际工作者利用多元统计分析方法解决实际问题更简单方便。
如果每个个体有多个观测数据,或者从数学上说,如果个体的观测数据能表为P维欧几里得空间的点,那么这样的数据叫做多元数据,而分析多元数据的统计方法就叫做多元统计分析,它是数理统计学中的一个重要的分支学科。
典型相关分析
它是寻求两组变量各自的线性函数中相关系数达到最大值的一对,这称为第一对典型变量,还可以求第二对,第三对,等等,这些成对的变量,彼此是不相关的。各对的相关系数称为典型相关系数。通过这些典型变量所代表的实际含意,可以找到这两组变量间的一些内在联系。典型相关分析虽然30年代已经出现,但至今未能广泛应用。
⑽ 我用统计写论文:多项选择题如何用SPSS进行分析
1、打开对应的窗口,直接在菜单栏那里选择图形并点击旧对话框中的条形图。