① 蛋白质组组学研究的基本策略是什么
蛋白质组 蛋白质组(Proteome)的概念最先由Marc Wilkins提出,指由一个基因组(genOME),或一个细胞、组织表达的所有蛋白质(PROTein). 蛋白质组的概念与基因组的概念有许多差别,它随着组织、甚至环境状态的不同而改变. 在转录时,一个基因可以多种mRNA形式剪接,并且,同一蛋白可能以许多形式进行翻译后的修饰. 故一个蛋白质组不是一个基因组的直接产物,蛋白质组中蛋白质的数目有时可以超过基因组的数目. 蛋白质组学(Proteomics)处于早期“发育”状态,这个领域的专家否认它是单纯的方法学,就像基因组学一样,不是一个封闭的、概念化的稳定的知识体系,而是一个领域. 蛋白质组学集中于动态描述基因调节,对基因表达的蛋白质水平进行定量的测定,鉴定疾病、药物对生命过程的影响,以及解释基因表达调控的机制. 作为一门科学,蛋白质组研究并非从零开始,它是已有20多年历史的蛋白质(多肽)谱和基因产物图谱技术的一种延伸. 多肽图谱依靠双向电泳(Two-dimensional gel electrophoresis, 2-DE)和进一步的图象分析;而基因产物图谱依靠多种分离后的分析,如质谱技术、氨基酸组分分析等.
[编辑本段]蛋白质组学的研究内容
主要有两方面,一是结构蛋白质组学,二是功能蛋白质组学。其研究前沿大致分为三个方面:
① 针对有关基因组或转录组数据库的生物体或组织细胞,建立其蛋白质组或亚蛋白质组及其蛋白质组连锁群,即组成性蛋白质组学。
② 以重要生命过程或人类重大疾病为对象,进行重要生理病理体系或过程的局部蛋白质组或比较蛋白质组学。
③ 通过多种先进技术研究蛋白质之间的相互作用,绘制某个体系的蛋白,即相互作用蛋白质组学,又称为“细胞图谱”蛋白质组学。
此外,随着蛋白质组学研究的深入,又出现了一些新的研究方向,如亚细胞蛋白质组学、定量蛋白质组学等。
[编辑本段]蛋白质组学研究中的主要技术
1 双向凝胶电泳技术(2-DE)
双向凝胶电泳技术与质谱技术是目前应用最为广泛的研究蛋白质组学的方法。双向凝胶电泳技术利用蛋白质的等电点和分子量差别将各种蛋白质区分开来。虽然二维凝胶电泳难以辨别低丰度蛋白,对操作要求也较高,但其通量高、分辨率和重复性好以及可与质谱联用的特点,使其成为目前最流行、可靠的蛋白质组研究手段。双向凝胶电泳技术及质谱基础的蛋白质组学研究程序为样品制备→等电聚焦→聚丙烯酰胺凝胶电泳→凝胶染色→挖取感兴趣的蛋白质点→胶内酶切→质谱分析确定肽指纹图谱或部分氨基酸序列→利用数据库确定蛋白。蛋白质组研究要求有高分辨率的蛋白质分离及准确、灵敏的质谱鉴定技术。凝胶电泳中蛋白质的着色不仅影响蛋白质分离的分辨率,同时也影响后续的质谱鉴定。蛋白质的染色可分为有机试剂染色、银染、荧光染色及同位素显色四类。
Unlu 等提出了一种荧光差异显示双向电泳(F-2D-DIGE)的定量蛋白质组学分析方法。差异凝胶电泳(DIGE)是对2-DE 在技术上的改进,结合了多重荧光分析的方法,在同一块胶上共同分离多个分别由不同荧光标记的样品,并第一次引入了内标的概念。两种样品中的蛋白质采用不同的荧光标记后混合,进行2-DE,用来检测蛋白质在两种样品中表达情况,极大地提高了结果的准确性、可靠性和可重复性。在DIGE技术中,每个蛋白点都有它自己的内标,并且软件可全自动根据每个蛋白点的内标对其表达量进行校准,保证所检测到的蛋白丰度变化是真实的。DIGE 技术已经在各种样品中得到应用。
2 高效液相色谱技术(HPLC)
尽管二维凝胶电泳(2-DE)是目前常用的对全蛋白组的分析方法,但其存在分离能力有限、存在歧视效应、操作程序复杂等缺陷。对于分析动态范围大、低丰度以及疏水性蛋白质的研究往往很难得到满意的结果。Chong 等使用HPLC/ 质谱比较分析恶性肿瘤前和癌症两种蛋白质差异表达。利用HPLC 分离蛋白质,并用MALDI-TOF-MS 鉴定收集的组分,从而在两种细胞中的差异表达中对蛋白质进行定量分析。多维液相色谱作为一种新型分离技术,不存在相对分子质量和等电点的限制,通过不同模式的组合,消除了二维凝胶电泳的歧视效应,具有峰容量高、便于自动化等特点。二维离子交换- 反相色谱(2D-IEC-RPLC)是蛋白质组学研究中最常用的多维液相色谱分离系统。
3 表面增强激光解吸离子化飞行时间质谱(SEL-DI)技术
表面增强激光解吸离子化飞行时间质谱技术于2002 年由诺贝尔化学奖得主田中发明,刚刚产生便引起学术界的高度重视。SELDI 技术是目前蛋白质组学研究中比较理想的技术平台,其全称是表面增强激光解吸电离飞行时间质谱技术(SELDI-tof)。其方法主要如下:通常情况下将样品经过简单的预处理后直接滴加到表面经过特殊修饰的芯片上,既可比较两个样品之间的差异蛋白,也可获得样品的蛋白质总览。因此,在应用方面具有显着优势。SELDI 技术分析的样品不需用液相色谱或气相色谱预先纯化,因此可用于分析复杂的生物样品。SELDI 技术可以分析疏水性蛋白质,PI 过高或过低的蛋白质以及低分子质量的蛋白质( < 25 000) ,还可以发现在未经处理的样品中许多被掩盖的低浓度蛋白质,增加发现生物标志物的机会。SELDI 技术只需少量样品,在较短时间内就可以得到结果,且试验重复性好,适合临床诊断及大规模筛选与疾病相关的生物标志物,特别是它可直接检测不经处理的尿液、血液、脑脊液、关节腔滑液、支气管洗出液、细胞裂解液和各种分泌物等, 从而可检测到样品中目标蛋白质的分子量、PI、糖基化位点、磷酸化位点等参数。
4 同位素标记亲和标签(ICAT)技术
同位素亲和标签技术是近年发展起来的一种用于蛋白质分离分析技术,此技术目前是蛋白质组研究技术中的核心技术之一。该技术用具有不同质量的同位素亲和标签( ICATs) 标记处于不同状态下的细胞中的半胱氨酸,利用串联质谱技术,对混合的样品进行质谱分析。来自两个样品中的同一类蛋白质会形成易于辨识比较的两个不同的峰形,能非常准确的比较出两份样品蛋白质表达水平的不同。ICAT 的好处在于它可以对混合样品直接测试;能够快速定性和定量鉴定低丰度蛋白质,尤其是膜蛋白等疏水性蛋白等;还可以快速找出重要功能蛋白质。
由于采用了一种全新的ICAT 试剂,同时结合了液相色谱和串联质谱,因此不但明显弥补了双向电泳技术的不足,同时还使高通量、自动化蛋白质组分析更趋简单、准确和快速,代表着蛋白质组分析技术的主要发展方向。针对磷酸化蛋白分析以及与固相技术相结合ICAT 技术本身又取得了许多有意义的进展,已形成ICA T 系列技术。用具有不同质量的同位素亲和标签( ICATs) 标记处于不同状态下的细胞中的半胱氨酸,利用串联质谱技术,可对混合的样品进行质谱分析。
5 生物信息学
近年来,生物信息学在生命科学研究中起着越来越重要的作用。利用生物信息学对蛋白质组的各种数据进行处理和分析,也是蛋白质组研究的重要内容。生物信息学是蛋白质组学研究中不可缺少的一部分。生物信息学的发展,已不仅是单纯的对基因组、蛋白质组数据的分析,而且可以对已知的或新的基因产物进行全面分析。在蛋白质组数据库中储存了有机体、组织或细胞所表达的全部蛋白质信息,通过用鼠标点击双向凝胶电泳图谱上的蛋白质点就可获得
如蛋白质鉴定结果、蛋白质的亚细胞定位、蛋白质在不同条件下的表达水平等信息。目前应用最普遍的数据库是NRDB 和dbEST 数据库。NRDB 由SWISS2PROT 和GENPETP 等几个数据库组成,dbEST是由美国国家生物技术信息中心(NCBI)和 欧洲生物信息学研究所(EBI)共同编辑的核酸数据库;计算机分析软件主要有蛋白质双向电泳图谱分析软件、蛋白质鉴定软件、蛋白质结构和功能预测软件等。
② 蛋白质组学主要包括哪些分析技术及各自特点
双向凝胶电泳
双向凝胶电泳的原理是第一向基于蛋白质的等电点不同用等电聚焦分离,第二向则按分子量的不同用SDS-PAGE分离,把复杂蛋白混合物中的蛋白质在二维平面上分开。由于双向电泳技术在蛋白质组与医学研究中所处的重要位置,它可用于蛋白质转录及转录后修饰研究,蛋白质组的比较和蛋白质间的相互作用,细胞分化凋亡研究,致病机制及耐药机制的研究,疗效监测,新药开发,癌症研究,蛋白纯度检查,小量蛋白纯化,新替代疫苗的研制等许多方面。近年来经过多方面改进已成为研究蛋白质组的最有使用价值的核心方法。
等电聚焦
等电聚焦(isoelectric focusing,IEF)是60年代中期问世的一种利用有pH梯度的介质分离等电点不同的蛋白质的电泳技术。等电聚焦凝胶电泳依据蛋白质分子的静电荷或等电点进行分离,等电聚焦中,蛋白质分子在含有载体两性电解质形成的一个连续而稳定的线性pH梯度中电泳。载体两性电解质是脂肪族多氨基多羧酸,在电场中形成正极为酸性,负极为碱性的连续的pH梯度。蛋白质分子在偏离其等电点的pH条件下带有电荷,因此可以在电场中移动;当蛋白质迁移至其等电点位置时,其静电荷数为零,在电场中不再移动,据此将蛋白质分离。
生物质谱
生物质谱技术是蛋白质组学研究中最重要的鉴定技术,其基本原理是样品分子离子化后,根据不同离子之间的荷质比(M/E)的差异来分离并确定分子量。对于经过双向电泳分离的目标蛋白质用胰蛋白酶酶解(水解Lys或Arg的-C端形成的肽键)成肽段,对这些肽段用质谱进行鉴定与分析。目前常用的质谱包括两种:基质辅助激光解吸电离-飞行时间质谱(MALDI-TOF-MS)和电喷雾质谱(ESI- MS)。
飞行时间质谱
MALDI 的电离方式是 Karas和Hillenkamp于1988年提出。MALDI的基本原理是将分析物分散在基质分子(尼古丁酸及其同系物)中并形成晶体,当用激光(337nm的氮激光)照射晶体时,基质分子吸收激光能量,样品解吸附,基质-样品之间发生电荷转移使样品分子电离。它从固相标本中产生离子,并在飞行管中测定其分子量,MALDI-TOF-MS一般用于肽质量指纹图谱,非常快速(每次分析只需3~5min),灵敏(达到fmol水平),可以精确测量肽段质量,但是如果在分析前不修饰肽段,MALDI-TOF-MS不能给出肽片段的序列。
电喷雾质谱(ESI-MS)
ESI- MS是利用高电场使质谱进样端的毛细管柱流出的液滴带电,在N2气流的作用下,液滴溶剂蒸发,表面积缩小,表面电荷密度不断增加,直至产生的库仑力与液滴表面张力达到雷利极限,液滴爆裂为带电的子液滴,这一过程不断重复使最终的液滴非常细小呈喷雾状,这时液滴表面的电场非常强大,使分析物离子化并以带单电荷或多电荷的离子形式进入质量分析器。ESI-MS从液相中产生离子,一般说来,肽段的混合物经过液相色谱分离后,经过偶联的与在线连接的离子阱质谱分析,给出肽片段的精确的氨基酸序列,但是 分析时间一般较长。 目前,许多实验室两种质谱方法连用,获得有意义的蛋白质的肽段序列,设计探针或引物来获得有意义的基因。随着蛋白质组研究的深入,又有多种新型质谱仪出现,主要是在上述质谱仪的基础上进行改进与重新组合。
③ 六,蛋白组学的概念和研究方法有哪些
概念
蛋白质组学(Proteomics)一词,源于蛋白质(protein)与 基因组学(genomics)两个词的组合,意指“一种基因组所表达的全套蛋白质”,即包括一种细胞乃至一种生物所表达的全部蛋白质.蛋白质组本质上指的是在大规模水平上研究蛋白质的特征,包括蛋白质的表达水平,翻译后的修饰,蛋白与蛋白相互作用等,由此获得蛋白质水平上的关于疾病发生,细胞代谢等过程的整体而全面的认识
研究技术
二维电泳和质谱技术
应用
1.蛋白质鉴定:可以利用一维电泳和二维电泳并结合Western等技术,利用蛋白质芯片和抗体芯片及免疫共沉淀等技术对蛋白质进行鉴定研究.
2.翻译后修饰:很多mRNA表达产生的蛋白质要经历翻译后修饰如磷酸化,糖基化,酶原激活等.翻译后修饰是蛋白质调节功能的重要方式,因此对蛋白质翻译后修饰的研究对阐明蛋白质的功能具有重要作用.
3.蛋白质功能确定:如分析酶活性和确定酶底物,细胞因子的生物分析/配基-受体结合分析.可以利用基因敲除和反义技术分析基因表达产物-蛋白质的功能.另外对蛋白质表达出来后在细胞内的定位研究也在一定程度上有助于蛋白质功能的了解.Clontech的荧光蛋白表达系统就是研究蛋白质在细胞内定位的一个很好的工具.
4.对人类而言,蛋白质组学的研究最终要服务于人类的健康,主要指促进分子医学的发展.如寻找药物的靶分子.很多药物本身就是蛋白质,而很多药物的靶分子也是蛋白质.药物也可以干预蛋白质-蛋白质相互作用.
在基础医学和疾病机理研究中,了解人不同发育、生长期和不同生理、病理条件下及不同细胞类型的基因表达的特点具有特别重要的意义.这些研究可能找到直接与特定生理或病理状态相关的分子,进一步为设计作用于特定靶分子的药物奠定基础.
④ bca蛋白定量步骤
BCA 蛋白定量法是实验室常用的蛋白质定量方法。
BCA 法原理
碱性条件下,蛋白将 Cu2+还原为 Cu+,Cu+与 BCA 试剂相互作用形成紫色的络合物,该水溶性的复合物在 562nm 处显示强烈的吸光性,吸光度和蛋白浓度在广泛范围内有良好的线性关系,因此根据吸光值可以推算出蛋白浓度。
实验操作具体步骤
1. 梯度稀释牛血清白蛋白(BSA)标准品(具体操作按试剂盒中说明操作)
2. 制备 BCA 工作液(具体操作按说明书进行)
3. 将各个稀释浓度的蛋白质标准品和待测蛋白质样品加入到微孔板或试管中,分别加入 BCA 工作液(比例参照试剂盒说明书)混匀。
4. 密封后,37℃ 保温 30-60 min
5. 冷却到室温,以空白为对照,测量样品在 562nm 或该波长附近的吸光值
6. 将各个标准品和待测蛋白质样品在 562nm 处的吸光值减去空白标准品在 562nm 处的平均吸光值。
⑤ 蛋白质定量测定的方法有哪些
定氮法,双缩尿法(Biuret法)、Folin-酚试剂法(Lowry法)和紫外吸收法。考马斯亮蓝法(Bradford法)。
凯氏定氮 灵敏度低,适用于0.2~ 1.0mg氮,误差为 ±2% 费时
8~10小时 将蛋白氮转化为氨,用酸吸收后滴定 非蛋白氮(可用三氯乙酸沉淀蛋白质而分离) 用于标准蛋白质含量的准确测定;干扰少;费时太长
双缩脲法(Biuret法) 灵敏度低 1~20mg 中速 20~30分钟 多肽键+碱性Cu2+®紫色络合物 硫酸铵;Tris缓冲液;某些氨基酸 用于快速测定,但不太灵敏;不同蛋白质显色相似
紫外吸收法 较为灵敏 50~100mg 快速 5~10分钟 蛋白质中的酪氨酸和色氨酸残基在280nm处的光吸收 各种嘌吟和嘧啶;
Folin-酚试剂法(Lowry法) 灵敏度高 ~5mg 慢速 40~60分钟 双缩脲反应;磷钼酸-磷钨酸试剂被Tyr和Phe还原 硫酸铵;Tris缓冲液;甘氨酸;
各种硫醇 耗费时间长;操作要严格计时;颜色深浅随不同蛋白质变化
考马斯亮蓝法(Bradford法) 灵敏度最高 1~5mg 快速5~15分钟 考马斯亮蓝染料与蛋白质结合时,其lmax由465nm变为595nm 强碱性缓冲液;
SDS 最好的方法;干扰物质少;颜色稳定; 颜色深浅随不同蛋白质变化
⑥ 测定蛋白质的定量的方法有哪些及其原理各是什么
常用的蛋白质纯化方法有离子交换色谱、亲和色谱、电泳、疏水色谱等等
离子交换色谱:蛋白质和氨基酸一样会两性解离,所带电荷决定于溶液ph。ph小于pi时蛋白质带正电,ph大于pi时蛋白质带负电。不同蛋白质等电点的蛋白质在同一个溶液中,表面电荷情况不同。离子交换就是利用不同蛋白质在同一溶液中表面电荷的差异来实现分离的。
亲和色谱:生物大分子有一个特性,某些分子或基因对它们有特异性很强的吸附作用。如镍柱中ni可以与his标签的蛋白结合,这种只针对一种或一类物质的吸附就是亲和色谱的原理。
电泳:sds-聚丙烯酰胺凝胶电泳,sds能断裂分子内和分子间氢键,破坏蛋白质的二级和三级结构,强还原剂能使半胱氨酸之间的二硫键断裂,蛋白质在一定浓度的含有强还原剂的sds溶液中,
与sds分子按比例结合,形成带负电荷的sds-蛋白质复合物,这种复合物由于结合大量的sds,使蛋白质丧失了原有的电荷状态形成仅保持原有分子大小为特征的负离子团块,从而降低或消除了各种蛋白质分子之间天然的电荷差异,由于sds与蛋白质的结合是按重量成比例的,因此在进行电泳时,蛋白质分子的迁移速度取决于分子大小。
疏水色谱:疏水色谱基于蛋白质表面的疏水区与介质疏水配体间的相互作用,在高浓度盐作用下,蛋白质的疏水区表面上有序排列的水分子通过盐离子的破坏被释放,裸露的疏水区与疏水配体相互作用而被吸附。疏水色谱就是利用样品中各组分在色谱填料上配基相互作用的差异,在洗脱时各组分移动速度不同而达到分离的目的。随着盐离子浓度的降低,疏水作用降低,蛋白质的水化层又形成,蛋白质被解吸附。
⑦ 蛋白质组学的研究手段有哪些
比较多:最基本的
1、双向电泳技术(理想目的:将细胞(或组织)内所有蛋白质都分离开来)
2、质谱技术及一系列派生技术 (测蛋白质序列)
3 、蛋白质互相作用研究:
酵母双杂交,细菌双杂交,免疫共沉淀技术,pull-down,FRET,BiFC等
4、蛋白质定位:
荧光标记技术,共聚焦荧光显微镜技术,免疫荧光,免疫化学等技术。
⑧ 蛋白质组学主要包括哪些分析技术及各自特点
为探究生物进程的分子机制,需要确定介导这个过程的蛋白质-蛋白质间的相互作用。研究蛋白质间相互作用的主要技术总结如下:
一、酵母双杂交系统
酵母双杂交系统是当前广泛用于蛋白质相互作用组学研究的一种重要方法。其原理是当靶蛋白和诱饵蛋白特异结合后,诱饵蛋白结合于报道基因的启动子,启动报道 基因在酵母细胞内的表达,如果检测到报道基因的表达产物,则说明两者之间有相互作用,反之则两者之间没有相互作用。将这种技术微量化、阵列化后则可用于大 规模蛋白质之间相互作用的研究。在实际工作中,人们根据需要发展了单杂交系统、三杂交系统和反向杂交系统等。Angermayr等设计了一个SOS蛋白介 导的双杂交系统。可以研究膜蛋白的功能,丰富了酵母双杂交系统的功能。此外,酵母双杂交系统的作用也已扩展至对蛋白质的鉴定。
二、噬茵体展示技术
在编码噬菌体外壳蛋白基因上连接一单克隆抗体的DNA序列,当噬菌体生长时,表面就表达出相应的单抗,再将噬菌体过柱,柱上若含目的蛋白,就会与相应抗体 特异性结合,这被称为噬菌体展示技术。此技术也主要用于研究蛋白质之间的相互作用,不仅有高通量及简便的特点,还具有直接得到基因、高选择性的筛选复杂混 合物、在筛选过程中通过适当改变条件可以直接评价相互结合的特异性等优点。目前,用优化的噬菌体展示技术,已经展示了人和鼠的两种特殊细胞系的cDNA文 库,并分离出了人上皮生长因子信号传导途径中的信号分子。
三、等离子共振技术
表 面等离子共振技术(Surface Plasmon Resonance,SPR)已成为蛋白质相互作用研究中的新手段。它的原理是利用一种纳米级的薄膜吸附上“诱饵蛋白”,当待测蛋白与诱饵蛋白结合后,薄 膜的共振性质会发生改变,通过检测便可知这两种蛋白的结合情况。SPR技术的优点是不需标记物或染料,反应过程可实时监控。测定快速且安全,还可用于检测 蛋白一核酸及其它生物大分子之间的相互作用。
四、荧光能量转移技术
荧 光共振能量转移(FRET )广泛用于研究分子间的距离及其相互作用; 与荧光显微镜结合,可定量获取有关生物活体内蛋白质、脂类、DNA 和RNA 的时空信息。随着绿色荧光蛋白(GFP)的发展,FRET 荧光显微镜有可能实时测量活体细胞内分子的动态性质。提出了一种定量测量FRET效率以及供体与受体间距离的简单方法,仅需使用一组滤光片和测量一个比 值,利用供体和受体的发射谱消除光谱间的串扰。该方法简单快速,可实时定量测量FRET 的效率和供体与受体间的距离,尤其适用于基于GFP 的供体受体对。
五、抗体与蛋白质阵列技术
蛋 白芯片技术的出现给蛋白质组学研究带来新的思路。蛋白质组学研究中一个主要的内容就是研究在不同生理状态下蛋白水平的量变,微型化,集成化,高通量化的抗 体芯片就是一个非常好的研究工具,他也是芯片中发展最快的芯片,而且在技术上已经日益成熟。这些抗体芯片有的已经在向临床应用上发展,比如肿瘤标志物抗体 芯片等,还有很多已经应用再眼就的各个领域里。
六、免疫共沉淀技术 免 疫共沉淀主要是用来研究蛋白质与蛋白质相互作用的一种技术,其基本原理是,在细胞裂解液中加入抗兴趣蛋白的抗体,孵育后再加入与抗体特异结合的结合于 Pansobin珠上的金黄色葡萄球菌蛋白A(SPA),若细胞中有正与兴趣蛋白结合的目的蛋白,就可以形成这样一种复合物:“目的蛋白—兴趣蛋白—抗兴 趣蛋白抗体—SPA\|Pansobin”,因为SPA\|Pansobin比较大,这样复合物在离心时就被分离出来。经变性聚丙烯酰胺凝胶电泳,复合物 四组分又被分开。然后经Western blotting法,用抗体检测目的蛋白是什么,是否为预测蛋白。这种方法得到的目的蛋白是在细胞内天然与兴趣蛋白结合的,符合体内实际情况,得到的蛋白 可信度高。但这种方法有两个缺陷:一是两种蛋白质的结合可能不是直接结合,而可能有第三者在中间起桥梁作用;二是必须在实验前预测目的蛋白是什么,以选择 最后检测的抗体,所以,若预测不正确,实验就得不到结果,方法本身具有冒险性。
七、pull-down技术
蛋 白质相互作用的类型有牢固型相互作用和暂时型相互作用两种。牢固型相互作用以多亚基蛋白复合体常见,最好通过免疫共沉淀(Co-IP) 、Pull-down技术或Far-western法研究。Pull-down技术用固相化的、已标记的饵蛋白或标签蛋白(生物素-、PolyHis-或 GST-),从细胞裂解液中钓出与之相互作用的蛋白。通过Pull-down技术可以确定已知的蛋白与钓出蛋白或已纯化的相关蛋白间的相互作用关系,从体 外传路或翻译体系中检测出蛋白相互作用关系。
⑨ 蛋白质组学常用的研究方法
酵母双杂交系统、抗体芯片、LCM技术、mic Solution Inc、SPR技术、色谱分离技术、双相电泳技术、有机质谱等等。
LCM技术获得的细胞可以用于蛋白质样品的制备。
蛋白质样品中的不同类型的蛋白质可以通过二维电泳进行分离。
胶染色后可以利用凝胶图象分析系统成像,然后通过分析软件对蛋白质点进行定量分析,并且对感兴趣的蛋白质点进行定位。
Genomic Solution可以为研究者提供除质谱外的所有蛋白质组学研究工具,包括二维电泳系统,成像系统及分析软件,胶切割系统,蛋白质消化浓缩工作站,点样工作站等;同时还可以提供相关试剂和消耗品。
蛋白质相互作用的研究,酵母双杂交和噬菌体展示技术无疑是很好的研究方法。
LCM-二维电泳-质谱的技术路线是典型的一条蛋白质组学研究的技术路线,除此以外,LCM-抗体芯片也是一条重要的蛋白质组学研究的技术路线。
………………
详细资料请参考:on
http://proct.bio1000.com/101969/
⑩ 1. 蛋白质组学研究方法概述(上)
说明:此篇笔记系2016-2017年由克里克学院与康昱盛主办的蛋白质组学网络大课堂整理而成,侵删。该课程由上海交通大学系统生物医学研究院助理研究员库鑫博士所授。
大伙儿都知道,蛋白质组学(proteomics),是研究一种细胞或者一种生物体所表达的全部蛋白质。虽说现在基因组测序火得一塌糊涂,但是,我们不要忽略了,蛋白质才是执行生命体功能的基本单元,而且蛋白质都是通过形成各种复合物,组成通路网络,去行使各种生物学功能的!所以,有很多生物学问题只能在蛋白质层面上去研究去探索,而且需要站在系统的层面去考察,比如说:蛋白-蛋白相互作用、蛋白的细胞定位、翻译后修饰、信号通路及代谢通路的调控和功能等。这就是为啥蛋白质组学如此重要啦!
既然重要,科学家们自然是想尽办法来研究了!最开始使用的技术就是传说中的双向凝胶电泳(2-DE),由于分辨率低、蛋白质重叠等各种问题,无论是通量还是准确度,都不尽如人意。当质谱技术兴起以后,就迅速被替代了。
说起质谱技术的诞生,估计很多小伙伴都听过那个着名的diao丝逆袭的段子,讲的就是2002年诺贝尔化学奖得主田中耕一,作为蛋白质谱发明人之一,由于一个不小心在实验时错加了甘油,结果神奇地将质谱技术引入到鉴定生物大分子的应用领域。想想,大到整个人类的科技发展史,小到每个个体的人生,都充满了多少不可思议~
当质谱技术与蛋白质组学碰到了一起,真是天雷引了地火,产生出强烈的化学反应,迅速引爆整个学科的发展!也就十几年的时间吧,蛋白质组学的研究目标从细胞模型、动物模型,到人的体液、组织等人体样本,应用范围的生物复杂度越来越高。研究目的呢,也从最初的肽段序列推导,到多肽和蛋白质的定性定量分析,翻译后修饰,再到如今成为新热点的靶向蛋白质组学,总之,势不可挡啊!
说到靶向蛋白质组学,咱们都知道,一直以来蛋白质组学的应用领域主要是针对基础生物学,比如研究通路、蛋白复合物、互作网络,表征细胞和组织的类型,观察细胞周期内蛋白质的表达等。近年来,由于技术的飞速发展,蛋白质组学开始被用于医学研究和药物研究。比如说药物研究,国内可能用得还不多,但在欧美已经开始越来越广泛。以肝毒性为例,蛋白质组学可以为药物研发前期的肝毒性评估提供研究手段。
那么,怎么将蛋白质组学应用到临床及药物研发中呢?就是需要靶向蛋白质组学技术了!以前,蛋白质组学技术主要用于发现新的未知物,比如肽段、蛋白复合物、蛋白的翻译后修饰等。这部分的应用很广,技术门槛比较低,方法比较通用。但问题是,这种方法思路没办法应对大量的临床样本,可重复性和准确性达不到要求。
于是,靶向分析开始兴起,就是说,分析之前我们就明确知道需要分析的物质是什么,然后把它挑出来,进行一个精确的定量和分析!我们不需要一次性验证成千上万的蛋白,但我们需要在成百上午的样本中验证十几种或者几十种我们关心的蛋白质,而且这些蛋白质常常都是浓度很低的蛋白,用传统的方法基本上只有被遗漏的命(后面我会详细讲为什么会遗漏)。有了靶向技术,对于研究临床诊断的生物标志物,就有了更大的可能和更强的支撑了!
那么接下来,根据老师讲课的思路,我就从定性检测、定量检测和靶向蛋白质组学三个方面来分享下听课的收获。
无论是定性还是定量检测,样品制备是跑不掉的准备工作。用于质谱的蛋白质样品,来源非常广泛,只要你是包含了蛋白质的东西,都可以作为来源。对于复杂的样品,比如人体体液或组织样本,蛋白质的提取及去高峰度,常常需要复杂的精细的处理,而且处理流程根据样本和研究目的的不同而不同。这部分内容呢,第二讲“样品前处理”会详扒,感兴趣的小伙伴可以期待我的下一篇听课笔记吧~
话说,蛋白质的定性检测有两种思路:Bottom-up和Top down。Top down是指从一个完整的蛋白出发,在质谱中进行碎片化处理,通过对碎片分子的检测,推导出蛋白的序列。而在使用中真正占绝大多数是Bottom-up方法,也就是我们常说的shotgun方法,它充分利用了蛋白质自身的特点:可以被特定的酶在特定的位点切断。基本思路是,先用蛋白酶把蛋白序列进行酶切,再针对酶切后的肽段进行鉴定,所以进入质谱的检测对象永远是肽段,再根据肽段序列再推导出蛋白序列。
1. 样本处理 :拿到蛋白来源的各种样本,进行前处理和优化。
2. 蛋白分离 :根据研究需要,用凝胶分离,提取所需的蛋白,或者不分离,全部拿来检测,需要注意去杂质;
3. 酶切 :用序列特异性的酶,对蛋白进行酶切;
4. 肽段分离 :酶切后的肽段进入HPLC(高压液相色谱),这也就是我们常说的LC-MS中的LC,肽段会因为在色谱柱填料上的保留时间的不同,得到预分离;
5. 电离 :分离后的肽段,加电压使其离子化(ESI);或者用MALDI基质辅助的激光解离,就不需要HPLC的过程;
6. 质谱解析 :将带上电荷的肽段送入质谱,肽段会在磁场中发生偏转(质谱仪的基本原理),在质谱里收集信号,得到谱图。
7. 搜库 :用搜索软件对质谱图进行自动化的分析,得到肽段及蛋白序列信息。
换个角度,对Shotgun方法的流程,我们可以这样来总结:
这里面最关键的一个指标,我们叫Peptide-Spectrum matching(PSM),就是指谱图与肽段的匹配。匹配得越好,则反推出的蛋白就越准确。这个匹配的过程,也就是我们常说的搜库。那么接下来我就来分享一下从课程中学习到的搜库背景知识、搜库工具和算法,以及对搜索结果的评估。
质谱,听上去很高大上,无论有多贵重,都是由三部分组成的:离子源+质量分析器+检测器。
一台质谱可以不止一个离子源\分析器\检测器,可以把几种串联起来,针对不同分析需要来使用。
离子源
我们先来说说离子源。蛋白质谱所使用的ESI(Electrospray ionization)电喷雾离子化,对蛋白质组学来说是一个标志性的发明!因为是直接从液相进行离子化,使它与LC(液相色谱)的联用变得更加容易了,我们可以先用LC将非常复杂的肽段混合物进行预分离,减少每次分析物的复杂度,然后分离的肽段可以直接进入ESI,形成电离喷雾。
那么,ESI喷雾是怎么形成的呢?简单来说,分离柱前端有一个小开口,被分析物根据质量及电荷的不同,依次通过前端的小开口。小开口处加了电压,刚开始,静电力与表面张力相同,当加大静电力使它大于表面张力的时候,液膜破裂,形成无数带电的小液滴,就形成喷雾了。像现在比较新的nanoESI技术,LC的流速就更加慢,离子化的效果也更好。觉得以上描述还不够形象的童鞋,直接看图吧:
质量分析器
说完了离子源,接下来我们来说质量分析器,这是质谱仪里最重要的一部分。我们通常听到的各种质谱仪的名字,就是根据质量分析器的类型来命名的。我们样品中各组分在离子源中发生电离,并经加速电场的作用后,形成离子束,进入质量分析器中。质量分析器将带电离子根据其质荷比加以分离,记录各种离子的质量数和丰度,用于后续定性与定量的分析。
质量分析器有两个主要的技术参数:质量范围和分辨率。质量范围是指是所能测定的质荷比的范围,它决定了咱们能检测到的离子的范围。比如,ESI离子源能产生许多m/z大于3000的离子,如果你选的质量分析器的上限达不到3000,那么3000以上的离子你就检测不出来了。
然而,另一个更为重要的指标,就是质量分析器的分辨率!先上个公式描述:
分辨率=观测的一个质谱峰的质荷比/半峰高处的峰宽(FWHM)
啥意思呢?比如下图中最左边的那个峰,它的质荷比是1,085.55,峰高一半的地方的峰宽值是0.217,于是:
分辨率=1,085.55/0.217=5,000
如果这么讲还是不太明白,那你可以简单理解为,质谱分辨率越高,我们将得到越尖越细的谱峰。你可能会问:谱峰又尖又细的好处是什么?这是个好问题!事实上,分辨率可以表征两个相邻的谱峰在质谱中被区分开的能力。大家通过下图感受一下不同分辨率的质谱仪能给我们多么不同的谱峰图。
图中以Glucagon(胰高血糖素)为例,展示了不同分辨率的质谱仪给出的谱峰。当分辨率是1000时,只能看一个很宽的峰(蓝色);分辨率增加到3000时,峰窄一些(红色),但还感受不到明显的差别;当提高到10000时,很明显能看到,其实这里包含了8个峰(绿色);再提高到30000的时候,半峰宽更窄,两个相邻的峰可以彻底地被分开(黑色)。显然,我们在分辨率为1000或3000,不能准确的检测被分析肽段的精确分子量, 从而导致谱图无法匹配或者发生错配。
不同的质量分析器有不同的分辨率,通常的顺序是:傅里叶变换质谱分辨率最高,但造价太贵;其次是Orbitrap(轨道阱系列),分辨率远远高于其它质谱;再次是TOF(时间飞行质谱);然后是离子阱(Ion Trap);最后是四级杆质谱(Quadrupole)。
这里我多说一句,分辨率高固然好,但价格肯定就贵,选择质谱仪的时候要根据咱们自己的研究目的以及预算范围啦!
二级质谱
然而,要对肽段进行鉴定,一级质谱显然是办不到的,我们没法根据肽段离子m/z的值就推断出这个肽段由哪些氨基酸残基组成(可能的组合非常多),以及序列顺序是怎么样的,对吧?所以,鉴定肽段还需要二级质谱。
什么是二级质谱呢?简单来说,肽段混合物通过一级质谱得到了一级谱图,然后从中选择一个肽段,通过一些方法,比如,与随性气体进行碰撞,把肽段碰碎,得到碎片离子,再形成二级谱图。我们通过观察碎片离子的质量分布来推断肽断的残基组成,最后再反推出蛋白质是什么。上个图,帮助大家理解一下二级质谱是怎么来的。
在上一段,我提到是从一级质谱中“选择”一个肽段进入二级质谱。这里看似讲得云淡风轻,事实上怎么选却是一个很关键的问题!通常选择的方法我们可以叫做“TOP”法(这是我自己起的名字),比如TOP15就是指从一级谱里选前15个高度的峰,每一次分离一个肽段,然后对这个肽段进行扫描,得到二级谱图。
大家发现了没有?如果一个肽段在一级谱图中没有进入TOP15,那它连打二级谱图的资格都没有!原来质谱的世界竞争也是如何残酷!二级质谱能扫描哪些肽段是由一级质谱决定的,所以我们将这种方法称为“数据依赖性采集(DDA, data dependent acquisition)!
明白了吧,DDA这个名字就是这么来的!下次大伙儿再听到有人说DDA,心里不会再一百个问号飞过了吧?
咱们细想一下就不难发现,如果一个蛋白的浓度不够高,也就是说,它的肽段在一级谱图中很难成为那些TOPs,那么它能进入二级质谱的可能性基本上没有。这就是为什么低峰度蛋白很难被鉴定到!这也就是为什么我们在做比如血液这种样品的时候,一定要去除血红蛋白等高峰度蛋白(如果你想鉴定的蛋白不是血红蛋白的话)!
很显然,DDA方法的局限性就摆在那里!这叫想要研究低峰度蛋白的科学家们怎么忍?于是,一种叫做数据非依赖性采集(DIA)的新方法就应运而生了!关于这种方法的原理,下一篇推文会详扒。
我们再通过以下这个图来感受一下一级谱图与二级谱图之间的关系:
比如,第一个时间点,我们先进行MS1扫描,然后选一个峰高的肽段进行MS2扫描,依次类推。在一些扫描速度比较快的质谱仪里,一个MS1谱图可以进行80张MS2的扫描。
鉴定碎片离子
好,我们搞清楚了二级质谱是怎么来的,那么我们怎么根据检测到的离子信息来推测这是什么氨基酸呢?可能你会说,这还不简单么?根据分子量呀!
没错,不同的氨基酸,它的分子量不就是一个简单的值吗?然而,这件事却并没有这么简单,因为这个世界上还存在一个神奇的东西,它的名字叫同位素!
比如说碳元素,最常见的是原子量12的这种,我们叫C12,然而它还有一个同样很稳定的好基友,C13(多一个中子)。于是,我们得考虑到这两种稳定同位素的含量(网络说C13占 1.11%,C12占98.89%),对于一个氨基酸而言,我们就会得到两个不同的分子量:
为啥说平均呢?因为当肽段分子量越大,含有各种同位素的可能性及不同组合就越多,我们如果把每一种组合都算一遍分子量,这样会得到一个长长的list,到时候做谱图匹配时用哪一个值呢?也没谱。所以干脆用一个平均值来表示。
我们通过下表来感受一下各种不同的氨基酸残基的单同位素分子量与平均分子量有多大的区别:
可能你又会问,这两个不同的分子量分别在什么情况下用呢?这里又要说到分辨率了,如果咱们用的是高分辨率质谱仪,不同的同位素峰会被明显地分开,也就是说,谱图里我们能看几个同位素峰,这时我们就可以使用单同位素分子量,可以与相应的单同位素峰准确对应。但在低分辨率质谱仪里,这些峰很可能混在一起,看上去只是一个峰,这种情况下,也没办法,只能用平均分子量去近似一下了。
下面这个图可以很形象地展示出,单同位素分子量与平均分子量在质谱图上差别有多大。在高分辨质谱看来,这完全就是两种不同的离子了。上面我们也说了,根据平均分子量来计算,结果并不准确,但用单同位素分子量来计算,就可以准确对应了。
除了同位素,还有一个因素我们也需要考虑,那就是肽段碎裂进入二级质谱时,可能会形成三种不同的离子类型,这就是我们通常所说的by离子,ax离子和cz离子。
之所以会形成不同的离子对,是因为不同的碎裂方法,造成肽段断裂的位置不同。大伙儿看看上面这个图就明白了。当我们使用CID(碰撞诱导解离)或HCD(High-energy C-trap Dissociation)碎裂时,与惰性气体碰撞的是C-N键这里,C端生成y离子,N端生成b离子,这是二级质谱产生的最常见的离子对了。当我们使用ETD(电子转移解离)碎裂时,因为有一个电子反应的过程,在加上电子后才产生的碎裂,它的断裂位置可能出现在N-C键这里,形成cz离子,而TOF类仪器可能会产生ax离子。
离子类型的信息需要传递给后续的搜库步骤(通常我们在搜库软件中指定了仪器类型,软件就会自动匹配离子类型),计算机需要模拟最可能的碎裂位置,生成对应的理论谱图,然后拿来与实际谱图比对。我们以by离子为例,来看看对一个肽段来说,它可能碎裂成哪些碎片离子:
那么它可能会生成如下这样的谱图:
从谱图上看,这个肽段所有的by离子都检测到了。通常来说,对于丰度不错,长短合适的肽段,在高精度质谱仪上被完整捕获到的情况是很常见的。通常情况下50%-80%的by离子都能被捕获到。
下篇继续讲定性检测里的搜库工具、结果评估,以及定量检测的各种背景知识。