Ⅰ 回归分析法的介绍
回归分析法是在掌握大量观察数据的基础上,利用数理统计方法建立因变量与自变量之间的回归关系函数表达式(称回归方程式)。回归分析法不能用于分析与评价工程项目风险。回归分析法是依据事物发展变化的因果关系来预测事物未来的发展走势,它是研究变量间相互关系的一种定量预测方法,又称回归模型预测法或因果法,应用于经济预测、科技预测和企业人力资源的预测等。
Ⅱ 回归分析的认识及简单运用
回归分析的认识及简单运用
回归分析(regression analysis)是确定两种或两种以上变量间相互依赖的定量关系的一种统计分析方法。运用十分广泛,回归分析按照涉及的自变量的多少,分为回归和多重回归分析;按照自变量的多少,可分为一元回归分析和多元回归分析;按照自变量和因变量之间的关系类型,可分为线性回归分析和非线性回归分析。如果在回归分析中,只包括一个自变量和一个因变量,且二者的关系可用一条直线近似表示,这种回归分析称为一元线性回归分析。如果回归分析中包括两个或两个以上的自变量,且因变量和自变量之间是线性关系,则称为多重线性回归分析。
定义
回归分析是应用极其广泛的数据分析方法之一。它基于观测数据建立变量间适当的依赖关系,以分析数据内在规律,并可用于预报、控制等问题。
方差齐性
线性关系
效应累加
变量无测量误差
变量服从多元正态分布
观察独立
模型完整(没有包含不该进入的变量、也没有漏掉应该进入的变量)
误差项独立且服从(0,1)正态分布。
现实数据常常不能完全符合上述假定。因此,统计学家研究出许多的回归模型来解决线性回归模型假定过程的约束。
研究一个或多个随机变量Y1 ,Y2 ,…,Yi与另一些变量X1、X2,…,Xk之间的关系的统计方法,又称多重回归分析。通常称Y1,Y2,…,Yi为因变量,X1、X2,…,Xk为自变量。回归分析是一类数学模型,特别当因变量和自变量为线性关系时,它是一种特殊的线性模型。最简单的情形是一个自变量和一个因变量,且它们大体上有线性关系,这叫一元线性回归,即模型为Y=a+bX+ε,这里X是自变量,Y是因变量,ε是随机误差,通常假定随机误差的均值为0,方差为σ^2(σ^2大于0)σ^2与X的值无关。若进一步假定随机误差遵从正态分布,就叫做正态线性模型。一般的情形,它有k个自变量和一个因变量,因变量的值可以分解为两部分:一部分是由于自变量的影响,即表示为自变量的函数,其中函数形式已知,但含一些未知参数;另一部分是由于其他未被考虑的因素和随机性的影响,即随机误差。当函数形式为未知参数的线性函数时,称线性回归分析模型;当函数形式为未知参数的非线性函数时,称为非线性回归分析模型。当自变量的个数大于1时称为多元回归,当因变量个数大于1时称为多重回归。
回归分析的主要内容为:
①从一组数据出发,确定某些变量之间的定量关系式,即建立数学模型并估计其中的未知参数。估计参数的常用方法是最小二乘法。
②对这些关系式的可信程度进行检验。
③在许多自变量共同影响着一个因变量的关系中,判断哪个(或哪些)自变量的影响是显着的,哪些自变量的影响是不显着的,将影响显着的自变量入模型中,而剔除影响不显着的变量,通常用逐步回归、向前回归和向后回归等方法。
④利用所求的关系式对某一生产过程进行预测或控制。回归分析的应用是非常广泛的,统计软件包使各种回归方法计算十分方便。
在回归分析中,把变量分为两类。一类是因变量,它们通常是实际问题中所关心的一类指标,通常用Y表示;而影响因变量取值的的另一类变量称为自变量,用X来表示。
回归分析研究的主要问题是:
(1)确定Y与X间的定量关系表达式,这种表达式称为回归方程;
(2)对求得的回归方程的可信度进行检验;
(3)判断自变量X对因变量Y有无影响;
(4)利用所求得的回归方程进行预测和控制。
回归分析可以说是统计学中内容最丰富、应用最广泛的分支。这一点几乎不带夸张。包括最简单的t检验、方差分析也都可以归到线性回归的类别。而卡方检验也完全可以用logistic回归代替。
众多回归的名称张口即来的就有一大片,线性回归、logistic回归、cox回归、poission回归、probit回归等等等等,可以一直说的你头晕。为了让大家对众多回归有一个清醒的认识,这里简单地做一下总结:
1、线性回归,这是我们学习统计学时最早接触的回归,就算其它的你都不明白,最起码你一定要知道,线性回归的因变量是连续变量,自变量可以是连续变量,也可以是分类变量。如果只有一个自变量,且只有两类,那这个回归就等同于t检验。如果只有一个自变量,且有三类或更多类,那这个回归就等同于方差分析。如果有2个自变量,一个是连续变量,一个是分类变量,那这个回归就等同于协方差分析。所以线性回归一定要认准一点,因变量一定要是连续变量。
2、logistic回归,与线性回归并成为两大回归,应用范围一点不亚于线性回归,甚至有青出于蓝之势。因为logistic回归太好用了,而且太有实际意义了。解释起来直接就可以说,如果具有某个危险因素,发病风险增加2.3倍,听起来多么地让人通俗易懂。线性回归相比之下其实际意义就弱了。logistic回归与线性回归恰好相反,因变量一定要是分类变量,不可能是连续变量。分类变量既可以是二分类,也可以是多分类,多分类中既可以是有序,也可以是无序。二分类logistic回归有时候根据研究目的又分为条件logistic回归和非条件logistic回归。条件logistic回归用于配对资料的分析,非条件logistic回归用于非配对资料的分析,也就是直接随机抽样的资料。无序多分类logistic回归有时候也成为多项logit模型,有序logistic回归有时也称为累积比数logit模型。
3、cox回归,cox回归的因变量就有些特殊,因为他的因变量必须同时有2个,一个代表状态,必须是分类变量,一个代表时间,应该是连续变量。只有同时具有这两个变量,才能用cox回归分析。cox回归主要用于生存资料的分析,生存资料至少有两个结局变量,一是死亡状态,是活着还是死亡?二是死亡时间,如果死亡,什么时间死亡?如果活着,从开始观察到结束时有多久了?所以有了这两个变量,就可以考虑用cox回归分析。
4、poisson回归,poisson回归相比就不如前三个用的广泛了。但实际上,如果你能用logistic回归,通常也可以用poission回归,poisson回归的因变量是个数,也就是观察一段时间后,发病了多少人?或者死亡了多少人?等等。其实跟logistic回归差不多,因为logistic回归的结局是是否发病,是否死亡,也需要用到发病例数、死亡例数。大家仔细想想,其实跟发病多少人,死亡多少人一个道理。只是poission回归名气不如logistic回归大,所以用的人也不如logistic回归多。但不要因此就觉得poisson回归没有用。
5、probit回归,在医学里真的是不大用,最关键的问题就是probit这个词太难理解了,通常翻译为概率单位。probit函数其实跟logistic函数十分接近,二者分析结果也十分接近。可惜的是,probit回归的实际含义真的不如logistic回归容易理解,由此导致了它的默默无名,但据说在社会学领域用的似乎更多一些。
6、负二项回归。所谓负二项指的是一种分布,其实跟poission回归、logistic回归有点类似,poission回归用于服从poission分布的资料,logistic回归用于服从二项分布的资料,负二项回归用于服从负二项分布的资料。说起这些分布,大家就不愿意听了,多么抽象的名词,我也很头疼。如果简单点理解,二项分布你可以认为就是二分类数据,poission分布你可以认为是计数资料,也就是个数,而不是像身高等可能有小数点,个数是不可能有小数点的。负二项分布呢,也是个数,只不过比poission分布更苛刻,如果你的结局是个数,而且结局可能具有聚集性,那可能就是负二项分布。简单举例,如果调查流感的影响因素,结局当然是流感的例数,如果调查的人有的在同一个家庭里,由于流感具有传染性,那么同一个家里如果一个人得流感,那其他人可能也被传染,因此也得了流感,那这就是具有聚集性,这样的数据尽管结果是个数,但由于具有聚集性,因此用poission回归不一定合适,就可以考虑用负二项回归。既然提到这个例子,用于logistic回归的数据通常也能用poission回归,就像上面案例,我们可以把结局作为二分类,每个人都有两个状态,得流感或者不得流感,这是个二分类结局,那就可以用logistic回归。但是这里的数据存在聚集性怎么办呢,幸亏logistic回归之外又有了更多的扩展,你可以用多水平logistic回归模型,也可以考虑广义估计方程。这两种方法都可以处理具有层次性或重复测量资料的二分类因变量。
7、weibull回归,有时中文音译为威布尔回归。weibull回归估计你可能就没大听说过了,其实这个名字只不过是个噱头,吓唬人而已。上一篇说过了,生存资料的分析常用的是cox回归,这种回归几乎统治了整个生存分析。但其实夹缝中还有几个方法在顽强生存着,而且其实很有生命力,只是国内大多不愿用而已。weibull回归就是其中之一。cox回归为什么受欢迎呢,因为它简单,用的时候不用考虑条件(除了等比例条件之外),大多数生存数据都可以用。而weibull回归则有条件限制,用的时候数据必须符合weibull分布。怎么,又是分布?!估计大家头又大了,是不是想直接不往下看了,还是用cox回归吧。不过我还是建议看下去。为什么呢?相信大家都知道参数检验和非参数检验,而且可能更喜欢用参数检验,如t检验,而不喜欢用非参数检验,如秩和检验。那这里的weibull回归和cox回归基本上可以说是分别对应参数检验和非参数检验。参数检验和非参数检验的优缺点我也在前面文章里通俗介绍了,如果数据符合weibull分布,那么直接套用weibull回归当然是最理想的选择,他可以给出你最合理的估计。如果数据不符合weibull分布,那如果还用weibull回归,那就套用错误,肯定结果也不会真实到哪儿去。所以说,如果你能判断出你的数据是否符合weibull分布,那当然最好的使用参数回归,也就是weibull回归。但是如果你实在没什么信心去判断数据分布,那也可以老老实实地用cox回归。cox回归可以看作是非参数的,无论数据什么分布都能用,但正因为它什么数据都能用,所以不可避免地有个缺点,每个数据用的都不是恰到好处。weibull回归就像是量体裁衣,把体形看做数据,衣服看做模型,weibull回归就是根据你的体形做衣服,做出来的肯定对你正合身,对别人就不一定合身了。cox回归呢,就像是到商场去买衣服,衣服对很多人都合适,但是对每个人都不是正合适,只能说是大致合适。至于到底是选择麻烦的方式量体裁衣,还是图简单到商场直接去买现成的,那就根据你的喜好了,也根据你对自己体形的了解程度,如果非常熟悉,当然就量体裁衣了。如果不大了解,那就直接去商场买大众化衣服吧。
8、主成分回归。主成分回归是一种合成的方法,相当于主成分分析与线性回归的合成。主要用于解决自变量之间存在高度相关的情况。这在现实中不算少见。比如你要分析的自变量中同时有血压值和血糖值,这两个指标可能有一定的相关性,如果同时放入模型,会影响模型的稳定,有时也会造成严重后果,比如结果跟实际严重不符。当然解决方法很多,最简单的就是剔除掉其中一个,但如果你实在舍不得,毕竟这是辛辛苦苦调查上来的,删了太可惜了。如果舍不得,那就可以考虑用主成分回归,相当于把这两个变量所包含的信息用一个变量来表示,这个变量我们称它叫主成分,所以就叫主成分回归。当然,用一个变量代替两个变量,肯定不可能完全包含他们的信息,能包含80%或90%就不错了。但有时候我们必须做出抉择,你是要100%的信息,但是变量非常多的模型?还是要90%的信息,但是只有1个或2个变量的模型?打个比方,你要诊断感冒,是不是必须把所有跟感冒有关的症状以及检查结果都做完?还是简单根据几个症状就大致判断呢?我想根据几个症状大致能能确定90%是感冒了。不用非得100%的信息不是吗?模型也是一样,模型是用于实际的,不是空中楼阁。既然要用于实际,那就要做到简单。对于一种疾病,如果30个指标能够100%确诊,而3个指标可以诊断80%,我想大家会选择3个指标的模型。这就是主成分回归存在的基础,用几个简单的变量把多个指标的信息综合一下,这样几个简单的主成分可能就包含了原来很多自变量的大部分信息。这就是主成分回归的原理。
9、岭回归。岭回归的名称由来我也没有查过,可能是因为它的图形有点像岭。不要纠结于名称。岭回归也是用于处理自变量之间高度相关的情形。只是跟主成分回归的具体估计方法不同。线性回归的计算用的是最小二乘估计法,当自变量之间高度相关时,最小二乘回归估计的参数估计值会不稳定,这时如果在公式里加点东西,让它变得稳定,那就解决了这一问题了。岭回归就是这个思想,把最小二乘估计里加个k,改变它的估计值,使估计结果变稳定。至于k应该多大呢?可以根据岭迹图来判断,估计这就是岭回归名称的由来。你可以选非常多的k值,可以做出一个岭迹图,看看这个图在取哪个值的时候变稳定了,那就确定k值了,然后整个参数估计不稳定的问题就解决了。
10、偏最小二乘回归。偏最小二乘回归也可以用于解决自变量之间高度相关的问题。但比主成分回归和岭回归更好的一个优点是,偏最小二乘回归可以用于例数很少的情形,甚至例数比自变量个数还少的情形。听起来有点不可思议,不是说例数最好是自变量个数的10倍以上吗?怎么可能例数比自变量还少,这还怎么计算?可惜的是,偏最小二乘回归真的就有这么令人发指的优点。所以,如果你的自变量之间高度相关、例数又特别少、而自变量又很多(这么多无奈的毛病),那就现在不用发愁了,用偏最小二乘回归就可以了。它的原理其实跟主成分回归有点像,也是提取自变量的部分信息,损失一定的精度,但保证模型更符合实际。因此这种方法不是直接用因变量和自变量分析,而是用反映因变量和自变量部分信息的新的综合变量来分析,所以它不需要例数一定比自变量多。偏最小二乘回归还有一个很大的优点,那就是可以用于多个因变量的情形,普通的线性回归都是只有一个因变量,而偏最小二乘回归可用于多个因变量和多个自变量之间的分析。因为它的原理就是同时提取多个因变量和多个自变量的信息重新组成新的变量重新分析,所以多个因变量对它来说无所谓。
看了以上的讲解,希望能对大家理解回归分析的运用有些帮助。
以上是小编为大家分享的关于回归分析的认识及简单运用的相关内容,更多信息可以关注环球青藤分享更多干货
Ⅲ 回归分析的内容和步骤是什么
1、确定变量:
明确定义了预测的具体目标,并确定了因变量。 如果预测目标是下一年的销售量,则销售量Y是因变量。 通过市场调查和数据访问,找出与预测目标相关的相关影响因素,即自变量,并选择主要影响因素。
2、建立预测模型:
依据自变量和因变量的历史统计资料进行计算,在此基础上建立回归分析方程,即回归分析预测模型。
3、进行相关分析:
回归分析是因果因素(自变量)和预测因子(因变量)的数学统计分析。 只有当自变量和因变量之间存在某种关系时,建立的回归方程才有意义。 因此,作为自变量的因子是否与作为因变量的预测对象相关,程度的相关程度以及判断相关程度的程度是在回归分析中必须解决的问题。 相关分析通常需要相关性,并且相关度系数用于判断自变量和因变量之间的相关程度。
4、计算预测误差:
回归预测模型是否可用于实际预测取决于回归预测模型的测试和预测误差的计算。 回归方程只能通过回归方程作为预测模型来预测,只有当它通过各种测试且预测误差很小时才能预测。
5、确定预测值:
利用回归预测模型计算预测值,并对预测值进行综合分析,确定最后的预测值。
(3)电量预测方法回归分析法举例扩展阅读:
回归分析的应用:
1、相关分析研究的是现象之间是否相关、相关的方向和密切程度,一般不区别自变量或因变量。而回归分析则要分析现象之间相关的具体形式,确定其因果关系,并用数学模型来表现其具体关系。比如说,从相关分析中我们可以得知“质量”和“用户满意度”变量密切相关,但是这两个变量之间到底是哪个变量受哪个变量的影响,影响程度如何,则需要通过回归分析方法来确定。
2、一般来说,回归分析是通过规定因变量和自变量来确定变量之间的因果关系,建立回归模型,并根据实测数据来求解模型的各个参数,然后评价回归模型是否能够很好的拟合实测数据;如果能够很好的拟合,则可以根据自变量作进一步预测。
Ⅳ 什么是回归分析法
回归分析(英语:Regression Analysis)是一种统计学上分析数据的方法,目的在于了解两个或多个变量间是否相关、相关方向与强度,并建立数学模型以便观察特定变量来预测研究者感兴趣的变量。
回归分析中,当研究的因果关系只涉及因变量和一个自变量时,叫做一元回归分析;当研究的因果关系涉及因变量和两个或两个以上自变量时,叫做多元回归分析。此外,回归分析中,又依据描述自变量与因变量之间因果关系的函数表达式是线性的还是非线性的,分为线性回归分析和非线性回归分析。回归分析法预测是利用回归分析方法,根据一个或一组自变量的变动情况预测与其有相关关系的某随机变量的未来值。进行回归分析需要建立描述变量间相关关系的回归方程。根据自变量的个数,可以是一元回归,也可以是多元回归。根据所研究问题的性质,可以是线性回归,也可以是非线性回归。非线性回归方程一般可以通过数学方法为线性回归方程进行处理。
Ⅳ 如何写电站的负荷预测分析报告需写什么内容如果可以请提供范文。
1趋势分析法
趋势分析法称之趋势曲线分析、曲线拟合或曲线回归,它是迄今为止研究最多,也最为流行的定量预测方法。它是根据已知的历史资料来拟合一条曲线,使得这条曲线能反映负荷本身的增长趋势,然后按照这个增长趋势曲线,对要求的未来某一点估计出该时刻的负荷预测值。常用的趋势模型有线性趋势模型、多项式趋势模型、线性趋势模型、对数趋势模型、幂函数趋势模型、指数趋势模型、逻辑斯蒂(Logistic)模型、龚伯茨(Gompertz)模型等,寻求趋势模型的过程是比较简单的,这种方法本身是一种确定的外推,在处理历史资料、拟合曲线,得到模拟曲线的过程,都不考虑随机误差。采用趋势分析拟合的曲线,其精确度原则上是对拟合的全区间都一致的。在很多情况下,选择合适的趋势曲线,确实也能给出较好的预测结果。但不同的模型给出的结果相差会很大,使用的关键是根据地区发展情况,选择适当的模型。分析珠海市1995年以来的用电量历史数据,发现具有比较明显的二项式增长趋势,模型曲线为y=0.229565x2-914.8523x+911472.65,利用该模型曲线得到2005年到2010年的用电量水平分别为52.78亿kWh和85.08亿kWh。拟合曲线如图1所示。
2回归分析法
回归分析法(又称统计分析法),也是目前广泛应用的定量预测方法。其任务是确定预测值和影响因子之间的关系。电力负荷回归分析法是通过对影响因子值(比如国民生产总值、工农业总产值、人口、气候等)和用电的历史资料进行统计分析,确定用电量和影响因子之间的函数关系,从而实现预测。但由于回归分析中,选用何种因子和该因子系用何种表达式有时只是一种推测,而且影响用电因子的多样性和某些因子的不可测性,使得回归分析在某些情况下受到限制。
对珠海市历年用电量和国内生产总值GDP、人口popu等数据进行分析,求得回归方程为:y=-3.9848+0.0727GDP+0.10307popu,用该模型预测2005年和2010年的用电量水平分别为47.11亿kWh和70.98亿kWh。
回归分析预测方法是要通过对历史数据的分析研究,探索经济、社会各有关因素与电力负荷的内在联系和发展变化规律,并根据对规划期内本地区经济、社会发展情况的预测来推算未来的负荷。可见该方法不仅依赖于模型的准确性,更依赖于影响因子其本身预测值的准确度。
3指数平滑法
趋势分析和回归分析都是根据时间序列的实际值建立模型,再利用模型来进行预测计算的。指数平滑法是用以往的历史数据的指数加权组合,来直接预报时间序列的将来值。
图1拟合曲线图
其中衰减因子0<α<1,体现"重近轻远",即近期数据对预测影响大,远期数据影响小的基本原则。α越大时,由近期到远期数据的加权系数由大变小就越快,是强调新近数据的作用。例如当α=0.9时,各加权系数分别为0.9,0.09,0.009等。在极端情形下,α=1,则以往数据对预报没有任何影响。
对于电力系统负荷预测,重要的是曲线越接近目前时刻,就应当越准确,而对于过去很久的数据,不必要作很精确的拟合。类似惯性作用。
从对珠海市的实例计算可以看出,预测效果比较好。实例计算表明该方法能较好地模拟珠海市的实际并进行预测。但其不宜用于过长时期的预测。
4单耗法
单耗法是根据第一、二、三产业每单位用电量创造的经济价值,从预测经济指标推算用电需求量,加上居民生活用电量,构成全社会用电量。预测时,通过对过去的单位产值耗电量进行统计分析,并结合产业结构调整,找出一定的规律,预测规划期的一、二、三产业的综合单耗,然后按国民经济和社会发展规划的指标,按单耗进行预测。
单耗法需要做大量细致的统计、分析工作,近期预测效果较佳。但在市场经济条件下,未来的产业单耗和经济发展指标都具有不确定性,对于中远期预测的准确性难以确定。
5灰色模型法
灰色系统理论是反模糊控制的观点和方法延伸到复杂的大系统中,将自动控制与运筹学的数学方法相结合,研究广泛存在于客观世界中具有灰色性的问题。有部分信息已知和未知的系统称为灰色系统。
利用一阶灰色模型对珠海市全社会用电量进行了预测分析。2005年全社会用电量预测其结果应该是令人满意的。通过对原始数据的不同处理方法形成6种方案,预测2005年全社会用电量为50亿kWh左右,与其它常用方法预测的结果相当接近。这6种方案中除方案3检验为不合格外,其余全为优。但使用长数据列得到的结果与其它相比,并不占优,数据列过长,系统受干扰的成分多,不稳定因素大,反而易使模型精度降低,降低预测结果的可信度。
6负荷密度法
负荷密度一般以kW/km2表示。不同地区、不同功能的区域,负荷密度是不同的。利用负荷密度法,一般要将预测区域分成若干功能区,如商业区、工业区、居住区、文教区等,然后根据区域的经济发展规划、人口规划、居民收入水平增长情况等,参照本地区或国内外类似地区的用电水平,选择一个合适的负荷密度指标,推算功能区和整个预测区的用电负荷。计算公式是A=SD,其中S是土地面积,D是用电密度。该方法主要适用于土地规划比较明确的城市区域,我们在做珠海市城区配电网络规划预测负荷时用了该方法。
7弹性系数法
电力弹性系数是反映电力消费的年平均增长率和国民经济的年平均增长率之间的关系的宏观指标。电力弹性系数可以用下面的公式来表示:
E=Ky/Kx
式中E-为电力弹性系数
Ky-为电力消费年平均增长率
Kx-为国民经济年平均增长率
在市场经济条件下,电力弹性系数已经变得捉摸不定,并且随着科学技术的迅猛发展,节电技术和电力需求侧管理,电力与经济的关系急剧变化,电力需求与经济发展的变化步伐严重失调,使得弹性系数难以捉摸,使用弹性系数法预测电力需求难以得到满意的效果,应逐步淡化。
8分析与比较
(1)从适用条件看,回归分析和趋势分析致力于统计规律的研究与描述,适用于大样本,且过去、现在和未来发展模式一致的预测;指数平滑法是利用惯性原理对增长趋势外推,实现"重近轻远"的预测原则;产值单耗法一般根据历史统计数据,在分析影响产值单耗的诸因素的变化趋势基础上确定单耗指标,然后依据国民经济和社会发展规划指标预测电力需求;灰色模型法是通过对原始数据的整理来寻求规律,它适用于贫信息条件下的分析和预测。
(2)从采用的数据形式看,灰色系统理论是采用生成数序列建模。回归分析法、趋势分析法均是采用原始数据建模。而指数平滑法是通过对原始数据进行指数加权组合直接预测未来值。
(3)从计算复杂程度看,相对简单的是回归分析法和趋势分析法。
(4)从适用的时间分类看,单耗法、指数平滑法、灰色模型法较适宜近期预测。对中、长期预测,回归法、趋势分析法、改进型灰色模型较为合适。
Ⅵ 电力负荷预测的常用方法有哪些
有:1、小波法
2、神经网络法
3、时间顺序法
4、灰色模型法
5、趋势分析法
6、回归分析法
7、指数平滑法
8、专家系统法
9、电力弹性系数法
10、优选组合预测法 等等。
Ⅶ 数据分析师必须掌握的7种回归分析方法
1、线性回归
线性回归是数据分析法中最为人熟知的建模技术之一。它一般是人们在学习预测模型时首选的技术之一。在这种数据分析法中,由于变量是连续的,因此自变量可以是连续的也可以是离散的,回归线的性质是线性的。
线性回归使用最佳的拟合直线(也就是回归线)在因变量(Y)和一个或多个自变量(X)之间建立一种关系。
2、逻辑回归
逻辑回归是用来计算“事件=Success”和“事件=Failure”的概率。当因变量的类型属于二元(1 /0,真/假,是/否)变量时,我们就应该使用逻辑回归.
逻辑回归不要求自变量和因变量是线性关系。它可以处理各种类型的关系,因为它对预测的相对风险指数OR使用了一个非线性的log转换。
为了避免过拟合和欠拟合,我们应该包括所有重要的变量。有一个很好的方法来确保这种情况,就是使用逐步筛选方法来估计逻辑回归。它需要大的样本量,因为在样本数量较少的情况下,极大似然估计的效果比普通的最小二乘法差。
3、多项式回归
对于一个回归方程,如果自变量的指数大于1,那么它就是多项式回归方程。虽然会有一个诱导可以拟合一个高次多项式并得到较低的错误,但这可能会导致过拟合。你需要经常画出关系图来查看拟合情况,并且专注于保证拟合合理,既没有过拟合又没有欠拟合。下面是一个图例,可以帮助理解:
明显地向两端寻找曲线点,看看这些形状和趋势是否有意义。更高次的多项式最后可能产生怪异的推断结果。
4、逐步回归
在处理多个自变量时,我们可以使用这种形式的回归。在这种技术中,自变量的选择是在一个自动的过程中完成的,其中包括非人为操作。
这一壮举是通过观察统计的值,如R-square,t-stats和AIC指标,来识别重要的变量。逐步回归通过同时添加/删除基于指定标准的协变量来拟合模型。
5、岭回归
岭回归分析是一种用于存在多重共线性(自变量高度相关)数据的技术。在多重共线性情况下,尽管最小二乘法(OLS)对每个变量很公平,但它们的差异很大,使得观测值偏移并远离真实值。岭回归通过给回归估计上增加一个偏差度,来降低标准误差。
除常数项以外,这种回归的假设与最小二乘回归类似;它收缩了相关系数的值,但没有达到零,这表明它没有特征选择功能,这是一个正则化方法,并且使用的是L2正则化。
6、套索回归
它类似于岭回归。除常数项以外,这种回归的假设与最小二乘回归类似;它收缩系数接近零(等于零),确实有助于特征选择;这是一个正则化方法,使用的是L1正则化;如果预测的一组变量是高度相关的,Lasso 会选出其中一个变量并且将其它的收缩为零。
7、回归
ElasticNet是Lasso和Ridge回归技术的混合体。它使用L1来训练并且L2优先作为正则化矩阵。当有多个相关的特征时,ElasticNet是很有用的。Lasso会随机挑选他们其中的一个,而ElasticNet则会选择两个。Lasso和Ridge之间的实际的优点是,它允许ElasticNet继承循环状态下Ridge的一些稳定性。
通常在高度相关变量的情况下,它会产生群体效应;选择变量的数目没有限制;并且可以承受双重收缩。
关于数据分析师必须掌握的7种回归分析方法,青藤小编就和您分享到这里了,希望这篇文章可以为您提供帮助。如果您还想了解更多关于数据分析师、大数据工程师的职业前景及就业内容,可以点击本站的其他文章进行学习。
Ⅷ 几种电力负荷预测方法及其比较
摘要:介绍了趋势分析法、回归分析法、指数平滑法、单耗法、灰色模型法、负荷密度法和弹性系数法等电力负荷预测的方法,并以预测珠海市全社会年用电量为实例,在适用条件、数据形式、计算难度和适用时间等方面对这几种预测方法进行了分析、比较、得出结论:回归分析法、趋势分析法适用于大样本,且过去、现在和未来发展模式均一致的预测,灰色模型法适用于贫信息条件下的预测;灰色系统理论采用生成数序列建模,回归分析法、趋势分析法采用原始数据建模,指数平滑法是通过对原始数据进行指数加权组合直接预测未来值的;回归分析法和趋势分析法的计算相对简单;单耗法、指数平滑法、灰色模型法较适宜近期预测,回归法、趋势分析法和改进型灰色模型较适于中、长期预测。
Ⅸ 什么是电力负荷回归模型预测技术
电力负荷回归模型预测技术就是根据负荷过去的历史资料,建立可以进行数学分析的数学模型,对未来的负荷进行预测。从数学上看,就是用数理统计中的回归分析方法,即通过对变量的观测数据进行统计分析,确定变量之间的相关关系,从而实现预测的目的。