1. 光谱仪器用于定性分析的几种方法
资料介绍光谱仪器定性分析指:由于各种元素原子结构同光源作用下都产生自己特征光谱样品经过激发摄谱感光板上有几种元素谱线出现证明该样品有几种元素样分析方法叫做光谱定性分析方法光谱仪器用于定性分析方法有下几种:1.比较光谱分析法:种方法应用比较广泛包括标准试样比较法和铁谱比较法标准样品比较法般适用于单项定性分析及有限分析铁谱比较法做单项测定还便于做全分析2.谱线波长测量法:光谱分析仪器利用谱线波长测量法进行定性分析先测出某谱线波长再查表确定存元素种方法日常分析少使用般只编制谱图或者做仲裁分析时才用
般来讲光谱分析仪器定性分析分析元素周期表上70几元素由于受仪器和光源条件限制有些元素非金属及卤族元素等则需要特殊条件下才能测定光谱仪器定性分析样品多种多样所光谱定性采用方法各相同对于易导电金属试样试样本身作电极直接用直流电孤或交流电孤光源分析有时了损坏试样也采用火花和激光显微光源分析对于有机物般先进行化学处理使之转化成溶液用溶液残渣法测定也灼烧、灰化试样处理成均匀粉末装碳电极孔用直流电孤或交流电孤光源分析测定光谱仪器定性分析特点方法简单、速度快、需要样品量少并且任何形式样品都分析对于大部份元素都有比较高灵敏度光谱定性分析分析试样或几指定元素也全分析试样所有能存元素根据灵敏线强弱来判断们试样大致含量光谱定性分析只能给出试样存元素、粗略含量范围大量、少量还微量要想得元素正确含量必须做光谱定量分析
2. 水质测试技术方法的现状
目前,国内外的实验测试手段,从分析原理划分,大致可分为两大类:即化学分析法和物理分析法(或物理化学分析法,也可叫仪器分析法)。这两类分析方法之间并不是相互孤立和对立的,例如在运用仪器分析时,在进行分析测量之前,试样往往必须经过一系列预处理工作,这就必须采用化学方法,同时仪器的校准也常常必须借助化学分析来核对。在实际分析工作中,应根据具体情况和要求,综合考虑仪器分析和化学分析的特点,扬长避短,选用适当的分析方法。这就要求分析化学工作者必须同时掌握好这两类分析方法。
从水和污水的检测项目来看,主要包括:感官指标,一般性质,常量组份,微量元素,有毒元素,污染组份,微生物,放射性,气体成份,同位素等,共约90~100项指标,近200个检验方法。除经典的化学分析方法外,还包括了许多近年来发展的新技术,如原子吸收光谱法、极谱法、原子荧光法、离子色谱法、感耦等离子体光谱法、质谱法、能谱法以及痕量元素的多种分离富集技术等。
从掌握的分析测试技术方法来看,国内外基本大同小异,国内测试质量和某些先进国家相比,测试数据有较好的可比性,但国内目前存在的主要问题是受经济条件的制约,仪器普遍陈旧,设备简陋;人员的技术素质、知识更新得不到较好的提高,这样就使得国内的测试技术能力仍然保持在70~80年代的水平。当然由于部门和经济条件的差异,有些单位的仪器设备条件也有比较先进的,但人员技术素质也存在不相适当的状况。现就各项分析技术的现状介绍如下:
一、化学分析法
化学分析是最早使用的和长期以来广泛应用的分析方法,故又有“经典分析法”之称。化学分析是以化学原理和化学反应为基础建立起来的分析方法,此方法以化学反应如酸碱反应、络合反应、沉淀反应和氧化还原反应等为基础建立起来的,用于成份的定性和定量分析,它是分析化学的基础,目前仍是国内外分析工作者通用的分析手段。
在现今水质分析中应用最广的是比色法和容量法。这些方法能够普及和采用的主要优势是,只要有化学试剂和玻璃器皿即可进行,不需要太多昂贵的仪器,因此,往往是许多中、小型实验室采用的主要手段。
比色法对微量物质的测量有很大的优越性,此法的操作步骤一般比较简单、快速、灵敏度也较高。比色方法有三种:一种是目视比色法,这种方法所要求的设备和技术条件简单,对低色度溶液的辨认比仪器测定更加灵敏,可以分辨测定液中混浊物的干扰。第二种为分光光度法,第三种为光电比色法。这两种均需仪器,在正常情况下,用仪器比色比目视法准确,重复性好,但在溶液混浊时,仪器无法辨认容易出现假象,这种方法还容易受仪器性能的影响,由于需要仪器设备和电源供应,所以不宜在野外使用。
分光光度计能将光线分为较狭窄的波段,所以测定效果比光电比色计的好。但前者价格比较贵,在一般测定中,光电比色计也能得到满意的结果。
所以三种比色法各有优缺点,可以根据具体条件加以选用。
容量法操作起来也比较简单,对某些项目也能得到较准确的结果,但是也容易受指示剂,操作的熟练程度和标准溶液浓度等条件变化的制约,使准确度和灵敏度受到影响。
二、物理分析法(仪器分析法)
物理分析法,也可叫物理化学分析法或叫仪器分析法。这种分析方法是以物质的物理、物理化学性质(光谱及电化学性质)为基础并使用特殊仪器进行分析的测试方法。
仪器分析是20世纪初发展起来的一类分析方法,又有近代分析法之称,它具有灵敏、准确、快速、易于实现自动化和连续测定等优点。
目前在水、工、环测试中主要应用以下各类方法:
1.原子吸收光谱分析法
原子吸收光谱分析法又称原子吸收分光光度分析法,简称原子吸收法。原子吸收法是一种很好的定量分析方法。目前在国内各大、中实验室应用比较普遍。它具有灵敏度高、准确度高、选择性好等优点,方法简便,分析速度快,如果采用自动化的仪器,每小时可分析100个以上的试样。
另外,用途广泛,在测定含量范围方面,既能用于微量(mg/l)和超微量(μg/l)的分析,又能用于基体组分含量的测定;在测定元素种类方面,约能直接测定70种元素,采用间接方法还可测定卤素、硫、氮等非金属元素,测试的种类几乎可以复盖元素周期表中70%的元素。
原子吸收法也存在一些缺点和不足:
(1)各元素的分析条件不相同,特别是使用的光源灯不同,不利于同时进行多种元素的测定。
(2)对于成分复杂的样品,干扰仍然比较严重。
(3)对某些高温元素如稀土元素钍、锆、铪、铌、钽、钨、铀、硼等的测定灵敏度较低。
(4)仪器比较复杂和价格较贵,不利于普及,目前国产仪器性能还不太过关。但价格比较便宜,一般比较容易普及。好的原子吸收仪是美国PE公司产品和日立Z-5000型,但是价格较贵,在现有条件下使许多实验室望尘莫及。
2.发射光谱分析法
发射光谱分析法,它包括三个最基本的过程:首先对被测物质提供发射光谱的条件,既依靠外加能源使之原子化和被激发;然后将激发态原子所发出的复合光分解为单色光形成光谱;最后对光谱进行检测。发射光谱分析的方法有五种,即①看谱分析法;②摄谱分析法;③光电直读光谱法;④火焰光度法;⑤感耦等离子体原子发射光谱法。
在上述五种发射光谱分析方法中,前三种方法本部门采用较少,这里不再赘述。在水、工、环系统主要应用的是火焰光度法和感耦等离子体原子发射光谱法。
火焰光度法的主要特点是以火焰为光源,将试样在火焰中原子化并激发后,再对发射光进行分光和检测,其测量方法是用光电转换元件将光信号转变为电信号而测量。这种方法由于仅使用火焰光源,提供的能量较低,故能分析的元素比较少,通常测定的对象是碱金属和部分碱土金属。一般测定水中K、Na、Ca、Sr等元素时,应用比较方便。
感耦等离子体原子发射光谱法是基于原子发射光谱原理的基础上,改进了光源条件,即在光源上引入了电感耦合等离子炬。电感耦合等离子体自60年代中期研制成功以来,与原子发射光谱相结合,以它优越的激发性能,良好的精密度,极低的检出限以及多元素同时快速测定等优点,已逢勃发展为无机成分分析的主要手段,已广泛应用于多种行业的科技领域。90年代初北京地质仪器厂在我国首次开发研制成功了WL-100系列单道扫描等离子体光亮计,它的主要技术指标基本达到了国内外同类仪器水平,第一台样机就在国土资源部矿泉水检测中心,已在日常使用中。
当然,国产仪器也有它一定的不足之处,就是电学部分还不太过关,耗气量大,少量样品测定时成本较高,适于批量生产。
3.原子荧光光谱法
能够产生荧光的物质可以是分子,也可以是原子。一般所说的荧光分析是指基于分子吸收的荧光现象,基于原子吸收而产生荧光的现象为原子荧光。原子荧光光谱法是60年代建立起来的,是近年来发展很快的一种微量分析方法。它是由基态原子吸收辐射被激发,然后去活化而发射出的荧光。其特点是灵敏度高(一般情况比原子吸收光谱法高),选择性好和用途广泛,特别是对环保监测尤为有用,我们这里主要用来测定汞、砷、硒等成分,使用起来也很方便。
4.电化学分析法
电化学分析是利用物质的电化学性质来测定物质组成的分析方法。电化学分析的主要内容包括:电导分析、电位法、电解法、库仑法、极谱法五种方法。在这些方法中我们目前通常采用以下几种方法:
(1)电导分析。本方法是应用两个相同的惰性电极,插入被分析溶液,在此电极上施加交流电压,测定其间的电导(电阻的倒数)。电导分析法最先应用于测定电解质溶液的溶度积,解离度和其它一些特性。由于溶液的导电性质取决于溶液中所有共存离子的导电性质的总和,所以这种分析方法不具专属性。对于复杂物质中各组份的分别测定受到限制。但电导法确属一种简便而且十分灵敏的分析方法,至今仍保留着在某些方面的应用,例如对水质纯度的检验和用做气相色谱的鉴定器等方面。
容量分析中,使用电导指示滴定终点的方法叫做“电导滴定法”。电导滴定法的准确度较高,并且能用于较简单混合物中各分量的测定,这种分析方法在实现容量分析的自动控制方面,有较好的用途。
(2)电位法。电极电位与溶液中电活性物质的活度有关,测量电极电位,并应用奈恩斯特方程计算被测物质的含量(如各种离子选择性电极的直接测定),或以电位作为容量分析的终点指示(称为电位滴定)。
电位分析所用到的各种电极,从用途上可以分为指示电极和参比电极。如氢电极、甘汞电极、银-氧化银电极常用做参比电极,还有些离子选择电极,如K+、Na+、Ag+、Ca2+、Pb2+、F2-、Cd2+、Br-、I-、Cn-、S2-、SCN-等离子都有选择电极出售,这些电极使用起来比较方便,特别是在野外或条件较差的小型实验室,用这些电极也可以解决许多离子成分的测定问题,还有PH值和EH值的测定更是所有检测水的方法中所普遍采用。
以指示剂变色判定容量分析的滴定终点,虽然方法简便易行,但也有一定的限制,对于不同化学反应采用不同指示剂,有时没有适合的指示剂可供应用;对于有色,混浊或具有荧光的溶液无法进行分析。电位滴定法可以弥补上述缺限,而且还可用于混合溶液中,进行连续滴鉴。使用电位突跃检测滴鉴终点,易于实现自动滴定。
(3)极谱分析法。极谱法是一种特殊的电解分析法,它的操作过程是在特定条件下进行电解的过程。这种方法发展很快,仪器设备便宜,容易推广,因此应用普遍,其主要特点如下:
第一,灵敏度高。经典极谱法一般可测量10-5mol/L的溶液,近代极谱法甚至可测量低至10-11mol/L的溶液。这对于痕量或超痕量元素测定有很重要的意义。
第二,准确度高。极谱的相对误差一般为1%~5%,这对于痕量分析方法来说,准确度是相当高的。同时极谱法的重现性很好,用同一溶液可以反复进行多次测定,也有利于得到准确结果。
第三,应用范围广。极谱法的应用范围十分广泛,就测定的元素而言,原则上几乎所有的元素都能够用极谱法直接地或间接地进行测鉴,在水质分析中如Fe、Ae、Ca、Pb、En、Cd、Cr、Co、Ni、Mo、Se、V、W等元素都可以采用极谱法进行测鉴。
第四,分析速度快,容易实现自动化。极谱法的测定工作,一般可在数分钟内完成。目前已经有自动化和微机化的极谱仪了,从仪器的调整、分析、直到最后的结果计算和显示(或记录)全部由微机控制,这样不但加快了分析速度,提高了分析的准确度,而且使用十分方便。
第五,极谱法的主要缺点是需要使用具有挥发性的有毒物质汞,在使用汞时必须注意汞的回收和保存。
5.色谱法
色谱法实质上是一种物理化学分离方法:即利用不同物质在两相(固定相和流动相)中具有不同的分配系数,当两相作相对运动时,这些物质在二相中反复多次分配,从而使各物质得到完全的分离。当这种分离技术应用于分析化学领域就是色谱分析。
现代的色谱法,比之早期己向前大大地发展了,它已成为分支很多,性能优越,用途广泛的一类重要的仪器分析方法。我们通常应用的是气相色谱,液相色谱和离子色谱法。
目前,气相色谱法主要应用于石油、化工、医药等工业生产部门从事气体分析及有机化合物的分析;随着环保事业的发展,气相色谱法在大气污染分析和水质分析中也正在发挥重要的作用。在环境地质研究中,我们主要应用气相色谱法测试水中的污染和有毒有害成分如:三氯甲烷、四氯化碳、有机磷(敌敌畏、乐果、甲拌磷、甲基对硫磷、对硫磷等)、有机氯(如六六六、滴滴涕)。分析上述项目时常用的检测器是氢焰离子检测器和电子捕获检测器。
高压液相色谱分析是在液体流动相色谱分离技术基础上发展起来的。在气相色谱的基础上,色谱理论得到了发展,同时出现了新的高效填充剂,发展了适合于液相色谱用的检测器和高压泵,使液相色谱技术有了新的突破,分析速度和分离效率大大提高,为了与经典液相色谱区别,这种新型液相色谱称为高压液相色谱。
液相色谱可以分析的项目很多,大部分都是高分子有机化合物,我们这里只开发了水中致癌物质苯并[a]芘在高压液相色谱上的分析方法。
离子色谱主要用于分析在溶液中能离解成正负离子的试样。这种仪器从理论上讲能测的离子成分很多,检测时需要的试样量也很小,但由于色谱柱内的填料为离子交换树脂,而且受树脂再生条件的影响,操作起来稳定性不好,也带来许多麻烦,一般不太受操作者欢迎。
6.同位素的测试
同位素水文地质学作为水文地质的一个新的分支,它的主要任务是研究地下水中同位素的组成、分布规律以及在各种自然物理化学过程中的分馏作用,并应用这些基本理论解决各种水文地质课题,如测定地下水的年龄、研究地下水的运移和水文地质过程的机理、查明地下水化学组份的来源、探讨地下水的成因等。随着同位素水文地质发展的需要,同位素测试技术有了很大的改进,测定精度也大大提高,现在能测的同位素有氚(3H)、碳-14(14C)、氧-18(15O)、氘(D)、硫-34(34S)和碳-13(13C),都有较详细的样品制备办法,测试技术主要采用了质谱分析法和液体闪烁计数法。
质谱分析是利用电磁学原理使离子在磁场的作用下,按照质荷比(M/e)进行分离,从而测定物质质量与含量的方法。目前世界上有几十种质谱仪,有的用来分析固体和不容易挥发的液体样品,有的用来分析气体和容易挥发的液体。质谱分析法不仅具有较高的绝对灵敏度,而且具有较高的相对灵敏度和测量精度。改变质谱仪的电磁参数,可以在短时间内分析多种组份,并且可以连续进样、连续分析,实现生产流程自动监制。但是与一般分析仪器相比,质谱仪结构复杂,价格昂贵、操作维护麻烦,所以不易推广和应用。
液体闪烁计数法也是测量放射性的一种主要方法,在弱β射线测量方面,例如3H(氚)和14C的测量,因灵敏度高,测量迅速、操作方便等优点,目前这种方法也一直被应用着。
3. 气相色谱法的分析方法
气相色谱法的分析方法分为以下几个步骤:
1、样品的来源和预处理方法
GC能直接分析的样品必须是气体或液体,固体样品在分析前应当溶解在适当的溶剂中,而且还要保证样品中不含GC不能分析的组分(如无机盐),可能会损坏色谱柱的组分。这样,我们在接到一个未知样品时,就必须了解的来源,从而估计样品可能含有的组分,以及样品的沸点范围。如能确认样品可直接分析。如果样品中有不能用GC直接分析的组分,或样品浓度太低,就必须进行必要的预处理,包括采用一些预分离手段,如各种萃取技术、浓缩和稀释方法、提纯方法等。
2、确定仪器配置
所谓仪器配置就是用于分析样品的方法采用什么进样装置、什么载气、什么色谱柱以及什么检测器。
3、确定初始操作条件
当样品准备好,且仪器配置确定之后,就可开始进行尝试性分离。这时要确定初始分离条件,主要包括进样量、进样口温度、检测器温度、色谱柱温度和载气流速。进样量要根据样品浓度、色谱柱容量和检测器灵敏度来确定。样品浓度不超过mg/mL时填充柱的进样量通常为1-5uL,而对于毛细管柱,若分流比为50:1时,进样量一般不超过2uL。进样口温度主要由样品的沸点范围决定,还要考虑色谱柱的使用温度。原则上讲,进样口温度高一些有利,一般要接近样品中沸点的组分的沸点,但要低于易分解温度。
4、分离条件优化
分离条件优化目的就是要在*短的分析时间内达到符合要求的分离结果。在改变柱温和载气流速也达不到基线分离的目的时,就应更换更长的色谱柱,甚至更换不同固定相的色谱柱,因为在GC中,色谱柱是分离成败的关键。
5、定性鉴定
所谓定性鉴定就是确定色谱峰的归属。对于简单的样品,可通过标准物质对照来定性。就是在相同的色谱条件下,分别注射标准样品和实际样品,根据保留值即可确定色谱图上哪个峰是要分析的组分。定性时必须注意,在同一色谱柱上,不同化合物可能有相同的保留值,所以,对未知样品的定性仅仅用一个保留数据是不够的,双柱或多柱保留指数定性是GC中较为可靠的方法,因为不同的化合物在不同的色谱柱上具有相同保留值的几率要小得多。
6、定量分析
要确定用什么定量方法来测定待测组分的含量。常用的色谱定量方法不外乎峰面积(峰高)百分比法、归一化法、内标法、外标法和标准加入法(又叫叠加法)。峰面积(峰高)百分比法*简单,但*不准确。只有样品由同系物组成、或者只是为了粗略地定量时该法才是可选择的。相比而言,内标法的定量精度,因为它是用相对于标准物(叫内标物)的响应值来定量的,而内标物要分别加到标准样品和未知样品中,这样就可抵消由于操作条件(包括进样量)的波动带来的误差。至于标准加入法,是在未知样品中定量加入待测物的标准品,然后根据峰面积(或峰高)的增加量来进行定量计算。其样品制备过程与内标法类似但计算原理则完全是来自外标法。标准加入法定量精度应该介于内标法和外标法之间。
7、方法的验证
所谓的方法验证,就是要证明所开发方法的实用性和可靠性。实用性一般指所用仪器配置是否全部可作为商品购得,样品处理方法是否简单易操作,分析时间是否合理,分析成本是否可被同行接受等。可靠性则包括定量的线性范围、检测限、方法回收率、重复性、重现性和准确度等。
4. 明辨真伪的激光分析术是什么
利用激光具有的瞬时能量大,方向性强、发散角小的特性,可以进行微米级的微区和小颗粒的特殊分析。
某海关有一商人,从国外带回一珠宝首饰,但放心不下是真是假,就请海关予以鉴定。海关分析人员首先用直径25微米小的激光束激发摄谱,然后以50微米与120微米的直径在同一区域连续进行激发摄谱,获得三种谱线。然后对样品进行分析。其结果为,第一条谱线显示有金、银;第二条谱线含有金、银、锗以及铜、锌;第三条谱线显示有少量的金、银、铑外,主要成份是大量的铜、锌。根据摄谱分析,结论是:这件珠宝首饰是由黄铜制成的假货。并分析造假者的手段是:先涂上铑层用于抗酸腐蚀,以对付珠宝商常用的贵金属划痕和酸蚀法检验,然后镀上约30微米厚的金银合金层。真相大白,商人在急呼“受骗上当”之后,拿着珠宝首饰左右查看,也没有发现分析过的痕迹。当向分析人员询问时,分析人员告诉他:“用激光分析方法检验珠宝,绝不损害其外观价值。这是因为激光分析点很小,留下的痕迹很小,肉眼难以发现,不会多于佩戴过程所引起的磨痕。”
某地曾发生一起撬开保险柜,盗走巨额现金一案。在群众的大力协助下,很快抓到了几个嫌疑犯,但每个人都矢口否认。经过搜查,从其中一个嫌疑犯家中的斧头上发现有几处油漆印子,并有三片很小的油漆末。公安人员想把这种油漆末和保险柜上的油漆层进行成分比较,以便确定是否属同一种油漆。若采用一般的分析方法,需要一定数量的样品,而现在只有用放大镜才能看得见的三片漆末。在这为难之时,激光分析显了神通。经过对油漆末的直接激发摄谱分析,结果证明两种油漆的成份完全一致,为破案提供了一个重要的参考证据。
由于现在的犯罪分子作案手段都比较狡猾,往往会破坏现场,消灭罪证,所以给侦破带来很大的麻烦。利用许多物质都可以激发出荧光的这一特性,公安人员经常将其用于现场勘查分析。由于受光源的局限,以往仅仅用于指纹检测等荧光特征比较明显的项目。而利用激光技术就可以对以前无法提取的痕迹进行勘验。例如,在许多情况下,血液潜迹所含的血量甚少,散射荧光的能力很弱,加之背底荧光的干扰,所以使用普通的方法来检测十分困难。1992年11月,我国某研究部门发表了一种利用激光激发来提取血液潜迹的方法:他们用自行配制的汞溴红试剂喷洒待检部位,然后再用氦离子激光束照射,使血迹的荧光强度明显提高,甚至可以用滤色片肉眼观察。用这种方法在化纤地毯、红色油漆地板、黑色棉布等载体上均取得了成功。尤其令人惊讶的是,即使用肥皂水洗过,仍然可以激发出令人满意的荧光潜影,使血迹显现。同理,采用这种方法对以往无法提取的指纹,也取得了很好的效果。这无疑为公安人员提供了一种制裁罪犯的得力手段。
美国芝加哥一名法官被控贪污,法庭下令其交出财务记录,他却将有关资料烧毁了。然而他并未逃脱法律的惩罚,原来是激光技术帮了大忙,美国税务局有一个科学签证实验室,专门研究对付财务犯罪的办法。其中之一就是可以在烧过的文件的灰迹中辨认出文字。过程是这样的:专家们先用特制的刀具,将成堆的纸灰一层层地分离,夹在玻璃片中。然后,逐张用紫外或红外激光照射,原来的字迹就会显露出来。在显露的同时,用摄影机拍摄下来,就可成为最为有力的法律证据。据报道,用激光技术可分辨出60多种不同的墨水字迹。当然,纸灰太碎或残缺太多,无论如何也是无法提取到可供辨认的笔迹的。
5. 色谱分析的定性和定量方法有哪些
气相色谱分析严格来讲是一种定量分析方法,如果不配置质谱仪等专用定性的仪器联胜,其本身并不能真正定性,因为气相色谱、液相色谱等色谱法本身的原理只是通过色谱柱将待测物质组份进行分离后再通过检测器进行检测,而且常用的fid,tcd,ecd,fpd等检测器本身并不能定性,只能进行相对定量检测计算;
之所以说气相色谱可以定性,那是是一种对照判断式定性,就是将通过在相同的色谱分析条件下在相同时间段内出现的峰认定为同一种物质。这种认定一般对已经物质的定性是准确的,但对未知物质和同分异构体是无法分别的;
气相色谱仪分析根据定量对照计算方法的不同分为:归一法,校正归一法,内标法,外标法等常用方法。
归一法:就是将所有峰数据的总数归一,根据各组份的峰面积在总面积中所占比例计算各组份的百分比,由于事实上检测器对不同的物质的响应因子并不相同,导致峰面积比在事实上并不能代表真实组份含量比,因此这是一种粗略的相对测控法,并不准确。常被用于工厂对已知组份生产过程的控制粗测,此时并不需要准确知道具体含量值,只需要知道比例范围是否发生变化。
6. 光谱定性分析的基本原理是什么
光谱定性分析的基本原理是:由于各种元素的原子结构不同,在光源的激发下,可以产生各自的特征谱线,其波长是由每种元素的原子性质决定的,具有特征性和唯一性,因此可以通过检查谱片上有无特征谱线的出现来确定该元素是否存在。
其优点是灵敏,迅速。历史上曾通过光谱分析发现了许多新元素,如铷,铯,氦等。
(6)摄谱分析的方法和技巧扩展阅读:
通过光谱的研究,人们可以得到原子、分子等的能级结构、电子的组态、分子的几何形状、化学键的性质、反应动力学等多方面物质结构的信息。与此同时,光谱学方法应用在获取物质组成方面的信息,为化学分析提供了多种重要的定性与定量的分析方法。
原子发射光谱即可依据某元素的特征波长判断是否为该元素,对于子吸收光谱由于通常是单元素分析,且光源即为待测元素灯,因此,一般不采用子吸收光谱来定性。
而分子光谱属于连续光谱,一般根据其光谱的形状以及某些征峰来定性,但由于分子光谱的形状除了与物质的分子本身结构有关,还受其它多个因素的影响,某些分子光谱,如紫外可见吸收光谱特征性不明显,单独用于定性往往有一定的困难。
7. 通常有哪几种色谱定性分析方法
色谱定性分析是确定色谱图上每个色谱峰所代表的物质组分及性质的分析方法。通常有:①利用保留值(描述色谱峰位置或相应体积值,在一定的固定相和操作条件下,任何物质都有其确定的保留值)特性定性;②结合质谱、红外光谱、紫外光谱和核磁共振等其他物理化学方法定性;③利用预处理或柱上处理等化学反应或物理吸附原理定性;④利用鉴定器对某类化合物的选择性(如火焰光度检测器判别含硫、磷化合物;氮磷检测器判别含磷、氮化合物)定性等。
8. 光谱定性分析
由于各种元素原子结构的不同,在光源的激发作用下,都可以产生特征的光谱,其波长是由每个元素的原子性质所决定的。如果某个样品经过激发、摄谱,在谱片上有几种元素的谱线出现,就证明该样品中含有这几种元素。这样的分析方法,就称为光谱定性分析。
试样中所含元素只要达到一定的含量,都可以有其特征谱线被摄谱记录在感光板上。摄谱法操作简单、耗费很低、快速,在几小时内可以将含有数十种元素的多个样品定性检出,是目前进行元素定性分析的最好方法。
7.3.2.1 元素的光谱分析灵敏度
光谱分析的灵敏度,有绝对灵敏度与相对灵敏度两种表示方法。所谓绝对灵敏度,就是能检出某元素所需要的该元素的最少的质量;相对灵敏度则表示能检出的某元素在样品中最小的质量分数。
不同元素的光谱分析绝对灵敏度与相对灵敏度与下列因素有关:
1)分析元素是否易于激发,其辐射的光谱有没有足够的强度。
2)元素的电离电位的大小。一般来说,电离电位大的元素,其分析灵敏度低;而电离电位小的元素,其分析灵敏度高。
3)光谱定性分析方法、所用摄谱仪、光源、样品引入分析间隙的方法及其他实验条件等因素对分析灵敏度都有一定的影响。
光谱定性分析中必须注意的是,在某个样品的光谱中没有某种元素的谱线,并不表示在此样品中该元素绝对不存在,而仅仅表示该元素的含量低于检测方法的灵敏度。要确定某一元素在样品中是否存在,必须在该样品的光谱中辨认出其分析线,而谱线能被辨认出的前提是谱线加背景的总强度在一定程度上要超过背景的强度。
背景的来源主要是光学仪器内部的散射光、样品或碳的颗粒在高温下发射的连续光谱及分子光谱。背景太大,使谱线难以辨认;背景太小,甚至没有背景,含量低的元素的谱线又不出现。所以,在光谱定性分析中应当保持足够的曝光量,使背景刚刚出现为最好。
应用光谱方法,在理论上能对所有元素进行定性分析,但实际上应用直流电弧作为激发光源,一般只能分析 Ag、Al、As、Au、B、Ba、Be、Bi、C、Ca、Cd、Ce、Co、Cr、Cs、Cu、Dy、Er、Eu、F、Fe、Ga、Ge、Hf、Hg、Ho、In、Ir、K、La、Li、Lu、Mg、Mn、Mo、Na、Nb、Nd、Ni、Os、P、Pb、Pd、Pr、Pt、Ra、Rb、Re、Rh、Ru、Sb、Sc、Si、Sm、Sn、Sr、Ta、Tb、Te、Tn、Ti、Tl、Tm、U、V、W、Y、Yb、Zn、Zr等元素。
用交流电弧及高压电火花也可进行以上元素的光谱定性分析。
7.3.2.2 摄谱前的准备
(1)电极
光谱分析金属或合金样品时,常以样品本身作为电极,对于粉末或溶液状态的样品,经常用碳或石墨棒作为电极。进行光谱定性分析,最方便的就是使用石墨电极小孔法。
在光谱分析工作中经常使用光谱纯石墨电极。在进行光谱定性工作以前,对于不同来源的石墨电极中残存有哪些杂质,应先进行光谱定性检查。
(2)摄谱仪的选择
定性分析选用的摄谱仪,最理想的情况是样品中所有需要分析元素的分析线都能在一张谱片上出现。当然还要求摄谱仪有足够的分辨率,使相邻的谱线也能够分开。如果样品中含有元素较多,所摄光谱十分复杂,就要选用色散率足够大的大型摄谱仪。但是,大型摄谱仪的主要缺点是一次摄谱只能摄取较小的波长范围,一个样品必须摄谱多次,方能包括分析所需的全部波长范围。如果样品成分很简单,也可用较小色散率的仪器。
(3)光源的选择
在光谱定性分析工作中,最常用的是直流电弧光源,采用阳极激发,可以激发约70种元素,且灵敏度高。
用石墨电极小孔法进行定性分析,直流电弧在燃烧时,每个元素都将从电极孔穴中按顺序蒸发到弧焰中去,这种现象叫元素的选择激发或分馏。虽然这种现象在其他激发光源中也存在,但在直流电弧的阳极激发中更为明显。定性分析中恰好可以利用直流电弧这一特点,将易挥发元素和难挥发元素在燃弧的不同时间曝光而分别摄谱,避免互相干扰,以便于检测。
为了降低背景、获得最大的灵敏度,应注意在使用石墨电极小孔法进行定性分析时,电弧电流愈大,产生氰带愈强烈,背景愈大;同时,如石墨电极直径愈大,电极壁愈厚,以及样品中混合石墨粉较多时,则在燃弧过程中消耗碳较多,从而引起背景值增大。
7.3.2.3 定性分析中的注意事项
光谱定性分析,要求能够正确地确定被分析样品中含有哪些元素,因此在操作中必须严加注意,应避免样品被污染或由于喷溅而损失。
(1)必须严格防止样品被污染
在定性分析过程中,必须特别仔细,避免将其他元素引入弧焰。因此,必须保持清洁的实验室环境,每步操作都要非常小心(如称样、装电极等)。在更换电极时,应先更换上电极,再更换下电极,以防止互相污染。已经使用过的电极,不宜重复使用。必须加入的石墨粉或其他试剂等,其纯度需满足一定的要求。
(2)注意避免样品喷溅造成的损失
在摄谱过程中,往往由于样品的喷溅,致使摄取的光谱中的谱线黑度大大降低,甚至使灵敏度不能满足低含量元素的要求,从而获得错误的分析结果。
1)当样品潮湿或含有易挥发的有机物时,装在电极小孔中虽经压紧,但由于电极夹本身的热传导作用,有时粉末状样品仍会形成一圆柱体,高出电极孔。但只要将电极轻轻振动,使其恢复原状,这时再燃弧,即可避免样品的损失。
2)一般铁矿石在燃弧后容易形成三氧化二铁细小颗粒而如火星飞溅。这时应以低电流燃弧,在加大电流摄取第二条光谱时,电流不要升得太高,一般控制在7A左右为宜,并缩小电极间隙,可以减少飞溅损失。用石墨粉与样品1∶1 稀释,亦可防止飞溅现象发生。有的样品在燃弧后不飞溅,但却成为一个大熔珠暴露在电极孔上,并且急剧旋转,这时应加大电流至15 A以上,使熔珠沾在电极上,避免其滚落下来造成损失。
3)当样品中含有大量铝或钙的氧化物时,在燃弧过程中会形成柱状白色固体,挥发很慢,当电极壁已烧光时,样品仍成柱状存在,很容易掉下来。发现这种情况,应及早加大电流,使两个电极迅速靠近,几乎接触,使白色物熔融,促使样品尽快蒸发,或在电极壁烧光前切断电流,将白色物移至新电极上继续摄谱,可以避免损失。
7.3.2.4 谱线和识谱
(1)元素的灵敏线、最后线和分析线
原子发射光谱是原子结构的反映,结构越复杂,光谱也越复杂,谱线就越多。即使是最简单元素(如氢),其原子谱线也不少;对于过渡元素、稀土元素,光谱就更复杂,可以有上千条谱线。同一元素的这些谱线,由于激发能、跃迁概率等各方面的原因,其强度也是不同的,即灵敏度也是不一样的。在进行定性分析时,不可能也不需要对某一元素的所有谱线进行鉴别,而只需检测出几条合适的谱线就可以了。一般说来,若要确定试样中某元素的存在,只需找出该元素两条以上的灵敏线或最后线即可。元素的灵敏线一般是指一些激发电位低、强度大的谱线,多是共振线。元素谱线的强度随其含量的降低而减弱,当样品中元素的含量逐渐减少时,一些较不灵敏的谱线必然因灵敏度不够而逐渐消失,当元素含量减至很小,最后仍然观察到的少数几条谱线,称为元素的最后线。最后线一般是最灵敏线。光谱定性分析就是根据灵敏线或最后线来判断元素的存在,所以它们还被称为分析线。
在《光谱线波长表》和一些化学、物理手册中,都可以查到各元素的最后线或灵敏线。在摄取的光谱中,逐条检查最后线是光谱定性分析工作的基本方法。但当某一最后线在光谱中不能找到时,应考虑两种可能,即:①样品中无此元素;②此元素含量在所用光源激发条件及摄谱条件所能达到的灵敏度以下。
(2)识谱
识谱就是观察摄取到的样品的光谱,辨认谱线的波长,从而判断样品究竟由哪些元素组成。通常利用元素的最后线进行判断。当样品中元素含量较高时,也可以利用元素的特征谱线组进行判断。
定性分析的方法主要有标准试样比较法和铁光谱比较法。
A.标准试样比较法
将欲检出元素的物质或纯化合物与未知试样在相同条件下并列摄谱于同一块感光板上。显影、定影后在映谱仪上对照检查两列光谱,以确定未知试样中某元素是否存在。此法多用于分析不常遇到的元素。
B.铁光谱比较法
此法是以铁的光谱为参比,通过比较光谱的方法检测试样的谱线(图7.7)。由于铁元素的光谱非常丰富,在210~660nm范围内有几千条谱线,谱线间相距很近、分布均匀,并且铁元素的谱线波长均已准确测定,在各个波段都有一些易于记忆的特征谱线,所以是很好的标准波长标尺。实际摄得的光谱图放大20倍后,在不同波段的铁光谱图上方,准确标绘上67种元素的主要光谱线,即构成“标准光谱图”。在实际分析时,将试样与纯铁在完全相同条件下与摄谱并列。摄得的谱片置于映谱仪上,谱片也放大20倍,再与标准光谱图比较。当两个谱图上的铁光谱完全对准重叠后,检查元素谱线,如果试样中的某谱线也与标准谱图中标绘的某元素谱线对准重叠,即为该元素的谱线。铁光谱比较法可同时进行多元素的定性测定。
图7.7 元素标准光谱图
此外,定性分析的方法还有波长测量法,该法在比长仪中进行,分别测量未知波长谱线到两条已知波长谱线(一般用铁谱线)之间的距离,然后按线性比例内插法求出未知谱线的波长,再从波长表中查得该波长属于何种元素的谱线。
9. 色谱如何分析
色谱分析是指按物质在固定相与流动相间分配系数的差别而进行分离、分析的方法。其按流动相的分子聚集状态可分为液相色谱、气相色谱及超临界流体色谱法等。按分离原理可分为吸附、分配、空间排斥、离子交换、亲合及手性色谱法等诸多类别。按操作原理可分为柱色谱法及平板色谱法等。色谱法已成为应用最广、药典收载最多的一类分析方法。色谱分析有两个要素——流动相和固定相。在流动相从固定相的一端流到另一端的过程中,加在固定相起始端的溶质随流动相流动,并在流动相和固定相之间来回转移。不同的溶质与这两相的亲和力大小不同,溶质的移动速度也不同,因而得到分离。固定相一般是固体,也可以是固体上附着液体;流动相是液体或气体。
色谱分析具有很多优点:分离效果好,设备简单,操作方便,条件较温和,方法多样,能适应不同的需要。其缺点主要是:处理量小,周期长,不能连续操作;有的层析介质价格昂贵,有时找不到合适的介质。
色谱分析(层析)有各种类型。按照固定相使用的形式,可分为柱层析、纸层析、薄层层析。按照溶质的展开方式,可分为前沿层析、置换层析、洗脱层析。按照流动相的物理状态,可分为气相层析与液相层析,以及超临界流体层析等。按照分离机理,可分为分配层析、吸附层析、离子交换层析、排阻层析、疏水层析、离子对层析、亲和层析、键合相层析。按照固定相和流动相的相对极性,可分为正相层析与反相层析。
在层操作时,单组分洗脱剂对多组分样品的洗脱效果常常不够满意。不是先洗出的组分混杂在一起,就是后洗出的组分出峰时间长,峰宽增加。为了改善分辨率、改变峰形或缩短层析时间,有时需要在层析过程中改变流动相的组成(pH、离子强度)。分阶段改变流动相的组成,流动相的组成呈阶梯状变化,称为阶段洗脱。逐渐改变流动相的组成,流动相的组成呈曲线或直线状变化,称为梯度洗脱。流动相形成梯度可用梯度洗脱仪。高效液相层析仪中常用几个泵分别输送不同的溶剂,控制各个泵的流量,就能控制洗脱剂的组成。
改善层析分离效果的方法有:改变流动相的组成或pH,改变固定相,改变温度等。在液相层析中以改变流动相的组成最重要。其余要注意的条件有:柱要细而长;分离介质填充要紧密、均匀,颗粒细密、大小分布均匀;操作温度保持恒定;样品用量少;流速慢而恒定。[