导航:首页 > 研究方法 > 地球内部的研究方法有哪些

地球内部的研究方法有哪些

发布时间:2022-10-16 21:57:53

㈠ 科学家是怎样研究地球内部的

地震波,然后通过各种反算法计算的;也有测量地球重力梯度、地磁、地电、地温等地球物理性质的,还有使用一些地球化学方法的。

㈡ 地球科学的研究方法

由于地球科学以庞大的地球作为研究对象,并具有很强的实践性和应用性,所以它的研究方法与其他自然科学有较大的差异。它既要借助于数学、物理、化学、生物学及天文学的一些研究方法,同时又有自己的特殊性。

地球科学的研究方法与其研究对象的特点有关,地球作为其研究对象主要有以下特点:

(1)空间的广泛性与微观性

地球是一个庞大的物体,其周长超过4×104 km,表面积超过5×108 km2。因此,无论是研究大气圈、水圈、生物圈以及固体地球,其空间都是十分广大的。这样一个巨大的空间及物体本身由不同尺度或规模的空间和物质体所组成。因此,要研究庞大的地球,就必须研究不同尺度或规模的空间及其物质体,特别是要注重研究微观的空间和物质特征,如不同学科都要研究其相应对象的化学成分、化学元素的特性等。地质学要研究矿物晶体结构,水文学和海洋学要研究水质点的运动等,气象学要研究气体分子的活动等。而且,整个地球系统是一个开放的动力系统,其与宇宙环境(地-月系、太阳系及银河系等)之间总是不断地进行着物质、能量的交换;地球系统中各种自然现象、作用过程的发生、发展和演化与其所处的宇宙环境是分不开的。因此,现代地球科学已开始充分重视宇宙环境对地球系统的影响研究;也就是说研究的空间范围还要超越地球系统,涉及更加宏观的宇宙环境(图0-1)。只有把不同尺度的研究结合起来,把宏观和微观结合起来,才能获得正确的和规律性的认识。

(2)整体性(或系统性)与分异性(或差异性、多元性)

整个地球是一个有机的整体,是由不同层次的、具有紧密联系的子系统组成的统一系统;不仅在空间上地球的内部圈层、外部圈层都表现为连续的整体性,而且地球的各内部圈层之间、内部与外部圈层之间、各外部圈层之间也都是相互作用、相互影响、相互渗透的,某一个圈层或某一个部分的运动与变化,都会不同程度地影响其他部分甚至其他圈层的变化,这也充分表现了它们的有机整体性。然而,地球也是一个非均质体,它的不同的组成部分(或子系统)无论在物质状态还是运动和演变特点上都具有一定的差异,表现出分异性或多元性。例如,不同地区的地理环境、气候环境具有明显的差异,不同地区的水文条件也具有明显差异。固体地球特别是地壳的不同地区或不同组成部分的差异性更为显着,如大陆、海洋、山系、平原等。这种差异性不仅表现在空间和物质组成上,也表现在它们的运动、变化与形成、发展上。

(3)时间的漫长性与瞬间性

据科学测算,目前可追溯的地球年龄长达46亿年。在这漫长的时间里,地球上曾发生过许多重要的自然事件,诸如海陆变迁、山脉形成、生物进化等。这些事件的发生过程多数是极其缓慢的,往往要经过数百万年甚至数千万年才能完成。短暂的人生很难目睹这些事件发生的全过程,而只能观察到事件完成后留下来的结果以及正在发生的事件的某一阶段的情况。但是,有些事件的发生可以在很短的时间内完成。例如,天气现象往往表现为几天、几小时甚至更短的时间,地震、火山爆发等也都发生在极短的时间内。

(4)自然过程的复杂性与有序性

地球演化至今经历了复杂的过程。其中既有物理变化,也有化学变化;既有地表常温、常压状态下的作用过程,也有地下深处高温、高压状态下的作用过程。此外,各种自然过程还会受地区性条件的影响而具有地区的差异性。所以,自然过程是极其复杂的,而且这种过程由于其漫长性和不可逆性,依靠人类的力量很难完全重塑和再现其过程,因而更增添了地球科学研究工作的艰巨性。但是,这些复杂的自然过程并不是杂乱无章的,它们都具有其发生、发展的条件和过程,都具有一定的规律可循,这也正是地球科学工作者的重要研究任务。

研究对象的特点决定了地球科学具有一些独特的研究方法,并且随着科学技术的发展和进步,地球科学的研究方法也会得到不断的补充和推进。现择要简述研究方法如下:

(1)野外调查

空间的广泛性决定了地球科学工作者首先必须到野外去观察自然界,把自然界当做天然的实验室进行研究,而不可能把庞大而复杂的大自然搬到室内来进行研究。野外调查是地球科学工作最基本和最重要的环节,它能获取所研究对象的第一手资料。例如野外地质调查、水系与水文状态调查、自然地理调查、土壤调查、资源与环境调查等。只有有针对性地到现场去认真、细致地收集原始资料,才能为正确地解决地球科学问题提供可能。

(2)仪器观测

仪器观测是地球科学用来获取研究对象的定性和定量资料的重要手段,通过仪器观测可以了解到研究对象的各种物理、化学性质,参量的静态特征和动态变化,为科学的分析、推理提供依据。仪器观测为地球的研究步入科学的轨道提供了条件,例如,16~17世纪气温、气压、湿度等气象仪器的发明与创造,使气象学逐渐发展成为一门完善的学科。现代高精度的常规与高空气象仪器观测仍然是气象学的重要研究基础。同样,仪器观测在水文学、海洋学研究中也占有特殊重要的位置。仪器观测对于现代地球物理学、地质学的地球内部研究,对于土壤学的研究特别是对于环境地学中的各种监测与评价,都具有极其重要的作用。在现场进行的仪器观测也属于第一手资料,除了科学工作者根据不同的研究目的在现场进行各种观测外,人们还常常设立各种定点观测台站,如气象站、水文站、地震台站、环境监测站等,并通过大量的台站建立观测网,以便获得系统的观测资料。

(3)大地测量

这是地球科学中既古老而又发展迅速的一种重要研究方法,它对推动地球科学的发展起了重要作用。早在古埃及和古中国的时代,人们就借助于步测及其他一些简单的测量工具,进行土地规划、地形与地理制图、水利与工程建设等。到了近代,随着测量仪器的进步,逐渐发展成为传统的大地水准测量和大地三角测量。20世纪中叶发展起来的海洋测深技术(声呐)对于海洋学的发展和地质学的革命曾起了决定性的作用。近些年发展起来的激光测距、全球定位系统(GPS)又给地球科学带来了深刻影响。大地测量的方法对于地理学、地质学、海洋学、水文学及土壤学等的研究十分重要。

(4)航空、航天和遥感技术

现代航空、航天和遥感技术极大地推动了地球科学的发展,成为现代地球科学不可缺少或不可忽视的重要研究方法。由于地球的空间广大,要在短时间内获取大区域的资料,特别是大区域的动态变化情况,就必须充分利用航空、航天和遥感技术,如卫星云图、卫星遥感影像、航空照片等。航空、航天和遥感技术对现代气象学的发展和进步起了决定性作用,成为其重要支柱。它们也是现代海洋学、地理学的主要研究手段,而且对于现代地质学、土壤学、水文学、环境地学等也发挥着重要作用。

(5)实验室分析、测试与科学实验

这是地球科学中各门学科均普遍采用的研究方法,主要是从研究对象中取得所需的各种样品或标本,然后在实验室进行分析、测试,以便获取物质成分、结构、物理与化学性质以及形成历史等方面的定性和定量资料,并通过科学实验分析推断其形成、演变过程和发展趋势等。随着科学的发展,地球科学中的实验科学已有相当的进步。但由于自然过程的影响因素复杂,加之时间的漫长性与空间的广泛性以及现代实验技术水平的限制,在地球科学中有时很难进行与自然界一致的真实实验。因此,地球科学上常采取简化影响因素,创造一些特定的物理、化学环境,模拟自然现象的成因、过程和发展规律,这种方法称为模拟实验。模拟实验只能是近似的,实验结果往往与自然过程有一定差距,但它在再造自然现象的过程、验证和探索地球科学规律方面发挥着重要作用。

(6)历史比较法

这是地质学最基本的方法论。时间的漫长性决定了地质学必须用历史的、辩证的方法来进行研究。虽然人类不可能目睹地质事件发生的全过程,但是,可以通过各种地质事件遗留下来的地质现象与结果,利用现今地质作用的规律,反推古代地质事件发生的条件、过程及其特点,这就是所谓的“历史比较法”(或称“将今论古”“现实主义原则”)的原理。这一原理是由英国地质学家莱伊尔(C.Lyell,1791~1875年,现代地质学的创立者)在赫顿(J.Hutton,1726~1797年,苏格兰地质学家,被誉为现代地质学之父)的均变论学说的基础上提出来的(图0-2,图0-3)。莱伊尔明确指出:“现在是了解过去的钥匙。”例如,现代珊瑚只生活在温暖、平静、水质清洁的浅海环境中,如果在古代形成的岩石中发现有珊瑚化石,便可推断这些岩石也是在古代温暖、清洁的浅海环境中形成的(图0-4);又如,现在的火山喷发能形成一种特殊的岩石——火山岩,如果在一个地区发现有古代火山岩存在,我们就可以推断当时这一地区曾发生过火山喷发作用,等等。历史比较法是一种研究地球发展历史的分析推理方法,它的提出,对现代地质学的发展起到了重要的促进作用。

图0-2 英国地质学家莱伊尔

(C.Lyell,1791~1875年)

图0-3 苏格兰地质学家赫顿

(J.Hutton,1726~1797年)

图0-4 生活在温暖、清洁浅海中的珊瑚

a—现代珊瑚;b—2亿多年前的珊瑚化石

这一原理的理论基础是“均变论”。均变论认为,在漫长的地质历史过程中,地球的演变总是以渐进的方式持续地进行,无论是过去还是现在,其方式和结果都是一致的。但是,现代地质学的研究证明,均变论的观点是片面和机械的。地球演变的过程是不可逆的,现在并不是过去的简单重复,而是既具有相似性,又具有前进性。例如,地质学的多方面研究揭示,在地球演变过程中,地表大气圈、水圈、生物圈的组成、数量、温压以及地球或地壳内部的结构、构造等特征都在发生不断的变化,与现代的状况存在不同程度的差异,这些必然会导致当时发生地质作用的方式与过程具有一系列与今天不同的特点。地球演变的过程也并不总是以渐进、均变的形式进行,而是在均变的过程中存在着一些短暂的、剧烈的激变过程。例如,在岩层中常常发现其物质组成及结构构造发生突然性的变化;在古生物演化中也常常发现大量的生物种属在短期内突然绝灭的现象,如6500万年前后恐龙全部迅速绝灭等。所以整个地球的发展过程应是一个渐变—激变—渐变的前进式往复发展过程,这也符合量变—质变—量变的哲学规律。

因此,在运用历史比较法时,必须用历史的、辩证的、发展的思想作指导,而不是简单地、机械地“将今论古”,这样才能得出正确的结论。地质学的“将今论古”分析方法,实际上对于地球科学中的地球物理学、地球化学、地理学、气象学、水文学、海洋学、土壤学、环境地学等学科的研究均具有重要的借鉴意义。

(7)综合分析

自然过程的复杂性和不可逆性决定了地球科学必须采用综合分析的研究方法。在漫长的地球演化过程中,不同时期、不同方式(物理、化学、生物等)、不同环境(地表、地下、空中等)的自然作用给我们留下的是一幅错综复杂的结果图案。要根据这一图案恢复和解析自然界发展的过程,就必须利用多学科的原理和方法,结合复杂的影响因素,进行综合分析。这一点与数学、物理、化学等学科利用单纯的推导、实验等方法进行研究是大不一样的。例如,在地质学中,由于过程和影响因素很复杂,根据某些个别特征,利用单学科的原理和方法,往往会得出片面甚至错误的结论,这就是在地质学研究中经常碰到的“多解性”或“不确定性”问题。所以,只有在综合各方面研究的基础上,才能得出统一的、最合乎实际情况的结论。

(8)计算机技术应用

有人说20世纪后半叶以来,人类社会已步入计算机的时代,计算机技术的应用已给各门自然科学带来了深刻的影响和革命性的变化。对地球科学也是一样,例如,在现代气象学、地理学、地质学、地球物理学、海洋学、环境地学等领域中,计算机技术已发挥出巨大的作用,成为不可缺少的研究手段和方法。而且计算机技术正在向地球科学的各个领域渗透。计算机技术的应用,为解决地球科学的研究对象空间广阔、观测处理资料量大、模拟形成演变过程复杂等问题带来了无限的前景。因此,要想提高地球科学的研究水平,必须充分地重视、加强和进一步开拓计算机技术在地学中的应用。

20世纪末期开始在全球范围内广泛兴起的“数字地球”(Digital Earth)计划或“数字地球学”研究正是现代计算机技术、信息科学与地球科学相结合的产物。“数字地球”主要是探讨运用现代计算机技术、信息科学对整个地球系统进行全方位的定量化、数字化描述的方法,建立相关的“数字地球”资源平台,并服务于地球科学的研究、应用。因此,“数字地球”实质上是地球系统的一种数字化的表示形式,其基本的理论支撑主要包括相互联系的两个方面,即与地球科学有关的理论以及与数字化技术有关的理论。比“数字地球”稍早一些兴起的“地理信息系统(GIS)”的成功开发与广泛应用,可以说为推动“数字地球”的兴起与发展奠定了良好的基础;但“数字地球”将涵盖地球科学的所有研究分支学科或领域(而不仅仅局限于地理学),其涉及的科学内容与数据量是“地理信息系统”所无法比拟的。1998年1月,美国前副总统戈尔在“开放地理信息系统协议(Open GIS Consortium)”年会上首次提出“数字地球”的概念,认为“数字地球”是指一个以地球坐标为依据的、具有多分辨率的海量数据和多维显示的虚拟系统。数字地球的概念一经提出便立刻引起了世界范围的广泛关注,并取得了快速发展。数字地球的研究和实现具有十分广泛的应用前景,如资源与环境的监测与管理,气候和各种自然灾害的预测、预报与防治,土地利用与各种生产、生活的规划及一些危机事件的处理等;它还为地球科学的教育和多学科的研究工作提供了极好的资源平台,特别是为地球系统科学的层圈相互作用研究、全球变化研究及人类可持续发展研究创造了有利条件。

地球科学研究的工作方法通常具有下列程序:

(1)资料收集

根据所要研究的课题和所要解决的问题,尽可能详尽、客观和系统地收集各种有关的数据、样品和其他资料。资料的来源包括对研究区详细的野外调查、仪器观测和收集、分析已有的各种资料和成果等。

(2)归纳、综合和推论

对所收集的资料进行加工整理、归纳、综合,并利用地球科学的研究方法和原理,作出符合客观实际的推论。

(3)推论的验证

通过生产实践或科学实验来证实或检验推论是否正确,并在实践的过程中不断地修正错误,提高认识,总结规律。

地球科学是一门实践性很强的科学。人们通过不断地科学实践,逐渐形成了若干假说和学说。假说是根据某些客观现象归纳得出的结论,它有待进一步验证;而学说则是经过了一定的实践检验、在一定的学术领域中形成的理论或主张。假说和学说对推动地球科学的发展起着重要的作用,它们为探索地球科学的客观规律指出了方向,对实践起着一定的指导作用,同时在实践中不断得到检验、补充和修正,使其日趋完善。当然,有些假说和学说也可能在实践中被抛弃或否定。

㈢ 人们可以利用什么来研究地球内部

人类利用浅源地震所发出的地震波研究地球内部结构
因浅源地震波能量大,传播距离远,在地球对面如西半球的浅源地震波可被我们接收到。根据地震波速的变化就可知道地球内部物质的密度、弹性模量,等。

地震波分为横波和纵波,
1、纵波的传播速度较快(约9——12千米/秒),横波传播速度较慢(6——8千米/秒)
2、横波和纵波的传播速度都随通过物质的性质不同而发生改变。
3、横波只能在固体物质里传播,纵波可在固、液、气体里传播。
原因是在液体和气体里,切变莫量为零,横波不能通过,

v2=(υ+4μ/3)÷ρ
v2=μ /ρ
2是指数

其中第一道是纵波波速,第二道是横波波速。ρ为物质密度,υ和μ为物质弹性模量(υ为体变模量,μ为切变模量)。

根据地震波的这些特点,可在地震或人工地震中测量纵、横波的传播时间差及收到纵、横波的情况来调查地球内部结构。
参考资料:《普通地质学》杨伦.中国地质大学出版社

㈣ 地球科学的研究方法有哪些

地球科学的研究方法:

一是地球系统观研究 ,在全球尺度上研究地球系统的各组成 (岩石圈、水圈、气圈和生物圈 )的相互作用及其运行机制和演化。

二是地球复杂性研究 ,研究地球系统的开放性、多层次时空结构、不稳定性、不平衡性和不均一性 ,研究地球系统相互作用的多因素和多样性以及它们之间的复杂的相互作用 ,不同组成、不同层次、不同作用的相互作用 ,以及作用过程和系统、子系统的整体行为和演化的非线性和不可逆性 。

三是跨学科综合研究 ,在地球科学研究中 ,多学科研究 ,特别是跨学科研究已经成为不可逆转的趋势 ,并成为主要研究方式。

如何利用磁法物探的方法探究地球内部

利用磁法物探的方法探究地球内部:利用浅层地震波。

大而浅的地震能量的传输距离在地球对面的浅层地震波,如我们收到西半球。可以知道地球的内部,弹性模量,和其他的变化,在地震速度的材料密度。基地的地震波,地震或人工地震波传播时间测量纵向和剪切和接收纵波,以研究地球的内部结构的这些特点。

分类

地球物理勘探常利用的岩石物理性质有:密度、磁导率、电导率、弹性、热导率、放射性。与此相应的勘探方法有:重力勘探、磁法勘探、电法勘探、地震勘探、地温法勘探、核法勘探。从测量所在的空间位置和区域的不同又可以划分为:地面地球物理勘探、航空地球物理勘探、海洋地球物理勘探、钻孔地球物理勘探等。

㈥ 人类利用什么对地球内部情况探索的

声波 或者是钻井

㈦ 人类对地球内部的研究主要是什么

地球内部结构是指地球内部的分层结构。今天探测器可以遨游太阳系外层空间,但对人类脚下的地球内部却鞭长莫及。目前世界上最深的钻孔也不过12公里,连地壳都没有穿透。科学家只能通过研究地震波、地磁波和火山爆发来提示地球内部的秘密。一般认为地球内部有三个同心球层:地核、地幔和地壳。

地壳是地球的表面层,也是人类生存和从事各种生产活动的场所。地壳实际上是由多组断裂的,很多大小不等的块体组成的,它的外部呈现出高低起伏的形态,因而地壳的厚度并不均匀:大陆下的地壳平均厚度约35公里,我国青藏高原的地壳厚度达65公里以上;海洋下的地壳厚度仅约5~10公里;整个地壳的平均厚度约15公里,这与地球平均半径6371公里相比,仅是薄薄的一层。

地壳上层为花岗岩层,主要由硅-铝氧化物构成;下层为玄武岩层,主要由硅-镁氧化物构成。理论上认为过地壳内的温度和压力随深度增加,每深入100米温度升高1℃。近年的钻探结果表明,在深达3公里以上时,每深入100米温度升高2.5℃,到11公里深处温度已达200℃。

目前所知地壳岩石的年龄绝大多数小于20多亿年,即使是最古老的石头 丹麦格陵兰的岩石也只有39亿年;而天文学家考证地球大约已有46亿年的历史,这说明地球壳层的岩石并非地球的原始壳层,是以后由地球内部的物质通过火山活动和造山活动构成的。

㈧ 地球内部的结构是怎么发现的

地球内部的结构发现:地球内部的圈层结构是通过对地震波的研究,发现的地震波在地球内部的传播有两个不连续面,分别是莫霍界面和古登堡界面一,这两个界面为界限,把地球内部分为地壳地幔地核。

真正的地质结构的解释是在1910年的时候,由前南斯拉夫地震学家莫霍洛维奇提出来的。他在自己的研究当中,在我们的地表下方的2900公里深处,竟然还存在着一个界面,可以把我们的地球分为三个部分。这就是着名的古城堡界面,让我们的地球分成了地壳,地幔和地核。

地球组成

三个同心球层:地核、地幔和地壳。地球是太阳系从内到外的第三颗行星,也是太阳系中直径、质量和密度最大的类地行星。它也经常被称作世界。英语的地球Earth一词来自于古英语及日耳曼语。地球已有44~46亿岁,有一颗天然卫星——月球围绕着地球以27.3天的周期旋转,而地球以23h56min4s(接近于一个太阳日24h)的周期自转并且以一年的周期绕太阳公转。

㈨ 我们可以用哪些方法对地球的内部结构进行探索研究

主要是能够通过一些科技手段,比如说是钻探之类的。

㈩ 人类主要用什么方法开探测地球的内部

从外部现象,推理内部构造。1)火山喷发,说明地球内部很热。2)地球的磁场。说明内部有铁3)地球的总重量可以通过地球围绕太阳的运转计算出来。地球的体积也可以计算出来,这样地球的比重就出来了,通过研究比重,地球比重数值接近的物质比重,是地球内部物质。结果是岩石的,这样地球内部就是液态铁核心+液态岩浆+底壳3部分组成。4)通过地球火山研究和地质勘探,来证明这个理论。结果是符合的,因此目前认为地球内部结构就是这样了。

阅读全文

与地球内部的研究方法有哪些相关的资料

热点内容
婴儿拉肚子的鉴别方法 浏览:260
如何培养正气的方法 浏览:564
oppo的ip地址在哪里设置方法 浏览:882
思维方法特点是什么 浏览:9
简单万用表使用方法完整视频教程 浏览:863
儿童痣治疗方法 浏览:487
研究方法调查问卷教学 浏览:399
fema安全分析方法 浏览:306
孩子快速入睡的方法 浏览:798
搜派风水机使用方法 浏览:695
猪肉价格下跌的解决方法 浏览:936
泉州学唱歌技巧和发声方法 浏览:964
神经源性膀胱工伤治疗方法 浏览:967
如何选择设计特殊杂质检查方法 浏览:15
电缆线接线方法视频 浏览:777
湖南烟熏肉食用方法 浏览:313
钓具的连接方法 浏览:135
细胞增生的治疗方法 浏览:834
下列处理方法不正确的是 浏览:168
舒适进入安装方法 浏览:226