❶ 关于pytorch线性回归问题有什么办法可以让线性回归y的行列与x的行列数量不相等的情况下可以进行
摘要 使用PyTorch定义线性回归模型一般分以下几步:
❷ 如何用Python进行线性回归以及误差分析
数据挖掘中的预测问题通常分为2类:回归与分类。
简单的说回归就是预测数值,而分类是给数据打上标签归类。
本文讲述如何用Python进行基本的数据拟合,以及如何对拟合结果的误差进行分析。
本例中使用一个2次函数加上随机的扰动来生成500个点,然后尝试用1、2、100次方的多项式对该数据进行拟合。
拟合的目的是使得根据训练数据能够拟合出一个多项式函数,这个函数能够很好的拟合现有数据,并且能对未知的数据进行预测。
代码如下:
importmatplotlib.pyplot as plt
importnumpy as np
importscipy as sp
fromscipy.statsimportnorm
fromsklearn.pipelineimportPipeline
fromsklearn.linear_modelimportLinearRegression
fromsklearn.
fromsklearnimportlinear_model
''''' 数据生成 '''
x = np.arange(0,1,0.002)
y = norm.rvs(0, size=500, scale=0.1)
y = y + x**2
''''' 均方误差根 '''
defrmse(y_test, y):
returnsp.sqrt(sp.mean((y_test - y) **2))
''''' 与均值相比的优秀程度,介于[0~1]。0表示不如均值。1表示完美预测.这个版本的实现是参考scikit-learn官网文档 '''
defR2(y_test, y_true):
return1- ((y_test - y_true)**2).sum() / ((y_true - y_true.mean())**2).sum()
''''' 这是Conway&White《机器学习使用案例解析》里的版本 '''
defR22(y_test, y_true):
y_mean = np.array(y_true)
y_mean[:] = y_mean.mean()
return1- rmse(y_test, y_true) / rmse(y_mean, y_true)
plt.scatter(x, y, s=5)
degree = [1,2,100]
y_test = []
y_test = np.array(y_test)
fordindegree:
clf = Pipeline([('poly', PolynomialFeatures(degree=d)),
('linear', LinearRegression(fit_intercept=False))])
clf.fit(x[:, np.newaxis], y)
y_test = clf.predict(x[:, np.newaxis])
print(clf.named_steps['linear'].coef_)
print('rmse=%.2f, R2=%.2f, R22=%.2f, clf.score=%.2f'%
(rmse(y_test, y),
R2(y_test, y),
R22(y_test, y),
clf.score(x[:, np.newaxis], y)))
plt.plot(x, y_test, linewidth=2)
plt.grid()
plt.legend(['1','2','100'], loc='upper left')
plt.show()
该程序运行的显示结果如下:
[ 0. 0.75873781]
rmse=0.15, R2=0.78, R22=0.53, clf.score=0.78
[ 0. 0.35936882 0.52392172]
rmse=0.11, R2=0.87, R22=0.64, clf.score=0.87
[ 0.00000000e+00 2.63903249e-01 3.14973328e-01 2.43389461e-01
1.67075328e-01 1.10674280e-01 7.30672237e-02 4.88605804e-02
......
3.70018540e-11 2.93631291e-11 2.32992690e-11 1.84860002e-11
1.46657377e-11]
rmse=0.10, R2=0.90, R22=0.68, clf.score=0.90
1/6分步阅读
1.线性回归方法:通常因变量和一个(或者多个)自变量之间拟合出来是一条直线(回归线),通常可以用一个普遍的公式来表示:Y(因变量)=a*X(自变量)+b+c,其中b表示截距,a表示直线的斜率,c是误差项。如下图所示。
2/6
2.逻辑回归方法:通常是用来计算“一个事件成功或者失败”的概率,此时的因变量一般是属于二元型的(1 或0,真或假,有或无等)变量。以样本极大似然估计值来选取参数,而不采用最小化平方和误差来选择参数,所以通常要用log等对数函数去拟合。如下图。
3/6
3.多项式回归方法:通常指自变量的指数存在超过1的项,这时候最佳拟合的结果不再是一条直线而是一条曲线。比如:抛物线拟合函数Y=a+b*X^2,如下图所示。
4/6
4.岭回归方法:通常用于自变量数据具有高度相关性的拟合中,这种回归方法可以在原来的偏差基础上再增加一个偏差度来减小总体的标准偏差。如下图是其收缩参数的最小误差公式。
5/6
5.套索回归方法:通常也是用来二次修正回归系数的大小,能够减小参量变化程度以提高线性回归模型的精度。如下图是其惩罚函数,注意这里的惩罚函数用的是绝对值,而不是绝对值的平方。
6/6
6.ElasticNet回归方法:是Lasso和Ridge回归方法的融合体,使用L1来训练,使用L2优先作为正则化矩阵。当相关的特征有很多个时,ElasticNet不同于Lasso,会选择两个。如下图是其常用的理论公式。
❹ 什么是线性回归法
如果在回归分析中,只包括一个自变量和一个因变量,且二者的关系可用一条直线近似表示,这种回归分析称为一元线性回归分析。如果回归分析中包括两个或两个以上的自变量,且因变量和自变量之间是线性关系,则称为多元线性回归分析。详细原理这里就不细说了,具体参照线性回归。
http://ke..com/view/4942739.htm
❺ 常见的监督学习算法
K-近邻算法:K-近邻是一种分类算法,其思路是如果一个样本在特征空间中的k个最相似(即特征空间中最邻近)的样本中的大多数属于某一个类别,则该样本也属于这个类别。
K通常是不大于20的整数。KNN算法中,所选择的邻居都是已经正确分类的对象。该方法在定类决策上只依据最邻近的一个或者几个样本的类别来决定待分样本所属的类别。
ID3算法:划分数据集的最大原则就是将数据变得更加有序。熵(entropy)是描述信息不确定性(杂乱程度)的一个值。
(5)监督线性回归训练方法扩展阅读:
注意事项:
分类:当数据被用于预测类别时,监督学习也可处理这类分类任务。给一张图片贴上猫或狗的标签就是这种情况。当分类标签只有两个时,这就是二元分类,超过两个则是多元分类。
预测:这是一个基于过去和现在的数据预测未来的过程,其最大应用是趋势分析。一个典型实例是根据今年和前年的销售业绩以预测下一年的销售业绩。
❻ 神经网络:欠拟合和过拟合
以我们前面讲述的线性回归为例,比如我们在训练集上训练出最优的模型,但是当我们将其使用到测试集时,测试的误差很大,我们该怎么办?
我们一般采取的措施主要包括以下6种:
增加训练样本的数目(该方法适用于过拟合现象时,解决高方差。一般都是有效的,但是代价较大,如果下面的方法有效,可以优先采用下面的方式);
尝试减少特征的数量(该方法适用于过拟合现象时,解决高方差);
尝试获得更多的特征(该方法适用于欠拟合现象时,解决高偏差);
尝试增加多项式特征(该方法适用于欠拟合现象时,解决高偏差);
尝试减小正则化程度λ(该方法适用于欠拟合现象时,解决高偏差);
尝试增加正则化程度λ(该方法适用于过拟合现象时,解决高方差);
上面的方法不是随机选择,是在合适的情况下(过拟合和欠拟合)选择合适的方法,对于怎么判断一个模型是过拟合还是欠拟合,我们会在下面给出一些机器学习诊断法。
如何对一个假设进行评估?
我们前面在讲述线性回归和逻辑回归时,只是注重针对训练数据集训练出一个最优的参数,但是我们训练处的模型对于测试集的性能好坏我们没有进行判断,我们只是训练的模型使得损失函数最小,我们前面也讨论过,在训练数据集上损失函数最小并不能代表对于给定的测试数据,测试数据的评估非常准确,比如过拟合现象发生时,那我们如何评价一个假设的好坏呢?
主要的方法包括两种:
1.对于简答的模型,我们可以采用将hθ(x)的图像画出,来判断模型的好坏,但是这种方法对于特征变量不是一个时,这种方法很难实现或者不可能实现。例如我们曾经看到过这样的图像,可以通过hθ(x)的图像明显可以看出,该假设存在着过拟合现象。
2.另一种评估假设的方法为:将原来的数据集分为训练集和测试集,一般我们是从原来的数据集中随机选取(保证训练集和测试集中都含有各种类型的数据)70%的数据作为训练集,剩下的30%的样本作为测试集。同时这种将原来数据集划分为训练集和测试集的方法可以用于帮助特征选择、多项式次数的选择以及正则化参数的选择等。数据集划分的过程如下:
以上面数据集为例,选取前7个为训练集,后3个为测试集。用前7个数据集做训练训练出一个最优的模型,评价这个训练出的模型的好坏可以使用测试集来进行判断,判断的标准可以使用测试集的损失函数来进行定量的衡量。
对于回归问题,测试集的损失函数计算公式如下:
Jtest(θ)=12mtest∑i=1mtest(hθ(x(i)test)−y(i)test)2
而对于分类问题,测试集的损失函数计算公式如下:
这种测量方式,如果测试样本损失函数很大,则代表训练出的模型泛化能力不好。
对于分类问题,还有另外一种测量的方式,称为误分类率,它对于每一个测试样本进行计算,计算的公式如下:
error=1mtest∑i=1mtesterr(hθ(x(i)test),y(i)))
其中,
模型的选择和交叉验证集:
上述我们是在模型选择好了之后进行训练的,也就是上述我们都是确定了假设进行训练的,但是我们怎么对模型进行选择呢,这一节我们来讨论一下模型的选择,以及和交叉验证集的关系。
模型选择主要包括以下内容:1.怎样选择正确的特征来构造学习算法?2.怎样选择学习算法中正则化参数λ?等问题。
首先我们结合一个例子来引出模型的选择和验证集:
例如我们有上面十个模型,我们对于给定的数据集选择哪种模型呢?按照我们上面讨论的将数据集划分为训练集和测试集,使用训练集对上述模型进行训练,然后使用测试集来进行选择最佳的模型,比如最优的为第五个模型,但是这并不能衡量这个模型的泛化能力,因为测试集已经用于选择最优的模型,这个模型对于其他未知数据的泛化能力还是未知的。
所以针对上述问题我们可以将数据集划分为训练集、交叉验证集和测试集。一般情况下,训练集占总样本的60%,交叉验证集占20%,测试集占20%。其中训练集用于训练,交叉验证集用于选择最优的模型,测试集用于测试模型的泛化能力。
模型选择方法为:
1. 使用训练集训练10个模型;
2. 用10个模型分别对交叉验证集计算出交叉验证误差(代价函数的值),其中计算公式为:
3. 选取交叉验证误差最小的模型作为选择的模型;
4. 用测试集对选择出的模型计算泛化能力(测试样本的损失函数),计算公式如上文中讨论的一样。
假设对诊断偏差和方差(即过拟合还是欠拟合)的影响
利用上述方法学习到的算法性能不好一般会有两种情况:
1.会出现过拟合,也就是所谓的方差很大;
2.会出现欠拟合,也就是所谓的偏差很大;
首先应该确定算法性能的不好,是由哪种原因造成的,然后针对不同的情况采取不同的改进策略,可以有效的改进当前的算法。下面我们来讲述一下怎么判断是过拟合还是欠拟合。
以下面例子为例,来进行讨论:
我们可以通过绘制出训练集的代价函数和交叉验证验证集的代价函数与方次d的关系来进行判断是上述哪种情况的一种:
对于训练集,当d较小时,模型的拟合程度不是很好,所以训练样本集的代价函数比较大;随着d的增加,模型的拟合程度不断提高,代价函数不断的减小;
对于交叉验证集,由于d比较小时,模型的拟合程度不是很好,对于新来的样本预测结果会偏差很大,所以交叉验证集的代价函数在初始阶段会很大,而随着d的增加会出现一个比较好的方次d,使得模型的拟合程度最佳,同时对于新来的样本泛化能力很强,所以会有一个代价函数最小的点出现(该转折点即是模型开始由欠拟合转向过拟合的点),随后随着d的增加,由于过拟合,会存在对新的样本预测结果不良的现象,所以代价函数会逐渐增大。
当我们绘制出上述曲线时,我们就可以判断出什么时候是过拟合什么时候欠拟合,判断的标准如下:
1. 当训练误差与交叉验证集误差接近时,并且都很大时,该模型高偏差(欠拟合);
2. 当训练误差远小于验证集误差时,并且训练误差很小时,该模型高方差(过拟合)。
判断出该模型是过拟合或者欠拟合之后,然后使用上述提到的过拟合和欠拟合的解决方法,对算法进行改进。
正则化对偏差和方差的影响
我们前面讲述过正则化可以有效的处理过拟合现象,但是我们上述所说的处理过拟合是在合适的λ情况下,那么λ值的大小对模型的性能是怎样影响的呢?我们采用上述与方次d对性能的影响相同的方式来分析λ的值对性能的影响。
我们首先选择一系列的λ值,通常λ的选择是0~10之间呈现二倍关系的值(如:0,0.01,0.02,0.04,0.08,0.15,0.32,0.64,1.28,5.26,5.12,10)
构建方式如下:
选择λ的方法如下:
1.使用训练集训练处12个不同程度正则化模型;
2.用12个模型分别对交叉验证集计算出交叉验证误差;
3.选择得出交叉验证误差最小的模型;
4.运用步骤3选出的模型对测试集计算得出推广误差
我们同样可以将训练集和交叉验证集模型的代价函数与λ的值绘制在一张图上。对于训练集、验证集和测试集的代价函数计算公式为:
需要注意的是,当计算训练集、交叉验证集和测试集误差时,不计算正则项,然后绘制出训练集和交叉验证集代价函数与λ值的关系,如下图所示:
1. 当λ较小时,训练误差较小(过拟合)而交叉验证集误差较大;
2. 随着λ的增加(从过拟合到欠拟合的过程),训练集误差逐渐增大(欠拟合),而交叉验证集误差则是先减小后增大。
学习曲线
学习曲线也是一种可以判断算法是否处于过拟合还是欠拟合的情况,学习曲线是将训练集误差和交叉验证集误差作为训练集实例数量(m)的函数绘制的图像。学习曲先不仅可以帮助我们是不是处于过拟合或者欠拟合,它还可以帮助我们判断是否为了提高算法的性能需要我们收集多的数据。
假设我们有100行数据,我们从第一行数据开始,逐渐增加数据进行训练,得到每次训练数据的代价函数值。当数据很少时,训练模型能够非常完美的拟合很少的数据,但是训练出的模型却不能泛化其他的数据,所以当数据很少时,训练集的代价函数很小,但是交叉验证集的代价函数很大,随着样本的增加,训练集的代价函数逐渐增大,交叉验证集的代价函数逐渐减小。绘制的曲线如下图所示:
1. 如何用学习曲线识别欠拟合:
假设我们的模型处于欠拟合的情况下,拟合曲线如下图所示:
我们可以看出,无论我们怎样增加样本数据,误差都不会有很大改观。同时在欠拟合的情况下,会出现随着样本的增加,训练集代价函数和交叉验证集代价函数都很大的情况,在这种情况下,就没有必要花费时间在收集数据上了,同时这也是一种判断模型是过拟合还是欠拟合的方法。
2. 如何使用学习曲线识别过拟合:
假设我们有一个非常高次的多项式模型(比如最高次项达到100次),并且正则化非常小时,从下图可以看出,当交叉验证集误差远大于训练集误差时,往训练集增加更多数据可以提高模型的效果。
对于过拟合现象时,会出现训练集代价函数一直都很小(虽然是增加的趋势),但是验证集的损失函数会很大(虽然是减小的趋势),同时训练集代价函数和验证集代价函数相差会很大,可以使用这种方法来判断该模型处于过拟合阶段。
对于神经网络我们在讨论一下过拟合和欠拟合现象:
使用较小的神经网络,类似于参数较少的情况,容易导致高偏差和欠拟合,但是计算代价小;使用较大的神经网络,类似于参数较多的情况,容易导致高方差和过拟合,虽然计算代价比较大,但是可以通过正则化手段来调整而更加适应数据。
对于 神经网络的模型选择 :我们一般选择较大的神经网络并采用正则化处理,而不会选择较小的神经网络。
对于 神经网络隐藏层的层数选择 ,一般我们从一层开始逐渐增加层数,为了更好的选择出最佳的层数,可以针对不同隐藏层层数的神经网络进行训练,然后选择交叉验证集代价函数最小的神经网络。
❼ 数据分析师必须掌握的7种回归分析方法
1、线性回归
线性回归是数据分析法中最为人熟知的建模技术之一。它一般是人们在学习预测模型时首选的技术之一。在这种数据分析法中,由于变量是连续的,因此自变量可以是连续的也可以是离散的,回归线的性质是线性的。
线性回归使用最佳的拟合直线(也就是回归线)在因变量(Y)和一个或多个自变量(X)之间建立一种关系。
2、逻辑回归
逻辑回归是用来计算“事件=Success”和“事件=Failure”的概率。当因变量的类型属于二元(1 /0,真/假,是/否)变量时,我们就应该使用逻辑回归.
逻辑回归不要求自变量和因变量是线性关系。它可以处理各种类型的关系,因为它对预测的相对风险指数OR使用了一个非线性的log转换。
为了避免过拟合和欠拟合,我们应该包括所有重要的变量。有一个很好的方法来确保这种情况,就是使用逐步筛选方法来估计逻辑回归。它需要大的样本量,因为在样本数量较少的情况下,极大似然估计的效果比普通的最小二乘法差。
3、多项式回归
对于一个回归方程,如果自变量的指数大于1,那么它就是多项式回归方程。虽然会有一个诱导可以拟合一个高次多项式并得到较低的错误,但这可能会导致过拟合。你需要经常画出关系图来查看拟合情况,并且专注于保证拟合合理,既没有过拟合又没有欠拟合。下面是一个图例,可以帮助理解:
明显地向两端寻找曲线点,看看这些形状和趋势是否有意义。更高次的多项式最后可能产生怪异的推断结果。
4、逐步回归
在处理多个自变量时,我们可以使用这种形式的回归。在这种技术中,自变量的选择是在一个自动的过程中完成的,其中包括非人为操作。
这一壮举是通过观察统计的值,如R-square,t-stats和AIC指标,来识别重要的变量。逐步回归通过同时添加/删除基于指定标准的协变量来拟合模型。
5、岭回归
岭回归分析是一种用于存在多重共线性(自变量高度相关)数据的技术。在多重共线性情况下,尽管最小二乘法(OLS)对每个变量很公平,但它们的差异很大,使得观测值偏移并远离真实值。岭回归通过给回归估计上增加一个偏差度,来降低标准误差。
除常数项以外,这种回归的假设与最小二乘回归类似;它收缩了相关系数的值,但没有达到零,这表明它没有特征选择功能,这是一个正则化方法,并且使用的是L2正则化。
6、套索回归
它类似于岭回归。除常数项以外,这种回归的假设与最小二乘回归类似;它收缩系数接近零(等于零),确实有助于特征选择;这是一个正则化方法,使用的是L1正则化;如果预测的一组变量是高度相关的,Lasso 会选出其中一个变量并且将其它的收缩为零。
7、回归
ElasticNet是Lasso和Ridge回归技术的混合体。它使用L1来训练并且L2优先作为正则化矩阵。当有多个相关的特征时,ElasticNet是很有用的。Lasso会随机挑选他们其中的一个,而ElasticNet则会选择两个。Lasso和Ridge之间的实际的优点是,它允许ElasticNet继承循环状态下Ridge的一些稳定性。
通常在高度相关变量的情况下,它会产生群体效应;选择变量的数目没有限制;并且可以承受双重收缩。
关于数据分析师必须掌握的7种回归分析方法,青藤小编就和您分享到这里了,希望这篇文章可以为您提供帮助。如果您还想了解更多关于数据分析师、大数据工程师的职业前景及就业内容,可以点击本站的其他文章进行学习。
❽ 使用Python的线性回归问题,怎么解决
本文中,我们将进行大量的编程——但在这之前,我们先介绍一下我们今天要解决的实例问题。
1) 预测房子价格
闪电侠是一部由剧作家/制片人Greg Berlanti、Andrew Kreisberg和Geoff Johns创作,由CW电视台播放的美国电视连续剧。它基于DC漫画角色闪电侠(Barry Allen),一个具有超人速度移动能力的装扮奇特的打击犯罪的超级英雄,这个角色是由Robert Kanigher、John Broome和Carmine Infantino创作。它是绿箭侠的衍生作品,存在于同一世界。该剧集的试播篇由Berlanti、Kreisberg和Johns写作,David Nutter执导。该剧集于2014年10月7日在北美首映,成为CW电视台收视率最高的电视节目。
绿箭侠是一部由剧作家/制片人 Greg Berlanti、Marc Guggenheim和Andrew Kreisberg创作的电视连续剧。它基于DC漫画角色绿箭侠,一个由Mort Weisinger和George Papp创作的装扮奇特的犯罪打击战士。它于2012年10月10日在北美首映,与2012年末开始全球播出。主要拍摄于Vancouver、British Columbia、Canada,该系列讲述了亿万花花公子Oliver Queen,由Stephen Amell扮演,被困在敌人的岛屿上五年之后,回到家乡打击犯罪和腐败,成为一名武器是弓箭的神秘义务警员。不像漫画书中,Queen最初没有使用化名”绿箭侠“。
由于这两个节目并列为我最喜爱的电视节目头衔,我一直想知道哪个节目更受其他人欢迎——谁会最终赢得这场收视率之战。 所以让我们写一个程序来预测哪个电视节目会有更多观众。 我们需要一个数据集,给出每一集的观众。幸运地,我从维基网络上得到了这个数据,并整理成一个.csv文件。它如下所示。
闪电侠
闪电侠美国观众数
绿箭侠
绿箭侠美国观众数
1 4.83 1 2.84
2 4.27 2 2.32
3 3.59 3 2.55
4 3.53 4 2.49
5 3.46 5 2.73
6 3.73 6 2.6
7 3.47 7 2.64
8 4.34 8 3.92
9 4.66 9 3.06
观众数以百万为单位。
解决问题的步骤:
首先我们需要把数据转换为X_parameters和Y_parameters,不过这里我们有两个X_parameters和Y_parameters。因此,把他们命名为flash_x_parameter、flash_y_parameter、arrow_x_parameter、arrow_y_parameter吧。然后我们需要把数据拟合为两个不同的线性回归模型——先是闪电侠,然后是绿箭侠。 接着我们需要预测两个电视节目下一集的观众数量。 然后我们可以比较结果,推测哪个节目会有更多观众。
步骤1
导入我们的程序包:
Python
1
2
3
4
5
6
7
# Required Packages
import csv
import sys
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
from sklearn import datasets, linear_model
步骤2
写一个函数,把我们的数据集作为输入,返回flash_x_parameter、flash_y_parameter、arrow_x_parameter、arrow_y_parameter values。
Python
1
2
3
4
5
6
7
8
9
10
11
12
13
# Function to get data
def get_data(file_name):
data = pd.read_csv(file_name)
flash_x_parameter = []
flash_y_parameter = []
arrow_x_parameter = []
arrow_y_parameter = []
for x1,y1,x2,y2 in zip(data['flash_episode_number'],data['flash_us_viewers'],data['arrow_episode_number'],data['arrow_us_viewers']):
flash_x_parameter.append([float(x1)])
flash_y_parameter.append(float(y1))
arrow_x_parameter.append([float(x2)])
arrow_y_parameter.append(float(y2))
return flash_x_parameter,flash_y_parameter,arrow_x_parameter,arrow_y_parameter
现在我们有了我们的参数,来写一个函数,用上面这些参数作为输入,给出一个输出,预测哪个节目会有更多观众。
Python
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# Function to know which Tv show will have more viewers
def more_viewers(x1,y1,x2,y2):
regr1 = linear_model.LinearRegression()
regr1.fit(x1, y1)
predicted_value1 = regr1.predict(9)
print predicted_value1
regr2 = linear_model.LinearRegression()
regr2.fit(x2, y2)
predicted_value2 = regr2.predict(9)
#print predicted_value1
#print predicted_value2
if predicted_value1 > predicted_value2:
print "The Flash Tv Show will have more viewers for next week"
else:
print "Arrow Tv Show will have more viewers for next week"
把所有东西写在一个文件中。打开你的编辑器,把它命名为prediction.py,复制下面的代码到prediction.py中。
Python
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
# Required Packages
import csv
import sys
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
from sklearn import datasets, linear_model
# Function to get data
def get_data(file_name):
data = pd.read_csv(file_name)
flash_x_parameter = []
flash_y_parameter = []
arrow_x_parameter = []
arrow_y_parameter = []
for x1,y1,x2,y2 in zip(data['flash_episode_number'],data['flash_us_viewers'],data['arrow_episode_number'],data['arrow_us_viewers']):
flash_x_parameter.append([float(x1)])
flash_y_parameter.append(float(y1))
arrow_x_parameter.append([float(x2)])
arrow_y_parameter.append(float(y2))
return flash_x_parameter,flash_y_parameter,arrow_x_parameter,arrow_y_parameter
# Function to know which Tv show will have more viewers
def more_viewers(x1,y1,x2,y2):
regr1 = linear_model.LinearRegression()
regr1.fit(x1, y1)
predicted_value1 = regr1.predict(9)
print predicted_value1
regr2 = linear_model.LinearRegression()
regr2.fit(x2, y2)
predicted_value2 = regr2.predict(9)
#print predicted_value1
#print predicted_value2
if predicted_value1 > predicted_value2:
print "The Flash Tv Show will have more viewers for next week"
else:
print "Arrow Tv Show will have more viewers for next week"
x1,y1,x2,y2 = get_data('input_data.csv')
#print x1,y1,x2,y2
more_viewers(x1,y1,x2,y2)
可能你能猜出哪个节目会有更多观众——但运行一下这个程序看看你猜的对不对。
3) 替换数据集中的缺失值
有时候,我们会遇到需要分析包含有缺失值的数据的情况。有些人会把这些缺失值舍去,接着分析;有些人会用最大值、最小值或平均值替换他们。平均值是三者中最好的,但可以用线性回归来有效地替换那些缺失值。
这种方法差不多像这样进行。
首先我们找到我们要替换那一列里的缺失值,并找出缺失值依赖于其他列的哪些数据。把缺失值那一列作为Y_parameters,把缺失值更依赖的那些列作为X_parameters,并把这些数据拟合为线性回归模型。现在就可以用缺失值更依赖的那些列预测缺失的那一列。
一旦这个过程完成了,我们就得到了没有任何缺失值的数据,供我们自由地分析数据。
为了练习,我会把这个问题留给你,所以请从网上获取一些缺失值数据,解决这个问题。一旦你完成了请留下你的评论。我很想看看你的结果。
个人小笔记:
我想分享我个人的数据挖掘经历。记得在我的数据挖掘引论课程上,教师开始很慢,解释了一些数据挖掘可以应用的领域以及一些基本概念。然后突然地,难度迅速上升。这令我的一些同学感到非常沮丧,被这个课程吓到,终于扼杀了他们对数据挖掘的兴趣。所以我想避免在我的博客文章中这样做。我想让事情更轻松随意。因此我尝试用有趣的例子,来使读者更舒服地学习,而不是感到无聊或被吓到。
谢谢读到这里——请在评论框里留下你的问题或建议,我很乐意回复你。
❾ 线性回归模型怎么实现对训练集的特征进行特征选择时,使训练集的特征和测试集的特征维度保持一致
wǎn 部 首 扌 五 笔
名称 : 横、 竖钩、 提、 撇、 横撇/横钩、 竖、 横折、 横、 撇、 竖弯钩、
基本释义
1.拉;牵:~弓。~手。~车。
2.设法使好转或恢复:~救。~回。
3.追悼死者:~歌。~联。
4.向上卷起:~起裤脚儿。
5.同“绾”。
网络汉语 拼音释义一拍便知 立即下载
详细释义
〈动〉
(形声。从手,免声。古字从“车”,免声。本义:牵引;拉)
同本义
挽,引也。——《小尔雅·广诂》
挽,引之也。——《说文》
挽,挽车也。——《广韵》
或挽之,或推之。——《左传·襄公十四年》。注:“前牵曰挽。”
娄敬脱挽辂。——《史记·刘敬传》
转粟挽输以为之备。——《汉书·韩安国传》
挽炮车者。——清· 薛福成《观巴黎油画记》
又如:挽郎(出葬时,牵绋唱挽歌的少年);挽强(拉强弓);挽满(拉满弓);挽车(拉车);挽住(憋住);挽手儿(缰绳);挽歌郎(出殡时替丧家在灵前唱挽歌的人);挽强为弱(使强变弱)
悼念死者 [lament sb.'s death]
现今胡三公子替 湖州鲁老先生征挽诗,送了十几个斗方在我那里。——《儒林外史》
又如:挽章(挽词。哀悼死者的词章);挽诗(哀悼死者的诗);挽歌(哀悼死者的丧歌);挽联(哀悼死者的对联);挽辞(哀悼死者的言辞)
〈动〉
通“绾”。卷起 。
如:挽裤腿儿
同“绾”。编结 。
如:挽手(鞭子);挽角(童年)
扭转;挽回
火攻破敌,挽强为弱。——《三侠五义》
又如:挽狂澜(扭转局面或风气);挽正(纠正);挽转(挽回);挽通(勾结;买通)
荐引 。
如:挽推(引荐;扶持)
勾;挎 。
如:不由分说,拉着文君就走,挽其腰;手挽小篮
请,托
怎奈蔡攸处挽心腹催促公人起身。——《水浒全传》
〈形〉
后,迟。通“晚”
必用此为务,挽近世涂民耳目,则几无行矣。——《史记·货殖列传》
又如:挽近(近世,近代。同晚近)
组词
挽联 挽幛 挽救 挽具 挽留 挽歌 挽回 挽近 挽词 挽裂 挽路 陆挽 挽转 救挽 更
1.拉,牵引:~弓。~留。2.设法使局势好转或恢复原状:~救。力~狂澜。3.追悼死人:~词。~联。~幛。4.古同“晚”,后来的。5.同“绾”。
❿ 线性回归是有监督还是无监督
线性回归是有监督。
机器学习的常用方法,主要分为有监督学习(supervised learning)和无监督学习(unsupervised learning)。简单的归纳就是,是否有监督(supervised),就看输入数据是否有标签(label)。输入数据有标签,则为有监督学习;没标签则为无监督学习。
监督学习是指数据集的正确输出已知情况下的一类学习算法。因为输入和输出已知,意味着输入和输出之间有一个关系,监督学习算法就是要发现和总结这种“关系”。
无监督学习是指对无标签数据的一类学习算法。因为没有标签信息,意味着需要从数据集中发现和总结模式或者结构。我们基于数据中的变量之间关系利用聚类算法发现这种内在模式或者结构。