① 任务铜矿石分析方法的选择
任务描述
铜矿石属于有色金属矿石,矿石成分通常比较复杂。在实际工作中应根据试样中铜的含量及伴生元素情况,以及误差要求等因素选择合适的分离富集和测定方法。本任务对铜的化学性质、铜矿石的分解方法、铜的分析方法选用等进行了阐述。通过本任务的学习,知道铜的化学性质,能根据矿石的特性、分析项目的要求及干扰元素的分离等情况选择适当的分解方法;学会基于被测试样中铜含量的高低不同以及对分析结果准确度的要求不同而选用适当的分析方法;能正确填写样品流转单。
任务分析
一、铜在自然界的存在
铜在自然界分布甚广,已发现的含铜矿物质有 280 多种。铜在地壳中的丰度为0.01%。
铜以独立矿物、类质同象和吸附状态三种形式存在于自然界中,但主要以独立矿物形式存在,类质同象和吸附状态存在的铜工业价值不高。
在独立矿物中,铜常以硫化物、氧化物、碳酸盐、自然铜等形式赋存。其主要的工业矿物有:
黄铜矿(CuFeS2) 含铜34.6%(常与黄铁矿伴生)
斑铜矿(Cu5FeS4) 含铜63.3%
辉铜矿(Cu2S) 含铜79.9%
黝铜矿(Cu12Sb4S13) 含铜46.7%
孔雀石(CuCO3·Cu(OH)2)含铜57.5%(常以蓝铜矿、 褐铁矿等共生)
蓝铜矿(2CuCO3·Cu(OH)2)含铜55.3%
黑铜矿(CuO) 含铜79.9%
赤铜矿(Cu2O) 含铜88.8%
自然铜矿(Cu) 含铜100%
富铜矿的工业品位为铜含量>1%。但当伴生有用组分且冶炼时有用组分又可回收者,其工业品位要求有所降低。
铜属于亲硫元素,所以常与银、金、锌、镉、镓、铟、铊、硒、碲、铁、钴、镍、砷、汞、锗等元素伴生。在铜矿分析中,应注意对其伴生元素的综合分析和综合评价。
二、铜的分析化学性质
1.铜的氧化还原性质
铜的价电子结构为3d104s1。在它的次外层有18个电子,由于有较多的电子处于离核较远的外层,所以对原子核的屏蔽效应就较小,相应地原子核的有效核电荷就较多,铜原子对外层s电子的束缚力也就较强,因而铜是不活泼的金属元素。铜是变价元素(主要呈现+1价和+2价两种价态)因而具有氧化还原性质。铜的氧化还原性质在分析中的应用十分广泛,可用于分解铜矿石,分析掩蔽铜对其他元素的干扰,用氧化还原法测定铜,等等。
例如,铜不能溶于非氧化性的酸中,但利用其氧化还原性质,可用硝酸溶解铜,硝酸使铜氧化并把铜转移到溶液中,同时放出氮的氧化物。通常采用的测定铜的碘量法也是基于铜的原子价可变的特性。
又如,
岩石矿物分析
岩石矿物分析
2.铜的配位性质
它的简单离子在水溶液中都以水合配位离子[Cu(H2O)4]2+的形式存在。铜离子能与许多具有未共用电子对的配位体(包括无机的和有机的)形成配合物。铜离子的配合性质,对于比色法测铜、配位滴定法测铜和对铜的分离、富集、掩蔽等,均具有十分重大的意义。
例如:利用Cu2+与CN-反应生成的Cu+的氰配合物[Cu(CN)4]3-,而不被KOH、H2S沉淀,可使铜与其他金属元素分离。在用EDTA配位滴定测定试样中的Ca、Mg时,就可用此配合物的生成来掩蔽Cu2+,从而消除Cu2+的干扰。此反应的方程式如下:
2Cu2++10CN-→2[Cu(CN)4]3-+(CN)2
Cu2+与铜试剂(二乙氨基二硫代甲酸钠)在pH为5~7 的溶液中生成棕黄色沉淀,可用于铜的比色测定,也可用于铜的分离。
Cu2+的氨配合物(Cu(NH3)4)2+的蓝色可用于比色测定铜。也可用此配合物的生成,使铜与Fe3+、Al3+、Cr3+等分离。
又如:Cu2+与二甲酚橙(XO)和邻啡罗啉(Phen)反应生成异配位体配合物Cu2+-Phen-XO。利用此反应可用二甲酚橙作EDTA法测铜的指示剂,而不被铜所僵化,因为上述异配位体在滴定终点能很快地被EDTA所取代,反应如下:
Cu2+-phen-XO+EDTA→Cu2+-EDTA+Phen+XO
三、铜的测定方法
铜的测定方法很多。常用的有碘量法、极谱法及光度法、原子吸收光谱法和电感耦合等离子体发射光谱法等。
(一)碘量法
碘量法是测定铜的经典方法,测定铜的范围较宽,对高含量铜的测定尤为适用,对组成比较复杂的样品也适用,故碘量法仍为目前测铜的常用方法之一。碘量法已经被列为铜精矿测定铜的国家标准方法。
用碘量法测定岩石矿物中的铜,根据消除干扰元素所加的试剂不同,可分为:氨分离-碘量法、碘氟法、六偏磷酸钠-碘量法、焦磷酸钠-磷酸三钠—碘量法、硫代硫酸钠-碘量法以及硫氰酸盐分离-碘量法等。
1.氨分离-碘量法
试样经分解后,在铵盐的存在下,用过量氨水沉淀铁、锰等元素,铜与氨生成铜氨配合离子(Cu(NH3)4)2+,驱除过量的氨,在醋酸-硫酸介质中加入碘化钾,与Cu2+作用生成碘化亚铜并析出等当量的碘,以淀粉作指示剂,用硫代硫酸钠溶液滴定至蓝色退去,根据所消耗的硫代硫酸钠溶液的量,计算出铜的量。主要反应如下:
2Cu2++4I-→2CuI+I2
岩石矿物分析
2.碘氟法
本法与上法的区别在于用氟化物掩蔽Fe3+的干扰,省去了铜与铁的分离步骤,因而是一个快速法。
用氟化物掩蔽铁是在微酸性溶液(pH为2~4)中,使Fe3+与F-形成稳定的配合离子(FeF6)3-而消除Fe3+的影响。
氟离子能与试样中的钙、镁生成不溶性的氟化钙和氟化镁沉淀,此沉淀吸附铜而导致铜的测定结果偏低。实验证明,氟化镁沉淀对铜的吸附尤为严重。为了消除钙、镁的干扰,可在热时加入氟化钠,适当稀释,以增加氟化钙和氟化镁的溶解度。另外,加入硫氰酸盐使生成溶度积更小的硫氰化亚铜沉淀,可以减少氟化钙对铜的吸附。当镁含量高时,虽氟化镁对铜的吸附比氟化钙尤甚,但氟化镁沉淀是逐渐形成的,因此只要缩短放置时间(加入氟化钠后立即加入碘化钾,放置1min后滴定),即可克服氟化镁吸附的影响。在采取上述措施后,60mg和100mg镁均不影响测定。
碘氟法测定铜的成败,在很大程度上取决于滴定时溶液的酸度。滴定时溶液的pH应保持在3.5左右,否则不能得到满意的结果。
碘氟法适用于钙、镁含量较低,含铜在0.5% 以上的岩矿试样中铜的测定;对于钙、镁含量高的试样,用此法虽可测定,但条件不易掌握,此时。最好采用六偏磷酸钠—碘量法。
3.六偏磷酸钠-碘量法
六偏磷酸钠-碘量法测定铜与上述两法的主要区别在于采用六偏磷酸钠掩蔽铁、钙、镁等的干扰。
六偏磷酸钠在pH=4的醋酸-醋酸钠缓冲溶液中,能与Fe3+、Ca2+、Mg2+形成稳定的配合物,而达到消除Fe3+、Ca2+、Mg2+的干扰目的。它在测定条件下,可掩蔽30mg铁,60mg钙和30mg镁,所以此法能弥补碘氟法之不足,适用于含钙、镁较多,铁不太多,含铜在0.5% 以上的岩矿试样中铜的测定,是一个简便快速的方法。
六偏磷酸钠虽可解决钙、镁的干扰问题,但它对铜也有一定的配合能力,会影响Cu2+与I-的反应。应在加入碘化钾之后立即加入硫氰酸盐,以免铜的结果偏低,并使反应尽快完全。
焦磷酸钠-磷酸三钠-碘量法是对碘氟法和六偏磷酸钠法的改进。它用焦磷酸钠-磷酸三钠在pH 2~3.3的情况下掩蔽铁、铝、钙、镁等的干扰,即可避免氟化物对环境的污染,又具有碘氟法的准确高、快速等优点,适用于一般矿石中铜的测定。
(二)铜试剂光度法
铜试剂(二乙基二硫代氨基甲酸钠)在pH为5.7~9.2的弱酸性或氨性溶液中,与Cu2+作用生成棕黄色的铜盐沉淀,在稀溶液中生成胶体悬浮液,若预先加入保护胶,则生成棕黄色的胶体溶液,借以进行铜的光度法测定。反应如下:
2NC2H5C2H5CSSNa+Cu2+→(NC2H5C2H5CSS)2Cu+2Na+
在pH 5.7~9.2范围内,铜(Ⅱ)与显色剂所呈现的颜色比较稳定。有很多元素如铁、锰、铅、锌、钴、镍、锡、银、汞、铋、锑、铀、镉、铬等都有与铜试剂生成难溶的化合物,有的有颜色,有的没有颜色。消除这些干扰的方法,在一般的情况下可加氨水-氯化铵,使一些元素成氢氧化物沉淀与铜分离。在必要时或要求精确度高时,则可加入EDTA消除铁、钴、镍、锰、锌等元素的干扰,然后用乙酸乙酯萃取铜与铜试剂所生成的配合物,进行比色。一般采用沉淀分离、有机试剂萃取或EDTA掩蔽等方法分离干扰元素以消除干扰。各种分离方法均有各自特点,适用于不同试样的分析。
1.EDTA掩蔽-铜试剂萃取光度法
EDTA掩蔽-铜试剂萃取比色法是用EDTA消除铁、钴、镍、锰等元素的干扰,然后用乙酸乙酯萃取铜试剂-铜配合物,以目视或光电比色测定铜。
用乙酸丁酯等有机溶剂作萃取剂时,应注意严格控制试样的水相和有机相的体积与标准一致,否则由于乙酸丁酯等部分与水混溶会使有机相体积不等而影响结果。
EDTA也能与铜生成可溶性配合物而阻碍显色,但当加入铜试剂后,铜就与铜试剂作用生成比铜-EDTA更稳定的化合物(5% ETDA加入5mL对测定无影响)。为了使EDTA-铜完全转变为铜试剂-铜化合物使显色完全,在加入显色剂后必须放置15min后才能比色。同时,调节pH时氨水过量,若pH>9,则在大量EDTA存在下萃取率将降低。
EDTA的加入量应是试样铁、锰、镍、钴总量的10 倍。钨、钼等高价元素含量较高时,应适当增加柠檬酸盐的加入量,对铬矿样品增加铜试剂的加入量。
铋与铜试剂生成的沉淀也溶于有机溶剂,如溶于CHCl3呈黄色而干扰测定。其消除办法是:当铋量少于1mg时,可用4mol/L盐酸洗涤有机相除去;铋量较高时,可用氨水-氯化铵将铋沉淀分离。
本法可测定试样中0.001%~0.1% 的铜。
2.沉淀分离-铜试剂光度法
在pH 5.7~9.2范围内,Cu(Ⅱ)与显色剂所呈现的颜色比较稳定。为消除其他元素的干扰,在小体积溶液中加入氢氧化铵-氯化铵使铁等干扰元素生成淀,铜形成铜氨配合物进入溶液中,过滤使铜与干扰元素分离,然后加入铜试剂进行光度法测定。
在pH 9.0~9.2的氨性溶液中显色15min后,颜色即稳定,并可保持24 h不变。本法适用于0.001%~0.1% 铜的测定。
(三)双环己酮草酰二腙光度法
试样用酸分解,在pH 8.4~9.8的氨性介质中,以柠檬酸铵为配位剂,铜与双环己酮草酰二腙生成蓝色配合物,在分光光度计上,于波长610 nm处,测量吸光度。
在试样测试条件下,铜的含量在0.2~4 g/mL 符合比耳定律。存在柠檬酸盐时显色10~30min颜色达到最深,可稳定5 h以上。
最适宜的酸度是pH 8.4~9.8。pH<6.5 时,形成无色配合物;pH>10 时,试剂自身分解。
(四)极谱法
极谱法测定铜,目前生产上多采用氨底液极谱法。所谓氨底液极谱法即以氨水-氯化铵作支持电解质。常采用动物胶作极大抑制剂,亚硫酸钠作除氧剂,在此底液中,铜的半波电位是-0.52 V(第二波半波电位,对饱和甘汞电极)。
氨底液的优点是干扰元素很少。铜在此底液中产生两还个原波:
(Cu(NH3)4)2++e→(Cu(NH3)2)++2NH3 (1)
(Cu(NH3)2)++e +Hg→(Cu(Hg)+2NH3 (2)
第一个波的半波电位(E1/2)为-0.26V,第二个的半波电极(E1/2)为-0.52V(对饱和和甘汞电极),通常利用第二个波高进行铜的定量。镉、镍、锌等的起始电位在铜之后,不干扰。铁由于在此底液中生成氢氧化铁沉淀而不在电极上还原,不产生干扰。Cr6+因在铜的前面起波(E1/2= -0.20V)而干扰,可在试样分解后加入盐酸蒸干几次,使Cr6+还原为Cr3+,以消除大部分铬的干扰。Co2+还原至Co+时的E1/2= -0.3V,与铜的E1/2= -0.52V相差较大,但当钴含量>0.5% 时就干扰了。铊的半波电位为-0.49V,与铜波重合,当铊含量>0.1% 时,使结果偏高。钴、铊含量高时,可用硫代硫酸钠在3% 硫酸溶液中使铜沉淀为硫化亚铜而与干扰元素分离。氨底液法使用于铜矿,铅锌矿和铁矿中铜的测定。测定范围为0.01%~10%,用示波极谱法可测定0.001% 以上的铜。
随着极谱分析的发展,玻璃石墨电极正向扫描已成功地运用于铜的定量分析。铜在玻璃石墨电极上有两个还原波,第一个波是Cu2+→Cu+,第二个波是Cu+→Cu0,而第一波(用示波极谱仪测定,峰值电位EP≈0.1V)波形好,波高稳定,所以生成上用第一个波进行定量测定。据有的实验室实践得知,所选择的底液当氨水为1.5mol/L,氯化铵为0.5mol/L,亚硫酸钠为1%~2% 时,图形最好,波高最稳定。铜在0~20mg/50mL时,其波高与浓度成正比。在此底液中,镍的浓度>5mg/50mL时,干扰测定,波不成峰状,但对铜的波高无大影响。
(五)原子吸收分光光度法
用原子吸收分光光度法测铜,方法灵敏,简便快速,测定2%~10% 及0.05%~2.2%铜时绝对误差分别为0.13% 及0.03%,特别适用于低含量铜的测定,当条件选择适当时,可测至十万分之一的铜。
由于不用型号仪器的性能不同,各实验室的条件也有差异,所以用原子吸收分光光度法测铜的最佳条件在各实验室也有所不同。
(六)X射线荧光分析法
当由X射线管或由放射性同位素放出的X射线或γ射线,打在试样中的铜原子上时,铜被激发而放出具有一定特征(即能量)的X射线,即荧光,例如铜的Kα1=8.04 keV。测定荧光的强度,就可知道铜的含量。
测量X射线的能量,通常可用两种方法:一种是利用X射线在晶体上的衍射,使用晶体分光光度计按特征X射线的波长来区分谱线,此即波长色散法;另一种是根据入射X射线经过探测器按能量区分不同特征辐射的谱线,此即色散法。在此,我们仅介绍能量色散法。
能量色散法测定铜的激发源:目前用238Pu作激发源,激发效率较高。
探测器工作电压:通常可在不同高压下测量某一X射线能谱,分别求出它们的分辨率,选择能量分辨率最佳者的电压为工作电压。为了减少光电倍增管的噪声影响,电压应尽可能低些。
放大倍数的选择:当测铜的Kα线时,国产仪器放大100 倍左右是合适的,可使特征X线落在阀压的中部。
平衡滤片:测定铜,以用钴镍滤片为最好。
道宽和阀压:所谓阀压、道宽的选择,是指在测量工作中,使仪器测量铜的特征X射线谱的哪一部分的问题。选择适当元素的道宽和阀压,目的是消除平衡滤片不能完全消除其他元素的X射线及散射线的影响,从而提高仪器的分辨率。
当待测元素附近无其他元素的特征X射线严重干扰时,可采用待测元素能谱线的全谱宽度为道宽值,使整个的谱线在道宽中间。当待测元素附近存在其他元素干扰时,可采用谱线半宽度法,即选择待测元素的谱线半宽度为道宽值,使能谱的主要部分落在道宽中间。
用该法测定铜时,干扰元素有与铜相邻原子序数为3~5的元素,如铁、钴、镍、锌等。这是因为所使用的探测元件分辨率不高,不能将它们发出的X射线与铜的X射线相区分。其消除的办法是选择适当的阀压及道宽,选择适当的激发源和平衡性好的滤片。基质效应所造成的干扰在X射线荧光法中使很普遍和严重的。消除基质效应,迄今为止,还没有找到一种既方便又具有普遍意义的方法。现有的一些方法均具有局限性,只有在一定条件下才能得到较好的效果。例如同基质成分标准比较法,就要求该矿区同类型矿石有分析结果作比较标准,这对普查阶段就存在一定困难。又如,在钴片中加少量轻物质的办法,只能在干扰元素较单一时,有针对性地进行。因为钴片上增加了轻物质,必然减少滤片对铜特征X射线的计数率差值和改变对其他元素的平衡特性。
四、铜试样的分解
铜矿石分解方法可分为酸溶分解法和熔融分解法。单项分析多采用酸溶分解法。铜矿石化学系统分析常采用熔融法分解其基体中的各种矿物。
1.酸溶分解
一般铜矿试样可用王水分解。
对于含硫量较高的铜矿试样,用逆王水、盐酸-硝酸-硫酸、盐酸-硝酸-高氯酸或盐酸-硝酸-氯酸钾(或少许溴水)分解。
氧化矿或含硅高时用盐酸-硝酸-氢氟酸(或氟化铵)-高氯酸或盐酸-硝酸-氟化物-硫酸分解。
含碳较高时用盐酸-硝酸-硫酸-高氯酸分解,加热至无黑色残渣。
含铜硫化矿物易溶于硝酸、王水或逆王水中。常先用盐酸处理,分解试样中的氧化矿物,同时使硫、砷等元素逸出,同时加硝酸分解硫化矿物。若发现有残存不溶物,可加氢氟酸或氟化铵处理。为防止硫化矿物分解时大量单体硫析出而使测定结果偏低,可加硝酸分解硫化矿之前,预先加入数滴溴水或氯酸钾溶液,使试样中硫化物氧化成硫酸盐,避免由于硝酸的作用而析出的单质硫包裹试样。如有少量单质硫析出,可加硫酸蒸发冒烟除去,使单体硫包裹的铜流出。
硫、砷及碳含量高的试样,也可先将试样在500~550℃灼烧后,再加酸分解,避免大量硫的析出。
对于含硅高的含铜氧化矿物如硅孔雀石、赤铜矿石等,可在用王水分解时,加入1~2g NH4F,并加硫酸或高氯酸加热至冒白烟,使试样完全分解。
2.熔融分分解
铜矿石化学分析系统常用碱性熔剂熔融。试样在热解石墨、银或镍坩埚中,用氢氧化钠(钾)、过氧化钠或过氧化钠和氢氧化钠熔融。
分析铜矿渣时,用酸性熔剂-焦硫酸钾在瓷坩埚中熔融。对酸不溶残渣也可用碳酸钠处理。由于铜矿石往往伴生有重金属元素,所以应注意试样不能直接在铂坩埚中熔融。
五、铜矿石分析项目及其分析方法的选择
铜矿石的全分析项目,应根据矿石的特征和光谱分析的结果确定,首先应确定包括那些有工业价值或可供综合利用的各种有色金属及稀有分散元素。在铜矿石中,可能共有的有色金属有铅、锌、砷、镍、锡、钼、钨、镉、汞等,分散元素有镓、铊、铟、硒、碲、锗等。
根据不同的情况,要求对铜矿石进行简项分析、组合分析和全分析。
铜矿石的简项分析一般是指测定铜。
铜矿石中组合分析项目有铅、锌、砷、钴、金、银、硫、钼、钨、镉、锑、镓、铊、铟、硒、碲、锗等。其中金、银、硫为商业计价元素。
铜矿石的全分析项目还包括硅、铁、铝、钙、镁、锰、钛、钡、钾、钠、硫、磷、氟、二氧化碳、吸附水、化合水等项目。
根据试样中铜的含量及干扰离子的情况,选择不同的测定方法。基于不用岩石矿物中铜含量的差异和各类测定的特点及使用范围等,目前对试样中高、中含量铜的测定常采用容量法(其中以碘量法的应用较为广泛),试样中低含量铜的测定则常采用光度法(其中以铜试剂光度法和双环己酮草酰二腙光度法等较常用)和极谱法、X射线荧光法、原子吸收光谱法等。
技能训练
实战训练
1.学生在实训时按每组5~8人分成几个小组。
2.每个小组进行角色扮演,利用所学知识并上网查询相关资料,完成铜矿石委托样品从样品验收到派发样品检验单工作。
3.填写附录一中质量表格1、表格2。
② 铜精矿的计算方式
一,冶炼方法:
炼铅原料主要为硫化铅精矿和少量块矿.铅的冶炼方法有火法和湿法两种,目前世界上以火法为主,湿法炼铅尚处于试验研究阶段.火法炼铅基本上采用烧结焙烧——鼓风炉熔炼流程,占铅总产量的85—90%;其次为反应熔炼法,其设备可用膛式炉,短窑,电炉或旋涡炉;沉淀熔炼很少采用.铅的精炼主要采用火法精炼,其次为电解精炼,但我国由于习惯原因未广泛采用电解法.
炼锌的原料主要是硫化锌精矿和少量氧化锌产品.火法炼锌采用竖罐蒸馏,平罐蒸馏或电炉;湿法炼锌在近20年以来得到迅速发展,现时锌总产量的70—80%为湿法所生产.火法炼锌所得粗锌采用蒸馏法精炼或直接应用;而湿法炼锌所得电解锌,质量较高,无需精炼.
对难于分选的硫化铅锌混合精矿,一般采用同时产出铅和锌的密闭鼓风炉熔炼法处理.
对于极难分选的氧化铅锌混合矿,经长期研究形成了我国独特的处理方法,即用氧化铅锌混合矿原矿或其富集产物,经烧结或制团后在鼓风炉熔化,以便获得粗铅和含铅锌的熔融炉渣,炉渣进一步在烟化炉烟化,得到氧化锌产物,并用湿法炼锌得到电解锌.此外,也可以用回转窑直接烟化获得氧化锌产物.
二,精矿杂质对铅锌冶炼的影响:
1.铅精矿中的杂质:
铜:在精矿中呈含铜硫化物存在.在烧结焙烧温度下,反应为氧化铜,熔炼时还原为金属铜,进入粗铅,如粗铅含铜高(>2%)时,则需造冰铜,对铜进行回收,否则,熔炼时,铅,渣分离困难,且易堵塞虹吸道,造成处理困难,影响工人健康和铅的挥发损失大.铅产品中合铜量较高时易使铅变硬.故要求铅精矿中含铜量<3%,混合精矿含铜<1%.
锌:在铅精矿中以硫化锌状态存在,焙烧时变成ZnO.在熔炼过程中不起化学变化,大部分进入炉渣,增加炉渣粘度,缩小铅液与炉渣比重差,而使二者分离困难,影响铅的回收率.部分ZnO可能凝结在炉壁上形成炉结,使操作困难.原料中含锌高时,会造成高铁炉渣,增加铅在渣中的损失.锌易使铅金属变硬不能压成薄片,并促使硫酸对铅的腐蚀性.因此要求铅精矿含锌不大于10%.
砷:在精矿中以毒砂(FeAsS)及雄黄(As2S3)的状态存在,熔炼时,部分还原成As2O3而挥发进入烟气,形成极有害的大气环境污染.部分As进入粗铅和炉渣;粗铅中含As高时,需采用碱性精炼法除As,产出的浮渣中所含的Na3AsO4极易溶于水而污染水源,致使人畜中毒.砷易与铅形成合金,使铅硬化,故要求铅精矿中含砷不大于0.6%.
氧化镁(MgO):熔点2800℃,增加炉渣熔点,且易使铁的氧化物在渣中溶解度降低,炉渣变粘,一般含MgO达3.5%,则故障频繁,因此希望铅精矿含MgO不大于2%.
氧化铝(Al2O3):熔点2050℃,使炉渣熔点增高,粘度增大,特别是与ZnO结合成锌尖晶石(ZnO·Al2O3),在鼓风炉中系不熔物质,使炉渣熔点与粘度显着升高,故要求精矿中Al2O3不大于4%.
2.锌精矿的杂质:
铜:在精矿中常呈铜的硫化物状态存在,焙烧时,主要形成不同形式的氧化亚铜,残余的硫化铜易形成冰铜,降低炉料的熔点.湿法炼锌时,溶液中的Cu++腐蚀管道,阀门,在竖罐蒸馏时,往往有少量进入粗锌,影响商品锌质量.因此要求锌精矿含Cu不大于2%.
铅:锌精矿中含硫化铅较高时,形成易熔的铅硫,铅硫首先促使结块甚至使焙烧料熔化,阻止硫的脱除.氧化铅易与许多金属氧化物形成低熔点共晶,在800℃时开始熔化,引起炉料在沸腾炉和烟道中结块.湿法炼铅中,焙砂浸出时,转化为硫酸铅,消耗硫酸.火法炼铅中,铅的氧化物在蒸馏罐中还原所得的铅,部分气化,冷凝成为锌锭中的杂质,影响商品锌质量,焙烧矿中硫酸铅在蒸馏罐中被还原为硫化铅,与其它金属硫化物可形成冰铜,造成罐壁的腐蚀.因此要求锌精矿中含铅不大于3%.
铁:铁在锌精矿中呈铁闪锌矿存在时,焙烧时形成铁酸锌.在湿法炼锌过程中,铁酸锌用稀酸浸出不溶解,影响锌的浸出率,增加浸出渣的处理费.精矿中游离的FeS焙烧时转化为Fe2O3,硫酸浸出时呈FeSO4进入溶液,在氧化中和时,生成絮状Fe(OH)3,影响浓密机澄清速度.在火法竖罐蒸馏时,焙烧矿中的Fe2O3还原成FeO与金属铁,其中金属铁在竖罐中形成积铁,影响竖罐温度升高,使锌蒸发不充分,致使渣中含锌高;矿石中存在SiO2时,易与FeO形成硅酸盐侵蚀罐壁;当粗锌进入蒸馏塔时,粗锌含铁量直接影响塔的寿命.因此希望锌精矿含铁一般不大于16%,湿法炼锌不大于10%.
砷:精矿中含砷,在沸腾焙烧时,砷进入烟气,造成制硫酸时V2O5触煤中毒.焙烧矿中的砷绝大部分在浸出时被除掉,但溶液含As高,则消耗FeSO4量大(铁量为砷量20倍),铁多渣多,带走的锌也多.As能在阴极上放电析出,产生烧板现象(阴极反熔).因此要求精矿混合料中As不大于0.5%.
二氧化硅:精矿中往往含有游离的SiO2和各种结合状态硅酸盐,在高温下与氧化锌形成硅酸锌.湿法浸出时,硅酸以胶体状进入溶液中,使产品浓缩,过滤工序极为困难.在蒸馏过程的高温条件下,SiO2与CaO,FeO等形成硅酸盐,腐蚀罐壁有碍蒸馏.要求精矿中SiO2不大于7%.
氟:在沸腾焙烧烟气中的氟,易使制酸系统瓷砖腐蚀,损坏设备.电解液中含氟高时,阴极锌不易剥离.要求锌精矿中F不大于0.2%.
三,铅锌冶炼对伴生组份的综合回收:
1.铅冶炼时的综合回收:
硫:在烧结机烟气中予以回收制硫酸.
铜:在鼓风炉熔炼时,以冰铜形式回收或在火法精炼时以含铜浮渣形式回收.
铊:在烧结烟尘中予以回收.
金,银,铂族金属,硒,碲和铋:在电解精炼阳极泥中回收,或在火法精炼的浮渣中回收.
锌:在鼓风炉渣中用烟化法回收.
镉:在烟尘中予以回收.
2.锌冶炼时的综合回收:
硫:在沸腾焙烧烟气中回收.
铅:在氧化锌浸出渣中回收.
金,银:在浸出渣中用浮选法回收为精矿.
镉:在铜镉渣中予以回收.
铜:在铜镉渣中予以回收.
铟,镓,锗:在铟锗渣中回收.
钴:在净液时以钴渣形式回收.
铊:在除氟氯过程中(多膛炉或回转窑)的烟尘中回收.
四,铅锌冶炼产品质量标准:
1.铅金属见表1
2.锌金属见表2
铅 金 属 GB496—64 表1
铅品号
代 号
化 学 成 分 (%)
用 途 举 例
Pb≮
杂 质 不 大 于
Ag
Cu
Sb
Sn
As
Bi
Fe
Zn
Mg+Ca+Na
总和
1
Pb—1
99.994
0.0005
0.0005
0.0005
0.001
0.0005
0.003
0.0005
0.0005
0.003
0.006
铅粉和特殊用途
2
Pb—2
99.990
0.0005
0.001
0.001
0.001
0.001
0.005
0.001
0.001
0.003
0.01
铅板压延品,光学玻璃和铅丹
3
Pb—3
99.980
0.001
0.001
0.004
0.002
0.002
0.006
0.002
0.002
0.003
0.02
铅合金板栅和印刷铅板
4
Pb—4
99.950
0.0015
0.001
0.005
0.002
0.002
0.03
0.003
0.003
Mg 0.005
Ca+Na 0.002
0.05
耐酸衬子和管子
5
Pb—5
99.900
0.002
0.002
Sb+Sn
0.01
0.005
0.06
0.005
0.005
Mg 0.01
Ca+Na 0.04
0.01
焊锡,印刷铅字合金,铅包电缆,轴承合金
6
Pb—6
99.500
0.002
0.004
Sb+Sn+As
0.25
0.10
0. 01
0. 01
Mg 0.02
Ca+Na 0.10
0.5
铅字合金,淬火槽,水道管接头
锌 金 属 GB470—64 表2
锌
品
号
代 号
化 学 成 分 (%)
用 途 举 例
Zn≮
杂 质 不 大 于
Pb
Fe
Cd
Cu
As
Sb
Sn
总和
特1
Zn—01
99.995
0.003
0.001
0.001
0.0001
0.005
高级合金及特殊用途
1
Zn—1
99.99
0.005
0.003
0.002
0.001
0.01
压铸零件,电镀锌,高级氧化锌,医药化学试剂
2
Zn—2
99.96
0.015
0.01
0.01
0.001
0.04
电极锌片,黄铜,压铸零件,锌合金
3
Zn—3
99.90
0.05
0.02
0.02
0.002
0.1
锌板,热镀锌,铜合金
4
Zn—4
99.50
0.3
0.03
0.07
0.002
0.005
0.01
0.002
0.5
锌板,热镀锌,氧化锌,锌粉
5
Zn—5
98.70
1.0
0.07
0.2
0.005
0.01
0.02
0.002
1.3
含锌铜合金,普通氧化锌,普通铸件
附录三:
矿区工业品位指标的计算方法
根据普查评价阶段所能获得的地质资料和国内铅锌矿山一般生产技术经济指标,计算矿区工业品位(指矿区平均品位)可采用简单易行的"价格法".
"价格法"公式如下:
① 一吨矿石完全成本:为每吨原矿所分摊的采矿,选矿,原矿运输成本及企业管理费和精矿销售费的总和:
采矿成本:即出矿成本,不同开拓方式(平硐,竖井),不同采矿方法,排水量大小等,均影响采矿成本.目前,我国地下开采小型矿山采矿成本约12—23元/吨,大中型矿山10—28元/吨.
选矿成本:铅锌矿石一般为浮选,其选矿成本受矿石含泥程度,矿物粒度,药剂消耗量,尾矿输送距离等因素影响.目前,浮选的选矿成本一般为10—16元/吨.
原矿运输成本:指采出矿石由坑口至选厂的运输费,受运输距离远近和运输方式(电机车,索道等)的影响.目前,我国坑采矿山一般为1—1.5元/吨.
企业管理费:企业管理费受企业规模大小和管理水平的影响.目前,我国大中型企业2—4元/吨,小型企业3—5元/吨.
精矿销售费:铅锌精矿由矿山选厂运至冶炼厂交货地点的一切费用(运输费,装卸费,管理费等)为精矿销售费.运输费可按公路,铁路,水运的距离和有关部门规定的运价计算.但参与上述公式计算时,应将精矿销售费折算分摊成原矿销售费.
② 采矿贫化率:因地质条件不同,采矿方法不同和管理水平不同,采矿贫化率而有差异.目前,我国坑内采矿的贫化率一般为10—25%.
③ 选矿回收率:根据具体矿区的矿石可选性试验结果选取指标.
④ 精矿含每吨金属价格:为国家规定的现行价格,其计价单位为精矿中所含每吨金属.
由于在公式中,精矿销售费需折算分摊成原矿销售费,而在品位尚未确定的条件下,精矿量难以确定,因此折算分摊存在困难,为避免这一问题,可改用下列公式.在下列公式中,一吨矿石完全成本不包括精矿销售费所分摊折算的费用.
公式中精矿价格需进行折算,如锌精矿含Zn 55%时,每吨金属含量的价格为1010元,则每吨精矿价格为1010元×55%=555.5元.
公式中精矿销售费,系每吨精矿的销售费,不分摊折算成原矿费用.
每一具体矿区在地质评价时,可将具体矿区的各项参数代入上述公式中,求出矿区工业品位,从而对矿区的经济意义作出评价.
根据我国当前铅锌矿生产一般技术经济指标的计算,以及有些矿山生产实际资料,矿区工业品位一般要求,硫化矿Pb+Zn 4—5%,混合矿Pb+Zn 6—8%,氧化矿Pb+Zn 8—10%,这个数据也可供矿床经济评价和考虑矿区是否转入详细勘探的参考.对易采易选,交通方便的矿区,以及生产矿山外围的矿区,这个数据可酌情降低.今后,考虑到矿山管理及采选技术水平的不断提高,上述矿区工业品位的参考数据,也必然会逐步降低.
计算矿区工业品位,除"价格法"外,尚有其它一些方法,但多较上述方法繁杂,考虑到普查阶段所能获得的资料有限,故不一一列举,必要时可向工业设计部门了解.
③ 化验含金矿石中的铜具体步骤是
6.2原矿样及铜精矿中铜的测定—碘氟法
6.2.1主题内容与适用范围
本方法适用于铜精矿、其它含铜的岩石矿物中铜的测定,测定范围为1.0—50.0%。
本方法引自GB/T3884.1—2000铜精矿化学分析法铜量的测定。
6.2.2方法提要
试样经酸分解后,用氨水调节酸度,氟化氢铵掩蔽铁,在pH3.5~4.0的微酸性溶液中,铜(Ⅱ)与碘化钾作用游离出碘,再以淀粉作指示剂,用硫代硫酸钠标准溶液进行滴定。
6.2.3试剂
6.2.3.1 氟化氢铵
6.2.3.2 盐酸
6.2.3.3 硝酸
6.2.3.4 硫酸
6.2.3.5 硝硫混酸7+3
6.2.3.6 饱和溴水
6.2.3.7 氨水1+1
6.2.3.8 淀粉溶液(5g/L):称取0.5g可溶性淀粉置于200mL烧杯中,用少量水调成糊状,将100mL沸水缓缓倒入其中,继续煮沸至透明,取下冷却,现用现配。
6.2.3.9 硫氰酸钾
6.2.3.10碘化钾
6.2.3.11硫代硫酸钠标准溶液
配制:称取12.1g(或6g)硫代硫酸钠(Na2S2O3•5H2O)置于300mL烧杯中,加入煮沸过的冷蒸馏水溶解,加入0.1g碳酸钠,溶解后移入1L容量瓶中,用水定容。于暗处放置一周后过滤标定。
标定:称取4份0.1000g金属铜(99.99%)分别置于500mL三角烧杯中,加10mL硝酸(1+1),低温分解完全,加入5mL硫酸(1+1),蒸至冒尽三氧化硫白烟,加2mL冰乙酸,再加30—50mL煮沸溶解铜盐,取下冷至室温,以下操作同分析步骤。
按下式计算硫代硫酸钠的滴定度:
T--硫代硫酸钠对铜的滴定度(g/mL)
m--称取的铜量(g)
V--滴定时消耗的硫代硫酸钠(mL)
滴定度取5个结果的平均值,误差不大于0.00001g/mL
6.2.4分析步骤
称取0.5000~2.0000g试样于400mL烧杯中,加入少量水润湿,加10~15mL盐酸,低温加热煮沸3~5分钟(若试样中硅含量较高时需加入0.5g氟化氢铵,继续加热片刻),加入15mL硝硫混酸(7+3),继续加热在冒三氧化硫白烟之前加入1mL饱和溴水,蒸至冒尽三氧化硫白烟取下冷却,以水冲洗杯壁,吹约60mL水,加入0.5g脲素,加热煮沸溶解可溶性盐类,取下冷却至室温。向溶液中滴加3mL(1+1)氨水混匀至氢氧化铁沉淀完全,加入3g氟化氢铵,混匀,调节PH3.5—4.0,加入2g碘化钾,以硫代硫酸钠标准溶液滴定至淡黄色,加入5mL淀粉溶液, (如铅、铋含量高,需提前加淀粉溶液),继续滴定至淡蓝色,加入1g硫氰酸钾,激烈振摇至蓝色加深,再滴定至蓝色恰好消失为终点。
6.2.5分析结果的计算
按下式计算铜的百分含量:
式中:
T(Na2S2O3)--硫代硫酸钠标准溶液的滴定度,g/mL;
V(Na2S2O3)--滴定消耗硫代硫酸钠标准溶液的体积,mL;
m --试样量,g
④ 一般铜矿石物相分析
40.7.1.1 矿物分离
(1)硫酸铜的分离
在含铜的矿物中,能溶于水的仅硫酸盐一种;借此特性,可用水浸取,使铜的硫酸盐与其他铜矿物分离。如果试样中含有其他的硫化物(如闪锌矿)、盐基性氧化物(如氧化钙、氧化镁、三氧化二铝等)以及还原性金属铁时,将发生如下反应,导致硫酸铜的浸取不完全或者完全不能浸出。
CuSO4+Ca(Mg)O+H2O→Ca(Mg)SO4+Cu(OH)2↓
ZnS+CuSO4→ZnSO4+CuS
CuSO4+Fe→FeSO4+Cu
用水浸取的方法虽然有以上缺点,由于其操作简便快速,特别在配合选矿浮选试验时,仅需测定水溶性铜盐的情况下,可普遍采用。
对于用水不能完全浸出的试样,可用黑药钠盐(二乙基二硫代磷酸钠)水溶液作为硫酸铜的选择性溶剂。黑药钠盐与硫酸铜反应生成的不溶于水的黑药铜盐,然后用有机试剂(如苯)将黑药铜盐萃取出来。此方法避免了蒸馏水浸取产生的干扰,这是因为黑药铜盐的形成速度要比铜离子与硫化锌、金属氧化物,以及如前所述的许多干扰物间的反应速度快的缘故。黑药钠盐法测得胆矾的结果较为准确。由于这一方法操作手续较繁,除特殊要求,一般不用。
(2)自由氧化铜的分离
分离自由氧化铜的溶剂较多,对于矿物组成不同的矿石常选用不同的溶剂,经常采用的有酸性溶剂和碱性溶剂两大类。
A.酸性溶剂。含有亚硫酸钠的稀硫酸溶液是氧化铜矿物的良好溶剂,在含1gNa2SO3的(5+95)H2SO4溶液中,孔雀石、蓝铜矿全溶,赤铜矿只溶解一半,自然铜和硫化铜矿不溶。同时溶解与方解石、白云石、锰结合的氧化铜。
稀硫酸溶液中亚硫酸钠的引入是为了保持二氧化硫的还原气氛,避免硫化铜的溶解。当溶液中有三价铁存在时,由于亚硫酸钠本身不能还原三价铁到二价铁,所以会引起硫化铜的溶解;溶液中三价铁的质量愈多,硫化铜溶解的质量也就愈大。
含有3.0gNa2SO3的0.25mol/LH2SO4溶液浸取自由氧化铜,由于酸度的下降和亚硫酸钠用量的增加,使溶液中三价铁的质量下降,得到较为准确的自由氧化铜的结果。
用EDTA-TTHA(三乙四胺六乙酸)-氯化铵(pH3)为自由氧化铜的溶剂,孔雀石、蓝铜矿、赤铜矿全溶,辉铜矿溶解率为3%。
B.碱性溶剂。pH10的30g/L乙二胺溶液,加入适量的氯化铵和亚硫酸钠,在规定的条件下,孔雀石、蓝铜矿、赤铜矿溶解,硅孔雀石少量溶解,硫化铜、与白云岩结合的铜不溶。乙二胺对铜离子的配位能力较强,对钙、镁、铁的配位能力则较弱,因此在乙二胺溶液中白云石等脉石矿物溶解度很小,从而达到自由氧化铜与结合氧化铜分离目的。需要指出的是不同地区的辉铜矿有时会有不同程度溶解。
用碳酸铵-氢氧化铵溶液在室温浸取1h,铜的氧化物几乎全部溶解,同时溶出的还有自然铜。与铁结合的氧化铜不溶,辉铜矿的溶解可达10%,甚至更大。因此,当试样实属氧化矿,自然铜含量又很低,则碳酸铵-氢氧化铵溶液可作为自由氧化铜的选择性溶剂;否则会引起较大的误差。
(3)结合氧化铜的分离
要浸取这一部分氧化铜,首先要了解试样中氧化铜是与什么矿物相结合,即是与钙镁的碳酸盐(方解石、白云石)结合,与铁矿物、铁锰结核等矿物结合,还是与硅铝酸盐(高岭土、黏土)、石英等矿物结合,然后决定分离结合氧化铜的溶剂。
与钙镁的碳酸盐结合,可用含亚硫酸钠的(5+95)硫酸溶液。
与硅铝酸盐和石英结合,用含氟化氢铵和亚硫酸钠的(5+95)硫酸溶液浸取。
与铁矿物、铁锰结核等矿物结合,用(1+9)盐酸-10g/LSnCl2溶液浸取。
盐酸-氯化亚锡法只适用于氧化矿。含亚硫酸钠,氟化氢铵的稀硫酸溶液浸取时,虽然也有三价铁对硫化铜矿的干扰;但由于氟化物的引入,减少了对硫化铜矿的影响。一般情况下,含亚硫酸钠、氟化氢铵的稀硫酸溶液仍是总氧化铜的选择性溶剂。
为准确的测定次生硫化铜矿,可在浸取自由氧化铜后,用中性硝酸银溶液先浸取次生硫化铜,再用含亚硫酸钠、氟化氢铵的稀硫酸溶液浸取结合氧化铜。
(4)次生硫化铜的分离
A.硫脲法。硫脲与铜在酸性介质中形成配合物,以含10g硫脲的1mol/LHCl溶液为溶剂,在规定的条件下,辉铜矿、斑铜矿、铜蓝溶解,黄铜矿不溶。关于硫脲的用量、酸度大小和处理时间的长短,一般来说,硫脲用量愈多、酸度愈大、处理时间愈长、试样的粒度愈细,溶解的速度愈快,反之反应则慢。根据矿区不同,可选择最低试剂用量和最短处理时间。
B.银盐法。银盐法的主要依据是:
CuS+4Ag+→Ag2S+2Ag+Cu2+
CuS+2Ag+→Ag2S+Cu2+
Cu3FeS3+9Ag+→3Ag2S+3Ag+3Cu2++Fe3+
银盐浸取法可以在酸性、中性、氨性溶液中进行。
在酸性溶液中进行的条件为:试样经分离氧化铜后,以含硝酸银(20g/L)的(1+99)HNO3(H2SO4)在室温下浸取1h;此时,辉铜矿、铜蓝、斑铜矿溶解98%左右,黄铜矿溶解2%左右。引入铁盐溶液(10g/L),斑铜矿的溶解更趋于完全。
在中性溶液中进行的条件为:15g/LAgNO3溶液,室温浸取半小时,再用15g/L乙二胺溶液浸取45min。
在氨性溶液中进行的条件为:20g/LAgNO3-4mol/LNH4OH溶液,室温浸取60min。
(5)原生硫化铜的分离
留在最后残渣中进行铜的测定。
40.7.1.2 分析流程
(1)分析流程Ⅰ
适用于一般铜矿石分析,不适用于含有赤铜矿、自然铜的试样。
试剂
亚硫酸钠。
氟化氢铵。
图40.1 分析流程Ⅰ图
硫脲。
盐酸。
硫酸。
氢氧化钠溶液(120g/L)。
酚酞指示剂(1g/L)。
A.自由氧化铜的测定。称取0.5~1.0g(精确至0.0001g,称样量根据试样中铜的含量而定)试样置于250mL锥形瓶中,加入3gNa2SO3和60mL0.25mol/LH2SO4,室温震荡30min。过滤,滤液用硫代硫酸钠分离铜后,测定铜,即为自由氧化铜的铜。
B.结合氧化铜的测定。将上面的残渣放回原锥形瓶中,加入1gNa2SO3、2gNH4HF2和100mL(5+95)H2SO4,室温震荡1h。过滤,滤液同自由氧化铜一样分离测定铜,即为结合氧化铜的铜。
C.次生硫化铜的测定。将上面的残渣放回原锥形瓶中,加入10g硫脲和100mL0.5mol/LHCl,室温震荡3h。过滤,滤液以酚酞为指示剂,用120g/LNaOH溶液中和至红色,过量5mL,煮沸20min,陈化1h后过滤,滤液测定铜,即为次生硫化铜的铜。
D.原生硫化铜的测定。最后将残渣低温灰化后,盐酸-硝酸溶解,进行铜的测定,测得铜为原生硫化铜的铜。
(2)分析流程Ⅱ
图40.2 分析流程Ⅱ图
本分析流程不适用于硅孔雀石高的试样。
A.自由氧化铜的测定。称取0.5~1.0g(精确至0.0001g,称样量根据试样中铜的含量而定)试样置于250mL锥形瓶中,加入100mL30g/L乙二胺溶液(用盐酸调节,精密pH试纸试验,使pH为10)、5gNH4Cl和5gNa2SO3,室温震荡1h。过滤,用水洗涤,滤液用硝酸-硫酸处理,用适当的方法测定铜,即为自由氧化铜的铜。
B.次生硫化铜的测定。将上述残渣放入250mL烧杯中,加入100mLAgNO3溶液(10g/L)(用稀氢氧化钠溶液滴定至开始出现稳定的水解产物为止,过滤备用),于沸水浴中浸取30min,过滤。残渣放在锥形瓶中,加入100mL10g/L乙二胺溶液(配制方法同前),室温震荡45min,过滤。二次滤液合并,同上面一样用硝酸-硫酸处理,用适当的方法测定铜,即为次生硫化铜的铜。
C.结合氧化铜的测定。将上述残渣放回250mL烧杯中,加入100mL(5+95)H2SO4、1gNa2SO3和5gNH4HF2,于沸水浴中浸取1h。过滤,滤液用硫代硫酸钠分离铜后,测定铜即为结合氧化铜的铜。
对富含褐铁矿的铜矿,可用50mL(1+9)HCl,加入0.25gSnCl2·2H2O和0.5gNH4HF2,在沸水浴中浸取15min,过滤。滤液分离铜后,即为结合氧化铜的铜(氯化亚锡用量与褐铁矿含量有关,褐铁矿含量高时,应增加氯化亚锡的用量)。
D.原生硫化铜的测定。最后将以上残渣低温灰化后,盐酸-硝酸溶解,进行铜的测定,测得铜即为原生硫化铜的铜。
(3)分析流程Ⅲ
图40.3 分析流程Ⅲ图
本流程适用于以辉铜矿为主,并含赤铜矿的试样。
试剂
自由氧化铜浸取液称取15gEDTA二钠盐和20gNH4Cl,用水溶解;称取10gTTHA(三乙四胺六乙酸)用水加热溶解,趁热与上述溶液混合,并加水稀释至1000mL。
次生硫化铜浸取液称取10gAgNO3、7.2gFe(NO3)3,用水溶解,加入10mL(1+1)H2SO4,用水稀释至1000mL。
A.硫酸铜的分析。称取0.1~0.5g试样(精确至0.0001g,称样量随试样中铜含量而定)置于250mL塑料瓶中,加50mL水,室温震荡30min。用中速滤纸过滤,用水洗涤塑料瓶及沉淀各5次,滤液用100mL容量瓶承接,加入3mLHNO3,用水稀释至刻度,摇匀。用原子吸收光谱法测定硫酸铜中的铜。
B.自由氧化铜的测定。将分离硫酸铜后的残渣连同滤纸,移入原塑料瓶中,加入自由氧化铜浸取液50mL,室温下震荡30min。用中速滤纸过滤,滤液用100mL容量瓶承接,加入3mLHNO3,用水稀释至刻度,摇匀。原子吸收光谱法测定自由氧化铜中的铜。
C.结合氧化铜的分析。将分离自由氧化铜的残渣连同滤纸移入原瓶中,加入50mL(5+95)H2SO4-40g/LNa2SO3-40g/LNH4HF2浸取液,室温震荡1h。用中速滤纸过滤,滤液用100mL容量瓶承接,加入3mLHNO3,用水稀释至刻度,摇匀。原子吸收光谱法测定结合氧化铜中的铜。
D.次生硫化铜的测定。将分离结合氧化铜的残渣连同滤纸移入原瓶中,加入50mL次生硫化铜浸取液,室温震荡1h。用中速滤纸过滤,滤液用100mL容量瓶承接,加入3mLHNO3,用水稀释至刻度,原子吸收光谱法测定次生硫化铜中的铜。
E.原生硫化铜的测定。将分离次生硫化铜后的残渣移入瓷坩埚中,置于高温炉中,从低温开始升起,于600℃灰化30min,取出,冷却。移入100mL烧杯中,用少量水润湿,加入15mLHCl和5mLHNO3,于电热板上加热溶解,蒸发至湿盐状,加入3mLHNO3和10mL水,加热溶解盐类,冷却,移入100mL容量瓶中,用水稀释至刻度,摇匀。原子吸收光谱法测定原生硫化铜中的铜。
⑤ 常用铜合金的质量标准是多少
向您要的这种专业性很强的资料一般很难找到,很少人会上传,我找到一些关于您想要的资料一些国标,您在网络里找一下这些国标可能会得到您想要的,不过建议您买一本这方面的书籍。铜及铜合金 化学分析方法标准GB/T 3884.1—2000 铜精矿化学分析方法 铜量的测定
GB/T 3884.2—2000 铜精矿化学分析方法 金和银量的测定
GB/T 3884.3—2000 铜精矿化学分析方法 硫量的测定
GB/T 3884.4—2000 铜精矿化学分析方法 氧化镁量的测定
GB/T 3884.5—2000 铜精矿化学分析方法 氟量的测定
GB/T 3884.6—2000 铜精矿化学分析方法 铅、锌、镉和镍量的测定
GB/T 3884.7—2000 铜精矿化学分析方法 铅量的测定
GB/T 3884.8—2000 铜精矿化学分析方法 锌量的测定
GB/T 3884.9—2000 铜精矿化学分析方法 砷和铋量的测定
GB/T 3884.10—2000 铜精矿化学分析方法 锑量的测定
GB/T 5120.1—1995 粗铜化学分析方法 铜量的测定
GB/T 5120.2—1995 粗铜化学分析方法 砷量的测定
GB/T 5120.3—1995 粗铜化学分析方法 金和银量的测定
GB/T 5120.4—1995 粗铜化学分析方法 铅、铋、锑量的测定
GB/T 5121.1—1996 铜及铜合金化学分析方法 铜量的测
⑥ 硫代硫酸钠对铜的滴定度
铜与硫代硫酸钠反应是1:1,根据滴定度定义,是1毫升硫代硫酸钠相当于多少毫克铜,由此,硫代硫酸钠的体积为1毫升,故有:硫代硫酸钠的浓度为:C=滴定度/M(Cu).
【1】溶解的硫代硫酸钠溶液置暗处30d后标定,可网上许多都说置1周或2周的,到底多长时间最佳?答:没有多大差异,都影响不大.也可以以国家标准的要求为准:GBT601-2002
【2】过滤,答:就是暗处保存的硫代硫酸钠溶液,可以用定量滤纸过滤.目的是为了除渣.
【3】有人说“平行滴定两次,所用硫代硫酸钠溶液相差不能超过0.05ml,否则应重新做平行测定”,是否需要?怎么样才能精确到0.05ml?答:这个是在方法标准中的一般规定,是很有必要检验滴定结果精密度的需要.精确到0.05ml,就是要在近终点时,半滴半滴的滴定操作.
⑦ 硫量的测定 燃烧碘量法
1 范围
本方法规定地球化学勘查试样中全硫含量的测定方法。
本方法适用于土壤、水系沉积物试料中全硫量的测定。
本方法检出限(3S):0.005%硫。
本方法测定范围:0.015%~10%硫。
2 规范性引用文件
下列文件的条款通过本方法的本部分引用而成为本部分的条款。
下列不注日期的引用文件,其最新版本适用于本方法。
GB/T 20001.4 标准编写规则 第4部分:化学分析方法。
GB/T 14505 岩石和矿石化学分析方法总则及一般规定。
GB/T 14353.12—93 铜矿石、铅矿石和锌矿石化学分析方法:硫的测定。
GB 6379 测试方法的精密度通过实验室间试验确定标准方法的重复性和再现性。
GB/T 14496—93 地球化学勘查术语。
3 方法提要
试料在助熔剂存在下,于氧气流中在1250~1300℃高温燃烧,硫以二氧化硫形式释出,经气流带进盛有盐酸(4+996)的淀粉溶液吸收器中,反应生成的亚硫酸,用碘酸钾标准溶液滴定,借此测定全硫量。
4 试剂
除非另有说明,在分析中仅使用确认为分析纯的试剂和蒸馏水(或去离子水)或亚沸蒸馏水。若已检测到所用试剂中含有大于0.005%硫量,并确认已经影响到试料中低量硫的测定,应净化试剂。
4.1 高纯铁粉
4.2 二氧化硅粉
粒径应小于0.074mm,经1000℃灼烧2h,冷却后装入磨口玻璃瓶中备用。
4.3 盐酸(ρ 1.19g/mL)
4.4可溶性淀粉
4.5 淀粉稀盐酸吸收液
称取0.4g可溶性淀粉(4.4)于250mL烧杯中,加水调成糊状,加入100mL刚煮沸的水,并继续煮沸1min使溶液透明,冷却后加水至约800mL,加4mL盐酸(4.3),用水稀释至1000mL。
4.6 碘酸钾标准溶液c(1/6KIO3)=0.015mol/L
称取0.5350g碘酸钾,置于1000mL烧杯中,用含有1g氢氧化钾、5g碘化钾的400mL水溶解,移入1000mL容量瓶中,用水稀释至刻度,摇匀。
4.7 碘酸钾标准溶液c(1/6KIO3)=0.005mol/L 称取0.1783g碘酸钾,置于1000mL烧杯中,用含有 1g氢氧化钾、5g碘化钾的400mL水溶解,移入1000mL容量瓶中,用水稀释至刻度,摇匀。
4.7.1 碘酸钾溶液的标定 称取与分析试样组成及含硫量大致类似的一级标准物质三份,按照(6.4)条测定步骤进行标定(三份试样所消耗的碘酸钾标准溶液的极差值不超过0.20mL,即可取其平均值);并同时进行三份空白值[只对瓷舟及高纯铁粉(4.1)或二氧化硅粉(4.2)]的测定。
按以下计算式,测得碘酸钾标准溶液相当于硫的含量。
区域地球化学勘查样品分析方法
式中:T——1 mL碘酸钾标准溶液相当于硫的含量,g/mL;S0——一级标准物质中硫的标准值,%;V——滴定所消耗的碘酸钾标准溶液的体积平均值,mL;V0——滴定空白时所消耗的碘酸钾标准溶液的体积平均值,mL;m——一级标准物质质量,g。
5 仪器及材料
5.1 管式炉
5.2 瓷管
21mm×25mm×600mm未上釉的一等品瓷管,一端为尖嘴形。
5.3 瓷舟
长度约77mm~88mm,于1000℃灼烧1h,于干燥器中保存。
5.4 测定装置
仪器装置如图1:
图1 定硫仪装置
5.4.1 连接好测定装置,检查全部装置是否密闭,在保证仪器密闭以后,调节电压在65V左右,待温度升至400℃以后,逐渐升高电压;升高温度至(1250±50)℃,将导管插入盛有40mL淀粉稀盐酸吸收液(4.5)的气体吸收瓶中,调节气流为每秒2个~3个气泡,滴加碘酸钾标准溶液(4.6或4.7)至溶液呈浅蓝色。
5.4.2 比照溶液 于另一气体吸收瓶中注入同样量的淀粉稀盐酸吸收液(4.5),滴加碘酸钾标准溶液(4.6或4.7)至溶液呈以上相同的浅蓝色作为参比溶液(不计读数)。
6 分析步骤
6.1 试料
试样粒径应小于0.097mm,装入磨口小玻璃瓶中,于105℃干燥1h后,备用。
试料量 称取0.1g~1.0g试料,精确至0.0002g。
取样量及合宜浓度碘酸钾标准溶液的匹配见表1。
表1 取样量及合宜浓度碘酸钾标准溶液的匹配
6.2 空白试验
随同试料分析全过程做双份空白试验。
6.3 质量控制
选取同类型水系沉积物或土壤一级标准物质2个~4个样品,随同试料同时分析。
6.4 测定
6.4.1 将试料(6.1)均匀地平铺于预先垫有1.0g高纯铁粉(4.1)的瓷舟(5.3)中[对易分解样品,也可加二氧化硅粉(4.2)],搅拌均匀。
6.4.2 取下燃烧管端的橡皮塞,用镍铬丝钩将瓷舟推入管炉中预定位置(最热的部分),立即塞上橡皮塞,以每秒2个~3个气泡的速度通入空气至吸收液中。当吸收液下部开始褪色时,应立即滴加碘酸钾标准溶液(4.6或4.7),其滴加速度应使得淀粉稀盐酸吸收液的浅蓝色在吸收过程中保持不变,在停止褪色时,溶液颜色的深度应和比照溶液(5.4.2)的颜色一致。
6.4.3 在通入气流1min~2min内,如吸收液不再褪色,即达到滴定的终点,记录所消耗的碘酸钾标准溶液体积。
7 分析结果的计算
按下式计算硫的含量:
区域地球化学勘查样品分析方法
式中:T——1mL碘酸钾标准溶液相当于硫的量g/mL;V1——滴定消耗碘酸钾标准溶液的体积,mL;V0——空白试验溶液滴定所消耗碘酸钾标准溶液的平均值,mL;m——试料质量,g。
8 精密度
硫量的精密度见表2。
表2 精密度[w(S),10-2]
附 录 A
(资料性附录)
A.1 从实验室间试验结果得到的统计数据和其他数据
见表A.1。
本方法精密度协作试验数据是由多个实验室进行方法合作研究所提供的结果进行统计分析得到的。
表A.1中不需要将各浓度的数据全部列出,但至少列出3个或3个以上浓度所统计的参数。
A.1.1 列出了试验结果可接受的实验室个数(即除了经平均值及方差检验后,属界外值而被舍弃的实验室数据)。
A.1.2 列出了方法的相对误差参数,计算公式为,公式中为多个实验室测量平均值;x0为一级标准物质的标准值。
A.1.3 列出了方法的精密度参数,计算公式为RSD=Srxi×100%,公式中Sr为重复性标准差:SR为再现性标准差。为了与GB/T20001.4所列参数的命名一致,本方法精密度表列称谓为:“重复性变异系数”及“再现性变异系数”。
A.1.4 列出了方法的相对准确度参数。相对准确度是指测定值(平均值)占真值的百分比。
表A.1 S统计结果表
附加说明
本方法由中国地质调查局提出。
本方法由武汉综合岩矿测试中心技术归口。
本方法由武汉综合岩矿测试中心负责起草。
本方法主要起草人:方金东、熊采华。
本方法精密度协作试验由武汉综合岩矿测试中心江宝林、叶家瑜组织实施。
⑧ 任务铜精矿中铜的测定
——碘量法
任务描述
铜矿石中的铜,其含量变化幅度较大,涉及的测定方法也较广泛。目前对高、中含量的铜的测定多采用碘量法。碘量法已被列为铜精矿测定铜的国家标准方法(GB/T3884.1-2012 )。铜精矿分析一般要求测定铜、金、银、硫、氧化镁、氟、铅、锌、镉、镍、砷、铋、锑、汞等项目。本任务旨在通过实际操作训练,学会碘量法测定铜精矿中铜含量,熟练运用酸分解法对试样进行分解;能真实、规范记录原始记录并按有效数字修约进行结果计算。
任务实施
一、仪器和试剂准备
(1)玻璃仪器:酸式滴定管、锥形瓶、容量瓶、烧杯。
(2)铜片(≥99.99%):将铜片放入微沸的冰乙酸(ρ=1.05g/mL)中,微沸1min,取出用水和无水乙醇分别冲洗两次以上,在100℃烘箱中烘4min,冷却,置于磨口瓶中备用。
(3)溴水(AR)。
(4)氟化氢铵(AR)。
(5)盐酸(ρ=1.19g/mL)。
(6)硝酸(ρ=1.42g/mL)。
(7)硫酸(ρ=1.84g/mL)。
(8)高氯酸(ρ=1.67g/mL)。
(9)冰乙酸(1+3)(ρ=1.05g/mL)。
(10)硝酸(1+1)。
(11)氟化氢铵饱和溶液(贮存在乙烯瓶中)。
(12)乙酸铵溶液(300g/L):称取90g乙酸铵,置于400mL烧杯中,加入150mL蒸馏水和100mL冰乙酸,溶解后用水稀释至300mL,混匀,此溶液pH值为5。
(13)硫氰酸钾(100g/L):称取 10g 硫氰酸钾溶于 400mL 烧杯中,加 100mL 水溶解。
(14)淀粉溶液称取1g可溶性淀粉,用少量水调成糊状,再用刚煮沸的蒸馏水稀释至100mL,加热煮沸,冷却备用。
(15)三氯化铁(100g/L)。
(16)碘化钾(AR)
(17)硫代硫酸钠(约0.04mol/L):
——制备:称取100g 硫代硫酸钠(Na2S2O3·5H2O)置于1000mL 烧杯中,加入500mL无水碳酸钠(4g/L)溶液,移入10L棕色试剂瓶中,用煮沸并冷却的蒸馏水稀释至约10L,加入10mL三氯甲烷,静置两周,使用时过滤,补加1mL三氯甲烷,摇匀,静置2h。
——标定:称取0.080 g(精确至0.0001 g )处理过的纯铜三份,分别置于500mL锥形瓶中,加10mL硝酸(1+1),于电热板上低温加热至溶解,取下,用水吹洗杯壁。加入5mL硫酸(1+1),继续加热蒸至近干,取下稍冷,用约40mL蒸馏水冲洗杯壁,加热煮沸,使盐类完全溶解,取下,冷至室温。加1mL冰醋酸(1 +3),加3mL氟化氢铵饱和溶液,加入2~3g碘化钾摇动溶解,立即用硫代硫酸钠标准溶液滴定至浅黄色,加入2mL淀粉溶液继续滴定至浅蓝色,加5mL硫氰酸钾溶液,激烈摇振至蓝色加深,再滴定至蓝色刚好消失为终点。随同标定做空白试验。
按下式计算硫代硫酸钠标准滴定溶液的滴定度:
岩石矿物分析
式中:T为硫代硫酸钠标准溶液对铜的滴定度,g/mL;m为称取纯铜的质量,g;V为滴定纯铜所消耗的硫代硫酸钠标准溶液的体积,mL;V0为滴定空白所消耗的硫代硫酸钠标准溶液的体积,mL。
二、分析步骤
精确称取0.2000 g铜精矿置于300mL锥形瓶中,用少量水润湿,加入10mL浓盐酸置于电热板上低温加热3~5min取下稍冷,加入5mL硝酸和0.5~1mL溴,盖上表皿,混匀,低温加热(若试料中含硅、碳较高时加5~10mL高氯酸)待试样完全分解,取下稍冷,用少量蒸馏水冲洗表皿,继续加热蒸至近干,冷却。
用30mL蒸馏水冲洗表皿及杯壁,盖上表皿,置于电热板上煮沸,使可溶性盐类完全溶解,取下冷却至室温滴加乙酸铵溶液至红色不再加深为止,并过量3~5mL,然后滴加氟化氢铵饱和溶液至红色消失并且过量1mL混匀。加入2~3 g碘化钾摇动溶解,立即用硫代硫酸钠标准溶液滴定至浅黄色,加入2mL淀粉溶液继续滴定至浅蓝色,加5mL硫氰酸钾溶液,激烈摇振至蓝色加深,再滴定至蓝色刚好消失为终点。随同试样做空白试验。
若铁含量极少时,需补加1mL三氯化铁溶液;如果铅铋含量较高,需提前加入2mL淀粉溶液。
三、结果计算
按下式计算铜质量的百分含量:
岩石矿物分析
式中:w(Cu)为铜的质量分数,%;T为硫代硫酸钠标准滴定溶液对铜的滴定度,g/mL;V为滴定试样溶液消耗硫代硫酸钠标准滴定溶液的体积,mL;V0为滴定空白试样溶液所消耗硫代硫酸钠标准滴定溶液的体积,mL;m为称取试样的质量,g。
四、质量表格填写
任务完成后,填写附录一质量表格3、4、5。
任务分析
一、碘量法测定铜的原理
碘量法测定铜的依据是在弱酸性溶液中(pH=3~4 ),Cu2+与过量的KI作用,生成CuI沉淀和I2,析出的I2可以淀粉为指示剂,用Na2S2O3标准溶液滴定。有关反应如下:
岩石矿物分析
Cu2+与I-之间的反应是可逆的,任何引起Cu2+浓度减小(如形成配合物等)或引起CuI溶解度增大的因素均使反应不完全,加入过量KI,可使Cu2+的还原趋于完全。但是,CuI沉淀强烈吸附
CuI+SCN-→CuSCN+I-
硫氰酸盐应在接近终点时加入,否则SCN-会还原大量存在的Cu2+,致使测定结果偏低。溶液的pH值一般应控制在3.0~4.0之间。酸度过低,Cu2+易水解,使反应不完全,结果偏低,而且反应速率慢,终点拖长;酸度过高,则I-被空气中的氧氧化为I2(Cu2+催化此反应),使结果偏高。
Fe3+能氧化I-,对测定有干扰,但可加入NH4HF2掩蔽。NH4HF2是一种很好的缓冲溶液,因HF的Kα=6.6×10-4,故能使溶液的pH值保持在3.0~4.0之间。
二、Na2S2O3标准溶液的配制
由于Na2S2O3不是基准物,因此不能直接配制标准溶液。配制好的Na2S2O2溶液不稳定,容易分解,这是因为在水中的微生物、CO2、空气中的O2作用下,发生下列反应:
岩石矿物分析
岩石矿物分析
岩石矿物分析
此外,水中微量的Cu2+或Fe3+也能促进Na2S2O3溶液的分解。
因此,配制Na2S2O3溶液时,需要用新煮沸(为了除去CO2和杀死细菌)并冷却了的蒸馏水,加入少量Na2CO3使溶液呈弱碱性,以抑制细菌的生长。这样配制的溶液也不易长期保存,使用一段时间后要重新标定。如果发现溶液变浑浊或析出硫,也应该过滤后再标定或者另配溶液。
三、干扰元素及其消除办法
(1)三价铁离子:Fe3+的存在有显着干扰,因为它能氧化I-,析出碘,使结果偏高。为使碘量法测定铜在有铁存在下也能够进行,常把铁转变为不与碘化钾作用的配合物,一般是加入氟化钾(铵),此时,Fe3+结合成为不与碘化钾起反应的配离子
(2)亚砷酸、亚锑酸:在碘量法测定铜的条件下(pH>3.5),
岩石矿物分析
五价的砷、锑在pH>3.5的条件下对测定无干扰。因此可在分解试样时将三价砷和锑氧化为高价以消除其干扰。As(Ⅲ)和Sb加入溴水氧化。煮沸除去过量的溴。
(3)亚硝酸根有影响,可于溶液中加入尿素除去。
(4)碘化亚铜沉淀吸附碘,使测定结果偏低。加入硫氰酸铵和碘化亚铜作用,因硫氰化亚铜的溶解度比碘化亚铜的溶解度小,生成硫氰化亚铜,消除对碘的吸附。当铜含量很低时可不加硫氰酸铵。当铜的含量较高时,在滴定终点到达之前可加入适量的硫氰酸铵溶液,使碘化亚铜转变为硫氰化亚铜:
CuI+SCN-→CuSCN+I-
滴定时,体积不能太大,否则碘化亚铜又形成二价铜盐,使溶液变蓝,终点不明显。
实验指南与安全提示
/试样中碳含量较高时,需加2mL硫酸和2~5mL高氯酸,加热溶解至无黑色残渣,并蒸干。
试样中含硅、碳较高时,加0.5 g氟化氢铵和5~10mL高氯酸。
试样中含砷锑高时,需加入溴水,再加入硫酸冒烟处理。
碘化钾的用量:由于I-与Cu2+的反应是一个可逆反应:
岩石矿物分析
故为使Cu2+与I-定量地反应,I-(通常以KI形式加入)过量是十分必要的。实际分析中,一般加入2g左右的KI即可使Cu2+与I-定量地反应。另外,由于过量I-的存在,反应生成的碘能形成I3-,可减少因碘的易挥发性所带来的误差。
硫氰酸盐的作用:在测定铜的溶液中加入硫氰酸盐,使碘化亚铜变为溶解度更小的硫氰酸亚铜,反应如下:
CuI+SCN-→CuSCN+I-
①可克服碘化亚铜对碘的吸附(铜含量高时,这种吸附是相当显着的),使终点清晰;
②可使I-与Cu2+的反应进行得更完全;
③并可增加碘离子浓度,减少碘化钾(价格昂贵)的加入量。
硫氰酸盐的加入时间:当铜的含量较高时,可以接近终点时加入适量的硫氰酸钾应溶液。过早加入会使结果偏低,因为铜可被CNS-还原。反应如下:
岩石矿物分析
滴定时溶液的酸度:碘量法滴定铜可以在醋酸、硫酸或盐酸介质中进行,目前采用最多的还是在醋酸介质中进行,主要原因是在醋酸介质中比在硫酸或盐酸介质中较易控制测定所需的酸度。碘量法测定铜时,pH必须维持在3.5~4之间。
①在碱性溶液中
②在强酸性溶液中Na2S2O3溶液会发生分解:
③铜矿石中常含有Fe、As、Sb等金属,样品溶解后,溶液中的Fe3+、As(Ⅴ)、Sb(Ⅴ)等均能氧化I-为I2,干扰Cu2+的测定。As(Ⅴ)、Sb(Ⅴ)的氧化能力随酸度下降而下降,当pH>3.5时,其不能氧化I-。Fe3+的干扰可用F-掩蔽。
滴定时溶液的体积:体积不能太大。化学反应的速度与反应物的浓度有关。增大溶液体积,就相当于降低Cu2+与I-的浓度,使反应速度变慢,碘化亚铜又形成二价铜盐,出现终点返回的现象,终点不明显。
若亚硝酸根未除尽,可加少许尿素,煮沸数分钟。
空白溶液和铁含量很低的试样,为了便于调节pH,可加入数滴100g/L NH4Fe(SO4)2溶液。
案例分析
1.鸿盛矿业公司化验室某员工在用碘量法测定一含铜矿石中的铜含量时,用盐酸、硝酸溶解样品后,加入NH4F消除Fe3+的干扰,但其测定结果经过比较后发现偏高,请以你所学知识分析结果可能偏高的原因。
2.赣州钴钨公司购进了一批含铁铜矿石,对方出具的检验报告表明该批次铜含量为11.26%,实验室某员工在使用碘量法测定铜含量时,将样品溶解后,用NaAc溶液调节溶液的pH值3.5~5.0左右,加入KI还原Cu2+,滴定完毕,计算结果后发现结果比对方检验更高。技术主管在查找原因时发现该员工忘记加入NH4F,请分析此次测定失败的原因。
阅读材料
铜精矿知识简介
1.概述
自然界中含铜矿物有200多种,其中具有经济价值的只有十几种,最常见的铜矿是硫化铜矿,例如:黄铜矿(CuFeS2)、辉铜矿(Cu2S)、铜蓝(CuS)等,目前世界上80% 的铜来自此类矿石。铜精矿是将矿石粉碎球磨后,用药剂浮选分离捕集含铜矿物,使品位大大提高,供冶炼铜用。少数铜矿中(如湖北大冶铜绿山矿),常常夹杂有孔雀石,这是一种含铜的碳酸盐矿物,色泽优美,经琢磨雕刻,可做成佩饰或项链等装饰品,属稀有宝石类,深受人们喜爱。
我国开采冶炼铜矿的历史悠久,可追溯到春秋时代,距今有2700多年。大冶有色金属公司铜绿山矿在生产过程中发现的古铜矿遗址,经考古发掘,已清理出从西周至西汉千余年间不同结构、不同支护方式的竖井、斜井、盲井数百座,平巷百余条,以及一批春秋早期的炼铜鼓风竖炉,随同出土还有大量的用于采矿、选矿和冶炼的生产工具,在遗址旁近2km2的地表堆积着约40 万吨以上的古代炼渣,渣样分析,其铜含量小于0.7%,它表明了我国古代采冶的规模和高超的技术水平。
我国现代化的大型炼铜采冶企业有:江西铜业有限公司、大冶有色金属公司(湖北)、铜陵有色金属公司(江苏)、白银有色金属公司(甘肃)、中条山有色金属公司(山西)以及云南冶炼厂、沈阳冶炼厂、葫芦岛锌厂等。由于自采铜矿的品位和数量有限,不能满足生产的需要,因而对进口铜精矿的需求日益增大,与我国有过贸易往来的铜精矿生产国有:巴布亚新几内亚、菲律宾、印尼、澳大利亚、蒙古、摩洛哥、莫桑比克、南非、波兰、秘鲁、智利、墨西哥、美国、加拿大等。
2.特性
进口硫化铜精矿一般为墨绿色到黄绿色,也有灰黑色,其中时有夹杂少许蓝色粉末。铜精矿是浮选产物,粒度较细,接近干燥的铜精矿在储运过程中易扬尘散失,也不适宜远洋运输,因此生产过程中常保持10% 左右的水分。气温高时,硫化铜精矿易氧化,特别是远洋运输时间长,或在夏季交接货物时,氧化现象更为严重。验收这种铜精矿时,往往铜品位降低,收货重量增加。正是由于这种原因,铜精矿在贸易的交接过程中,是以总金属量来衡量的。用于品质分析的样品,应密封于铝箔袋中存放。实验证明,封存于纸袋或聚乙烯袋中的样品,放置干燥器中保存一个月,铜的百分含量明显降低,随着保存时间的延长,铜品位还会继续下降,而封存在铝箔袋中的样品,即使存放半年,铜含量也无明显变化。
从冶炼的角度来说,铜精矿中硫和铁的含量高些好,一般要求铜/硫比为1∶1 左右,Fe>20%,Si<10%,这种矿在反射炉中造渣性能和流动性能都较好。对杂质元素Cr、Hg、Pb、Zn、Bi、As、F、Cl等含量要求愈低愈好,主要是为了满足冶炼的要求和对环境的保护。
3.用途
铜精矿供炼铜用。从矿石冶炼得到的“羊角铜”即粗铜,经电解可得到纯度很高的电解铜。在冶炼和电解过程中,还可以从阳极泥、电解液、烟道灰和尾气中分别回收金、银、钯、铂、镉、铅、锌、铋、硒、碲、硫等元素或化合物,余热可发电。综合利用不仅可减少废液、废渣、废气对环境和空气的污染,同时变废为宝,提高了铜精矿的利用价值。
4.化学成分
硫化铜精矿的主要成分是铜、铁、硫,主要的贵金属有金、银,其他成分有硅、钙、镁、铅、锌、铝、锰、铋、锑、氟、氯等,因原矿产地和选矿水平不同,品质差异较大。
5.进口规格
进口铜精矿以成交批中铜、金、银的纯金属量作为结算依据,一般铜含量为25%~45%,金含量为1~35g/t,银含量在30~350g/t范围内,当金含量小于1g/t,银含量小于30 g/t时,金、银二项不计价。经多年进口铜精矿实践,从价格和回收率来考虑,企业喜欢进口含铜量在30% 左右,金银含量在不计价范围之铜精矿。对冶炼和环境有害的元素F、Cl、Pb+Zn、As、Sb、Hg要求在限量之下,超过限量则按规定罚款,超过最高限量时,该批货拒收。
6.检验标准
铜精矿的检验,一般按500 t作为一个副批,在衡重的同时扦取代表性样品,制备水分测定样品和品质分析样品,按规定进行分析测定,以全部副批检验结果的加权平均值作为最终结果。发货人和收货人品质检验结果在误差范围内,该批货可顺利交接,若双方结果超出0.3%,金的结果超出0.5g/t,银的结果超出10~15g/t,有可能需要仲裁。
我国铜精矿的技术条件标准和检验标准较为完整。YS/T318 -2007 是铜精矿技术条件标准,该标准将铜精矿原有的15个品级修订为五个品级;取制样方法和水分含量测定按GB/T14263-2010进行,根据工作实践,有的铜精矿中金银含量特别高,GB/T3884规定了Cu、Au、Ag、S、As、MgO、F、Pb、Zn、Cd的检验方法。
⑨ 求铜矿化验方法!
1)铜精矿
在自然界中自然铜存量极少,一般多以金属共生矿的形态存在。铜矿石中常伴生有多种重金属和稀有金属,如金、银、砷、锑、铋、硒、铅、碲、钴、镍、钼等。
根据铜化合物的性质,铜矿物可分为自然铜、硫化矿和氧化矿三种类型,主要以硫化矿和氧化矿,特别是硫化矿分布最广,目前世界铜产量的90%左右来自硫化矿。
铜精矿的检验方法:铜矿水分含量的测定按GB1426-1993《散装浮选铜精矿取样、制样方法》中的规定进行,铜精矿化学成分的测定按GB3884-2000《铜精矿化学分析方法》的规定进行。
矿石中的铜的含量一般都低于15%,所以用原子吸收方法比较好,所选用的仪器应该是原子吸收分光光度计 关于原子吸收分光光度计的仪器种类很多,大同小异,原理相同。我所用的是北京地质仪器矿产部的GGX-9型。
具体的操作方法:在电子分析天平称取0.1g样品于100ml的小烧杯中,加5ml 硝酸在电热板上加热一会,再加15ml 盐酸,摇匀。把溶液蒸发至干(不要蒸糊了)
后,加入1:1的硝酸40ml加入溶解盐类,煮沸就可以了。然后定溶于100ml容量瓶中,从中取出10ml于100ml容量瓶中(保持3%的酸度)定容。就可以上机测定了:
计算公式:
W(Cu)/10-2 = p.v .10-4/ms
P 是吸光度所对应的浓度。
V 是上机时的体积。
ms 是样品的质量。
化学分析方法一般使用滴定法,EDTA或者硫代硫酸钠,光度法也可以使用,但是电解法使用较少。
⑩ 铜矿石中硫含量的测定问题误差来源
硫铁矿的一种,化学式均为FeS2,常见的多为黄铁矿(黄硫),还有一种是白铁矿,俗称白硫矿