导航:首页 > 研究方法 > 聚类分析特征选取方法

聚类分析特征选取方法

发布时间:2022-10-09 23:01:21

A. 关于聚类分析

1。聚类分析的特点
聚类分析(cluster analysis)是根据事物本身的特性研究个体的一种方法,目的在于将相似的事物归类。它的原则是同一类中的个体有较大的相似性,不同类的个体差异性很大。这种方法有三个特征:适用于没有先验知识的分类。如果没有这些事先的经验或一些国际、国内、行业标准,分类便会显得随意和主观。这时只要设定比较完善的分类变量,就可以通过聚类分析法得到较为科学合理的类别;可以处理多个变量决定的分类。例如,要根据消费者购买量的大小进行分类比较容易,但如果在进行数据挖掘时,要求根据消费者的购买量、家庭收入、家庭支出、年龄等多个指标进行分类通常比较复杂,而聚类分析法可以解决这类问题;聚类分析法是一种探索性分析方法,能够分析事物的内在特点和规律,并根据相似性原则对事物进行分组,是数据挖掘中常用的一种技术。
这种较成熟的统计学方法如果在市场分析中得到恰当的应用,必将改善市场营销的效果,为企业决策提供有益的参考。其应用的步骤为:将市场分析中的问题转化为聚类分析可以解决的问题,利用相关软件(如SPSS、SAS等)求得结果,由专家解读结果,并转换为实际操作措施,从而提高企业利润,降低企业成本。
2.应用范围
聚类分析在客户细分中的应用

消费同一种类的商品或服务时,不同的客户有不同的消费特点,通过研究这些特点,企业可以制定出不同的营销组合,从而获取最大的消费者剩余,这就是客户细分的主要目的。常用的客户分类方法主要有三类:经验描述法,由决策者根据经验对客户进行类别划分;传统统计法,根据客户属性特征的简单统计来划分客户类别;非传统统计方法,即基于人工智能技术的非数值方法。聚类分析法兼有后两类方法的特点,能够有效完成客户细分的过程。
例如,客户的购买动机一般由需要、认知、学习等内因和文化、社会、家庭、小群体、参考群体等外因共同决定。要按购买动机的不同来划分客户时,可以把前述因素作为分析变量,并将所有目标客户每一个分析变量的指标值量化出来,再运用聚类分析法进行分类。在指标值量化时如果遇到一些定性的指标值,可以用一些定性数据定量化的方法加以转化,如模糊评价法等。除此之外,可以将客户满意度水平和重复购买机会大小作为属性进行分类;还可以在区分客户之间差异性的问题上纳入一套新的分类法,将客户的差异性变量划分为五类:产品利益、客户之间的相互作用力、选择障碍、议价能力和收益率,依据这些分析变量聚类得到的归类,可以为企业制定营销决策提供有益参考。
以上分析的共同点在于都是依据多个变量进行分类,这正好符合聚类分析法解决问题的特点;不同点在于从不同的角度寻求分析变量,为某一方面的决策提供参考,这正是聚类分析法在客户细分问题中运用范围广的体现。

聚类分析在实验市场选择中的应用

实验调查法是市场调查中一种有效的一手资料收集方法,主要用于市场销售实验,即所谓的市场测试。通过小规模的实验性改变,以观察客户对产品或服务的反应,从而分析该改变是否值得在大范围内推广。
实验调查法最常用的领域有:市场饱和度测试。市场饱和度反映市场的潜在购买力,是市场营销战略和策略决策的重要参考指标。企业通常通过将消费者购买产品或服务的各种决定因素(如价格等)降到最低限度的方法来测试市场饱和度。或者在出现滞销时,企业投放类似的新产品或服务到特定的市场,以测试市场是否真正达到饱和,是否具有潜在的购买力。前述两种措施由于利益和风险的原因,不可能在企业覆盖的所有市场中实施,只能选择合适的实验市场和对照市场加以测试,得到近似的市场饱和度;产品的价格实验。这种实验往往将新定价的产品投放市场,对顾客的态度和反应进行测试,了解顾客对这种价格的是否接受或接受程度;新产品上市实验。波士顿矩阵研究的企业产品生命周期图表明,企业为了生存和发展往往要不断开发新产品,并使之向明星产品和金牛产品顺利过渡。然而新产品投放市场后的失败率却很高,大致为66%到90%。因而为了降低新产品的失败率,在产品大规模上市前,运用实验调查法对新产品的各方面(外观设计、性能、广告和推广营销组合等)进行实验是非常有必要的。
在实验调查方法中,最常用的是前后单组对比实验、对照组对比实验和前后对照组对比实验。这些方法要求科学的选择实验和非实验单位,即随机选择出的实验单位和非实验单位之间必须具备一定的可比性,两类单位的主客观条件应基本相同。
通过聚类分析,可将待选的实验市场(商场、居民区、城市等)分成同质的几类小组,在同一组内选择实验单位和非实验单位,这样便保证了这两个单位之间具有了一定的可比性。聚类时,商店的规模、类型、设备状况、所处的地段、管理水平等就是聚类的分析变量。 转

B. 如何运用聚类分析法

聚类分析法是理想的多变量统计技术,主要有分层聚类法和迭代聚类法。聚类通过把目标数据放入少数相对同源的组或“类”(cluster)里。分析表达数据,(1)通过一系列的检测将待测的一组基因的变异标准化,然后成对比较线性协方差。(2)通过把用最紧密关联的谱来放基因进行样本聚类,例如用简单的层级聚类(hierarchical clustering)方法。这种聚类亦可扩展到每个实验样本,利用一组基因总的线性相关进行聚类。(3)多维等级分析(multidimensional scaling analysis,MDS)是一种在二维Euclidean “距离”中显示实验样本相关的大约程度。(4)K-means方法聚类,通过重复再分配类成员来使“类”内分散度最小化的方法。

聚类方法有两个显着的局限:首先,要聚类结果要明确就需分离度很好(well-separated)的数据。几乎所有现存的算法都是从互相区别的不重叠的类数据中产生同样的聚类。但是,如果类是扩散且互相渗透,那么每种算法的的结果将有点不同。结果,每种算法界定的边界不清,每种聚类算法得到各自的最适结果,每个数据部分将产生单一的信息。为解释因不同算法使同样数据产生不同结果,必须注意判断不同的方式。对遗传学家来说,正确解释来自任一算法的聚类内容的实际结果是困难的(特别是边界)。最终,将需要经验可信度通过序列比较来指导聚类解释。

第二个局限由线性相关产生。上述的所有聚类方法分析的仅是简单的一对一的关系。因为只是成对的线性比较,大大减少发现表达类型关系的计算量,但忽视了生物系统多因素和非线性的特点。

从统计学的观点看,聚类分析是通过数据建模简化数据的一种方法。传统的统计聚类分析方法包括系统聚类法、分解法、加入法、动态聚类法、有序样品聚类、有重叠聚类和模糊聚类等。采用k-均值、k-中心点等算法的聚类分析工具已被加入到许多着名的统计分析软件包中,如SPSS、SAS等。
从机器学习的角度讲,簇相当于隐藏模式。聚类是搜索簇的无监督学习过程。与分类不同,无监督学习不依赖预先定义的类或带类标记的训练实例,需要由聚类学习算法自动确定标记,而分类学习的实例或数据对象有类别标记。聚类是观察式学习,而不是示例式的学习。
从实际应用的角度看,聚类分析是数据挖掘的主要任务之一。就数据挖掘功能而言,聚类能够作为一个独立的工具获得数据的分布状况,观察每一簇数据的特征,集中对特定的聚簇集合作进一步地分析。
聚类分析还可以作为其他数据挖掘任务(如分类、关联规则)的预处理步骤。
数据挖掘领域主要研究面向大型数据库、数据仓库的高效实用的聚类分析算法。

聚类分析是数据挖掘中的一个很活跃的研究领域,并提出了许多聚类算法。
这些算法可以被分为划分方法、层次方法、基于密度方法、基于网格方法和
基于模型方法。
1 划分方法(PAM:PArtitioning method) 首先创建k个划分,k为要创建的划分个数;然后利用一个循环
定位技术通过将对象从一个划分移到另一个划分来帮助改善划分质量。典型的划分方法包括:
k-means,k-medoids,CLARA(Clustering LARge Application),
CLARANS(Clustering Large Application based upon RANdomized Search).
FCM
2 层次方法(hierarchical method) 创建一个层次以分解给定的数据集。该方法可以分为自上
而下(分解)和自下而上(合并)两种操作方式。为弥补分解与合并的不足,层次合
并经常要与其它聚类方法相结合,如循环定位。典型的这类方法包括:
第一个是;BIRCH(Balanced Iterative Recing and Clustering using Hierarchies) 方法,它首先利用树的结构对对象集进行划分;然后再利
用其它聚类方法对这些聚类进行优化。
第二个是CURE(Clustering Using REprisentatives) 方法,它利用固定数目代表对象来表示相应聚类;然后对各聚类按照指定
量(向聚类中心)进行收缩。
第三个是ROCK方法,它利用聚类间的连接进行聚类合并。
最后一个CHEMALOEN,它则是在层次聚类时构造动态模型。
3 基于密度方法,根据密度完成对象的聚类。它根据对象周围的密度(如
DBSCAN)不断增长聚类。典型的基于密度方法包括:
DBSCAN(Densit-based Spatial Clustering of Application with Noise):该算法通过不断生长足够高密
度区域来进行聚类;它能从含有噪声的空间数据库中发现任意形状的聚类。此方法将一个聚类定义
为一组“密度连接”的点集。
OPTICS(Ordering Points To Identify the Clustering Structure):并不明确产生一
个聚类,而是为自动交互的聚类分析计算出一个增强聚类顺序。。
4 基于网格方法,首先将对象空间划分为有限个单元以构成网格结构;然后利
用网格结构完成聚类。
STING(STatistical INformation Grid) 就是一个利用网格单元保存的统计信息进行基
于网格聚类的方法。
CLIQUE(Clustering In QUEst)和Wave-Cluster 则是一个将基于网格与基于密度相结合的方
法。
5 基于模型方法,它假设每个聚类的模型并发现适合相应模型的数据。典型的
基于模型方法包括:
统计方法COBWEB:是一个常用的且简单的增量式概念聚类方法。它的输入对象是采
用符号量(属性-值)对来加以描述的。采用分类树的形式来创建
一个层次聚类。
CLASSIT是COBWEB的另一个版本.。它可以对连续取值属性进行增量式聚
类。它为每个结点中的每个属性保存相应的连续正态分布(均值与方差);并利
用一个改进的分类能力描述方法,即不象COBWEB那样计算离散属性(取值)
和而是对连续属性求积分。但是CLASSIT方法也存在与COBWEB类似的问题。
因此它们都不适合对大数据库进行聚类处理.

C. 聚类分析法

聚类分析,亦称群分析或点分析,是研究多要素事物分类问题的数量方法。其基本原理是,根据样本自身的属性,用数学方法按照某些相似性或差异性指标,定量地确定样本之间的亲疏关系,并按亲疏关系的程度对样本进行聚类(徐建华,1994)。

聚类分析方法,应用在地下水中,是在各种指标和质量级别标准约束条件下,通过样品的各项指标监测值综合聚类,以判别地下水质量的级别。常见的聚类分析方法有系统聚类法、模糊聚类法和灰色聚类法等。

(一)系统聚类法

系统聚类法的主要步骤有:数据标准化、相似性统计量计算和聚类。

1.数据标准化

在聚类分析中,聚类要素的选择是十分重要的,它直接影响分类结果的准确性和可靠性。在地下水质量研究中,被聚类的对象常常是多个要素构成的。不同要素的数据差异可能很大,这会对分类结果产生影响。因此当分类要素的对象确定之后,在进行聚类分析之前,首先对聚类要素进行数据标准化处理。

假设把所考虑的水质分析点(G)作为聚类对象(有m个),用i表示(i=1,2,…,m);把影响水质的主要因素作为聚类指标(有n个),用j表示(j=1,2,…,n),它们所对应的要素数据可用表4-3给出。在聚类分析中,聚类要素的数据标准化的方法较多,一般采用标准差法和极差法。

表4-3 聚类对象与要素数据

对于第j个变量进行标准化,就是将xij变换为x′ij

(1)总和标准化

区域地下水功能可持续性评价理论与方法研究

这种标准化方法所得的新数据x′ij满足

区域地下水功能可持续性评价理论与方法研究

(2)标准差标准化

区域地下水功能可持续性评价理论与方法研究

式中:

由这种标准化方法所得的新数据x′ij,各要素的平均值为0,标准差为1,即有

区域地下水功能可持续性评价理论与方法研究

(3)极差标准化

区域地下水功能可持续性评价理论与方法研究

经过这种标准化所得的新数据,各要素的极大值为1,极小值为0,其余的数值均在[0,1]闭区间内。

上述式中:xij为j变量实测值;xj为j变量的样本平均值;sj为样本标准差。

2.相似性统计量

系统聚类法要求给出一个能反映样品间相似程度的一个数字指标,需要找到能量度相似关系的统计量,这是系统聚类法的关键。

相似性统计量一般使用距离系数和相似系数进行计算。距离系数是把样品看成多维空间的点,用点间的距离来表示研究对象的紧密关系,距离越小,表明关系越密切。相似系数值表明样本和变量间的相似程度。

(1)距离系数

常采用欧几里得绝对距离,其中i样品与j样品距离dij

区域地下水功能可持续性评价理论与方法研究

dij越小,表示i,j样品越相似。

(2)相似系数

常见的相似系数有夹角余弦和相关系数,计算公式为

1)夹角余弦

区域地下水功能可持续性评价理论与方法研究

在式(4-20)中:-1≤cosθij≤1。

2)相关系数

区域地下水功能可持续性评价理论与方法研究

式中:dij为i样品与j样品的欧几里得距离;cosθij为i样品与j样品的相似系数;rij为i样品与j样品的相关系数;xik为i样品第k个因子的实测值或标准化值;xjk为j样品第k个因子的实测值或标准化值;

为i样品第k个因子的均值,

为j样品第k个因子的均值,

;n为样品的数目;k为因子(变量)数。

3.聚类

在选定相似性统计量之后,根据计算结果构成距离或相似性系数矩阵(n×n),然后通过一定的方法把n个样品组合成不同等级的分类单位,对类进行并类,即将最相似的样品归为一组,然后,把次相似的样品归为分类级别较高的组。聚类主要有直接聚类法、距离聚类法(最短距离聚类法、最远距离聚类法)。

(1)直接聚类法

直接聚类法,是根据距离或相似系数矩阵的结构一次并类得到结果,是一种简便的聚类方法。它首先把各个分类对象单独视为一类,然后根据距离最小或相似系数最大的原则,依次选出一对分类对象,并成新类。如果一对分类对象正好属于已归的两类,则把这两类并为一类。每一次归并,都划去该对象所在的列与列序相同的行。经过n-1次把全部分类对象归为一类,最后根据归并的先后顺序作出聚类分析谱系图。

(2)距离聚类法

距离聚类法包括最短距离聚类法和最远距离聚类法。最短距离聚类法具有空间压缩性,而最远距离聚类法具有空间扩张性。这两种聚类方法关于类之间的距离计算可以用一个统一的公式表示:

区域地下水功能可持续性评价理论与方法研究

当γ=-0.5时,式(4-22)计算类之间的距离最短;当γ=0.5时,式(4-22)计算类之间的距离最远。

最短、最远距离法,是在原来的n×n距离矩阵的非对角元素中找出dpq=min(dij)或dpq=max(dij),把分类对象Gp和Gq归并为一新类Gr,然后按计算公式:

dpq=min(dpk,dqk)(k≠ p,q) (4-23)

dpq=max(dpk,dqk)(k≠ p,q) (4-24)

计算原来各类与新类之间的距离,这样就得到一个新的(n-1)阶的距离矩阵;再从新的距离矩阵中选出最小或最大的dij,把Gi和Gj归并成新类;再计算各类与新类的距离,直至各分类对象被归为一类为止。最后综合整个聚类过程,作出最短距离或最远距离聚类谱系图(图4-1)。

图4-1 地下水质量评价的聚类谱系图

(二)模糊聚类法

模糊聚类法是普通聚类方法的一种拓展,它是在聚类方法中引入模糊概念形成的。该方法评价地下水质量的主要步骤,包括数据标准化、标定和聚类3个方面(付雁鹏等,1987)。

1.数据标准化

在进行聚类过程中,由于所研究的各个变量绝对值不一样,所以直接使用原始数据进行计算就会突出绝对值大的变量,而降低绝对值小的变量作用,特别是在进行模糊聚类分析中,模糊运算要求必须将数据压缩在[0,1]之间。因此,模糊聚类计算的首要工作是解决数据标准化问题。数据标准化的方法见系统聚类分析法。

2.标定与聚类

所谓标定就是计算出被分类对象间的相似系数rij,从而确定论域集U上的模糊相似关系Rij。相似系数的求取,与系统聚类分析法相同。

聚类就是在已建立的模糊关系矩阵Rij上,给出不同的置信水平λ(λ∈[0,1])进行截取,进而得到不同的分类。

聚类方法较多,主要有基于模糊等价关系基础上的聚类与基于最大树的聚类。

(1)模糊等价关系方法

所谓模糊等价关系,是指具有自反性(rii=1)、对称性(rij=rji)与传递性(R·R⊆R)的模糊关系。

基于模糊等价关系的模糊聚类分析方法的基本思想是:由于模糊等价关系R是论域集U与自己的直积U×U上的一个模糊子集,因此可以对R进行分解,当用λ-水平对R作截集时,截得的U×U的普通子集Rλ就是U上的一个普通等价关系,也就是得到了关于U中被分类对象元素的一种。当λ由1下降到0时,所得的分类由细变粗,逐渐归并,从而形成一个动态聚类谱系图(徐建华,1994)。此类分析方法的具体步骤如下。

第一步:模糊相似关系的建立,即计算各分类对象之间相似性统计量。

第二步:将模糊相似关系R改造为模糊等价关系R′。模糊等价关系要求满足自反性、对称性与传递性。一般而言,模糊相似关系满足自反性和对称性,但不满足传递性。因此,需要采用传递闭合的性质将模糊相似关系改造为模糊等价关系。改造的方法是将相似关系R自乘,即

R2=R·R

R4=R2·R2

这样计算下去,直到:R2k=Rk·Rk=Rk,则R′=Rk便是一个模糊等价关系。

第三步:在不同的截集水平下进行聚类。

(2)最大树聚类方法

基于最大树的模糊聚类分析方法的基本思路是:最大树是一个不包含回路的连通图(图4-2);选取λ水平对树枝进行截取,砍去权重低于λ 的枝,形成几个孤立的子树,每一棵子树就是一个类的集合。此类分析方法的具体步骤如下。

图4-2 最大聚类支撑树图

第一步:计算分类对象之间的模糊相似性统计量rij,构建最大树。

以所有被分类的对象为顶点,当两点间rij不等于0时,两点间可以用树干连接,这种连接是按rij从大到小的顺序依次进行的,从而构成最大树。

第二步:由最大树进行聚类分析。

选择某一λ值作截集,将树中小于λ值的树干砍断,使相连的结点构成一类,即子树,当λ由1到0时,所得到的分类由细变粗,各结点所代表的分类对象逐渐归并,从而形成一个动态聚类谱系图。

在聚类方法中,模糊聚类法比普通聚类法有较大的突破,简化了运算过程,使聚类法更易于掌握。

(三)灰色聚类法

灰色聚类是根据不同聚类指标所拥有的白化数,按几个灰类将聚类对象进行归纳,以判断该聚类对象属于哪一类。

灰色聚类应用于地下水水质评价中,是把所考虑的水质分析点作为聚类对象,用i表示(i=1,2,…,n);把影响水质的主要因素作为聚类指标,用j表示(j=1,2,…,m),把水质级别作为聚类灰数(灰类),用k表示(k=1,2,3)即一级、二级、三级3个灰类(罗定贵等,1995)。

灰色聚类的主要步骤:确定聚类白化数、确定各灰色白化函数fjk、求标定聚类权重ηjk、求聚类系数和按最大原则确定聚类对象分类。

1.确定聚类白化数

当各灰类白化数在数量上相差悬殊时,为保证各指标间的可比性与等效性,必须进行白化数的无量纲化处理。即给出第i个聚类对象中第j个聚类指标所拥有的白化数,i=1,2,…,n;j=1,2,…,m。

2.确定各灰色白化函数

建立满足各指标、级别区间为最大白化函数值(等于1),偏离此区间愈远,白化函数愈小(趋于0)的功效函数fij(x)。根据监测值Cki,可在图上(图4-3)解析出相应的白化函数值fjk(Cik),j=1,2,…,m;k=1,2,3。

3.求标定聚类权重

根据式(4-25),计算得出聚类权重ηjk的矩阵(n×m)。

区域地下水功能可持续性评价理论与方法研究

式中:ηjk为第j个指标对第k个灰类的权重;λjk为白化函数的阈值(根据标准浓度而定)。

图4-3 白化函数图

注:图4-3白化函数f(x)∈[0,1],具有下述特点:①平顶部分,表示该量的最佳程度。这部分的值为最佳值,即系数(权)为1,f(x)=max=1(峰值),x∈[x2,x3]。②白化函数是单调变化的,左边部分f(x)=L(x),单调增,x∈(x1,x2],称为白化的左支函数;右边部分f(x)=R(x),单调减,x∈[x3,x4),称为白化的右支函数。③白化函数左右支函数对称。④白化函数,为了简便,一般是直线。⑤白化函数的起点和终点,一般来说是人为凭经验确定。

4.求聚类系数

σik=∑fjk(dij)ηjk (4-26)

式中:σik为第i个聚类对象属于第k个灰类的系数,i=1,2,…,n;k=1,2,3。

5.按最大原则确定聚类对象分类

由σik构造聚类向量矩阵,行向量最大者,确定k样品属于j级对应的级别。

用灰色聚类方法进行地下水水质评价,能最大限度地避免因人为因素而造成的“失真、失效”现象。

聚类方法计算相对复杂,但是计算结果与地下水质量标准级别对应性明显,能够较全面反映地下水质量状况,也是较高层次定量研究地下水质量的重要方法。

D. 四种聚类方法之比较

四种聚类方法之比较
介绍了较为常见的k-means、层次聚类、SOM、FCM等四种聚类算法,阐述了各自的原理和使用步骤,利用国际通用测试数据集IRIS对这些算法进行了验证和比较。结果显示对该测试类型数据,FCM和k-means都具有较高的准确度,层次聚类准确度最差,而SOM则耗时最长。
关键词:聚类算法;k-means;层次聚类;SOM;FCM
聚类分析是一种重要的人类行为,早在孩提时代,一个人就通过不断改进下意识中的聚类模式来学会如何区分猫狗、动物植物。目前在许多领域都得到了广泛的研究和成功的应用,如用于模式识别、数据分析、图像处理、市场研究、客户分割、Web文档分类等[1]。
聚类就是按照某个特定标准(如距离准则)把一个数据集分割成不同的类或簇,使得同一个簇内的数据对象的相似性尽可能大,同时不在同一个簇中的数据对象的差异性也尽可能地大。即聚类后同一类的数据尽可能聚集到一起,不同数据尽量分离。
聚类技术[2]正在蓬勃发展,对此有贡献的研究领域包括数据挖掘、统计学、机器学习、空间数据库技术、生物学以及市场营销等。各种聚类方法也被不断提出和改进,而不同的方法适合于不同类型的数据,因此对各种聚类方法、聚类效果的比较成为值得研究的课题。
1 聚类算法的分类
目前,有大量的聚类算法[3]。而对于具体应用,聚类算法的选择取决于数据的类型、聚类的目的。如果聚类分析被用作描述或探查的工具,可以对同样的数据尝试多种算法,以发现数据可能揭示的结果。
主要的聚类算法可以划分为如下几类:划分方法、层次方法、基于密度的方法、基于网格的方法以及基于模型的方法[4-6]。
每一类中都存在着得到广泛应用的算法,例如:划分方法中的k-means[7]聚类算法、层次方法中的凝聚型层次聚类算法[8]、基于模型方法中的神经网络[9]聚类算法等。
目前,聚类问题的研究不仅仅局限于上述的硬聚类,即每一个数据只能被归为一类,模糊聚类[10]也是聚类分析中研究较为广泛的一个分支。模糊聚类通过隶属函数来确定每个数据隶属于各个簇的程度,而不是将一个数据对象硬性地归类到某一簇中。目前已有很多关于模糊聚类的算法被提出,如着名的FCM算法等。
本文主要对k-means聚类算法、凝聚型层次聚类算法、神经网络聚类算法之SOM,以及模糊聚类的FCM算法通过通用测试数据集进行聚类效果的比较和分析。
2 四种常用聚类算法研究
2.1 k-means聚类算法
k-means是划分方法中较经典的聚类算法之一。由于该算法的效率高,所以在对大规模数据进行聚类时被广泛应用。目前,许多算法均围绕着该算法进行扩展和改进。
k-means算法以k为参数,把n个对象分成k个簇,使簇内具有较高的相似度,而簇间的相似度较低。k-means算法的处理过程如下:首先,随机地选择k个对象,每个对象初始地代表了一个簇的平均值或中心;对剩余的每个对象,根据其与各簇中心的距离,将它赋给最近的簇;然后重新计算每个簇的平均值。这个过程不断重复,直到准则函数收敛。通常,采用平方误差准则,其定义如下:

这里E是数据库中所有对象的平方误差的总和,p是空间中的点,mi是簇Ci的平均值[9]。该目标函数使生成的簇尽可能紧凑独立,使用的距离度量是欧几里得距离,当然也可以用其他距离度量。k-means聚类算法的算法流程如下:
输入:包含n个对象的数据库和簇的数目k;
输出:k个簇,使平方误差准则最小。
步骤:
(1) 任意选择k个对象作为初始的簇中心;
(2) repeat;
(3) 根据簇中对象的平均值,将每个对象(重新)赋予最类似的簇;
(4) 更新簇的平均值,即计算每个簇中对象的平均值;
(5) until不再发生变化。
2.2 层次聚类算法
根据层次分解的顺序是自底向上的还是自上向下的,层次聚类算法分为凝聚的层次聚类算法和分裂的层次聚类算法。
凝聚型层次聚类的策略是先将每个对象作为一个簇,然后合并这些原子簇为越来越大的簇,直到所有对象都在一个簇中,或者某个终结条件被满足。绝大多数层次聚类属于凝聚型层次聚类,它们只是在簇间相似度的定义上有所不同。四种广泛采用的簇间距离度量方法如下:

这里给出采用最小距离的凝聚层次聚类算法流程:
(1) 将每个对象看作一类,计算两两之间的最小距离;
(2) 将距离最小的两个类合并成一个新类;
(3) 重新计算新类与所有类之间的距离;
(4) 重复(2)、(3),直到所有类最后合并成一类。
2.3 SOM聚类算法
SOM神经网络[11]是由芬兰神经网络专家Kohonen教授提出的,该算法假设在输入对象中存在一些拓扑结构或顺序,可以实现从输入空间(n维)到输出平面(2维)的降维映射,其映射具有拓扑特征保持性质,与实际的大脑处理有很强的理论联系。
SOM网络包含输入层和输出层。输入层对应一个高维的输入向量,输出层由一系列组织在2维网格上的有序节点构成,输入节点与输出节点通过权重向量连接。学习过程中,找到与之距离最短的输出层单元,即获胜单元,对其更新。同时,将邻近区域的权值更新,使输出节点保持输入向量的拓扑特征。
算法流程:
(1) 网络初始化,对输出层每个节点权重赋初值;
(2) 将输入样本中随机选取输入向量,找到与输入向量距离最小的权重向量;
(3) 定义获胜单元,在获胜单元的邻近区域调整权重使其向输入向量靠拢;
(4) 提供新样本、进行训练;
(5) 收缩邻域半径、减小学习率、重复,直到小于允许值,输出聚类结果。
2.4 FCM聚类算法
1965年美国加州大学柏克莱分校的扎德教授第一次提出了‘集合’的概念。经过十多年的发展,模糊集合理论渐渐被应用到各个实际应用方面。为克服非此即彼的分类缺点,出现了以模糊集合论为数学基础的聚类分析。用模糊数学的方法进行聚类分析,就是模糊聚类分析[12]。
FCM算法是一种以隶属度来确定每个数据点属于某个聚类程度的算法。该聚类算法是传统硬聚类算法的一种改进。

算法流程:
(1) 标准化数据矩阵;
(2) 建立模糊相似矩阵,初始化隶属矩阵;
(3) 算法开始迭代,直到目标函数收敛到极小值;
(4) 根据迭代结果,由最后的隶属矩阵确定数据所属的类,显示最后的聚类结果。
3 四种聚类算法试验
3.1 试验数据
实验中,选取专门用于测试分类、聚类算法的国际通用的UCI数据库中的IRIS[13]数据集,IRIS数据集包含150个样本数据,分别取自三种不同的莺尾属植物setosa、versicolor和virginica的花朵样本,每个数据含有4个属性,即萼片长度、萼片宽度、花瓣长度,单位为cm。在数据集上执行不同的聚类算法,可以得到不同精度的聚类结果。
3.2 试验结果说明
文中基于前面所述各算法原理及算法流程,用matlab进行编程运算,得到表1所示聚类结果。

如表1所示,对于四种聚类算法,按三方面进行比较:(1)聚错样本数:总的聚错的样本数,即各类中聚错的样本数的和;(2)运行时间:即聚类整个过程所耗费的时间,单位为s;(3)平均准确度:设原数据集有k个类,用ci表示第i类,ni为ci中样本的个数,mi为聚类正确的个数,则mi/ni为第i类中的精度,则平均精度为:

3.3 试验结果分析
四种聚类算法中,在运行时间及准确度方面综合考虑,k-means和FCM相对优于其他。但是,各个算法还是存在固定缺点:k-means聚类算法的初始点选择不稳定,是随机选取的,这就引起聚类结果的不稳定,本实验中虽是经过多次实验取的平均值,但是具体初始点的选择方法还需进一步研究;层次聚类虽然不需要确定分类数,但是一旦一个分裂或者合并被执行,就不能修正,聚类质量受限制;FCM对初始聚类中心敏感,需要人为确定聚类数,容易陷入局部最优解;SOM与实际大脑处理有很强的理论联系。但是处理时间较长,需要进一步研究使其适应大型数据库。
聚类分析因其在许多领域的成功应用而展现出诱人的应用前景,除经典聚类算法外,各种新的聚类方法正被不断被提出。

E. 请教:聚类前的特征选择

K-means算法是很典型的基于距离的聚类算法,采用距离作为相似性的评价指标,即认为两个对象的距离越近,其相似度就越大。该算法认为簇是由距离靠近的对象组成的,因此把得到紧凑且独立的簇作为最终目标。 k个初始类聚类中心点的选取对聚类结果具。

F. 聚类分析的基本步骤

聚类分析的主要步骤
聚类分析的主要步骤
1.数据预处理,
2.为衡量数据点间的相似度定义一个距离函数,
3.聚类或分组,
4.评估输出。
数据预处理包括选择数量,类型和特征的标度,它依靠特征选择和特征抽取,特征选择选择重要的特征,特征抽取把输入的特征转化为一个新的显着特征,它们经常被用来获取一个合适的特征集来为避免“维数灾”进行聚类,数据预处理还包括将孤立点移出数据,孤立点是不依附于一般数据行为或模型的数据,因此孤立点经常会导致有偏差的聚类结果,因此为了得到正确的聚类,我们必须将它们剔除。
既然相类似性是定义一个类的基础,那么不同数据之间在同一个特征空间相似度的衡量对于聚类步骤是很重要的,由于特征类型和特征标度的多样性,距离度量必须谨慎,它经常依赖于应用,例如,通常通过定义在特征空间的距离度量来评估不同对象的相异性,很多距离度都应用在一些不同的领域,一个简单的距离度量,如Euclidean距离,经常被用作反映不同数据间的相异性,一些有关相似性的度量,例如PMC和SMC,能够被用来特征化不同数据的概念相似性,在图像聚类上,子图图像的误差更正能够被用来衡量两个图形的相似性。
将数据对象分到不同的类中是一个很重要的步骤,数据基于不同的方法被分到不同的类中,划分方法和层次方法是聚类分析的两个主要方法,划分方法一般从初始划分和最优化一个聚类标准开始。CrispClustering,它的每一个数据都属于单独的类;FuzzyClustering,它的每个数据可能在任何一个类中,CrispClustering和FuzzyClusterin是划分方法的两个主要技术,划分方法聚类是基于某个标准产生一个嵌套的划分系列,它可以度量不同类之间的相似性或一个类的可分离性用来合并和分裂类,其他的聚类方法还包括基 于密度的聚类,基于模型的聚类,基于网格的聚类。
评估聚类结果的质量是另一个重要的阶段,聚类是一个无管理的程序,也没有客观的标准来评价聚类结果,它是通过一个类有效索引来评价,一般来说,几何性质,包括类间的分离和类内部的耦合,一般都用来评价聚类结果的质量,类有效索引在决定类的数目时经常扮演了一个重要角色,类有效索引的最佳值被期望从真实的类数目中获取,一个通常的决定类数目的方法是选择一个特定的类有效索引的最佳值,这个索引能否真实的得出类的数目是判断该索引是否有效的标准,很多已经存在的标准对于相互分离的类数据集合都能得出很好的结果,但是对于复杂的数据集,却通常行不通,例如,对于交叠类的集合。

G. 模糊聚类分析的常用分类方法

数据分类中,常用的分类方法有多元统计中的系统聚类法、模糊聚类分析等.在模糊聚类分析中,首先要计算模糊相似矩阵,而不同的模糊相似矩阵会产生不同的分类结果;即使采用相同的模糊相似矩阵,不同的阈值也会产生不同的分类结果.“如何确定这些分类的有效性”便成为模糊聚类的要点。
识别研究中的一个重要问题.文献,把有效性不满意的原因归结于数据集几何结构的不理想.但笔者认为,不同的几何结构是对实际需要的反映,我们不能排除实际需要而追求所谓的“理想几何结构”,不理想的分类不应归因于数据集的几何结构.针对同一模糊相似矩阵,文献建立了确定模糊聚类有效性的方法.用固定的显着性水平,在不同分类的F一统计量和F检验临界值的差中选最大者,即为有效分类.但是,当显着性水平变化时,此方法的结果也会变化.文献引进了一种模糊划分嫡来评价模糊聚类的有效性,并人为规定当两类的嫡大于一数时,此两类可合并,通过逐次合并,最终得到有效分类.此方法人为干预较多,当这个规定数不同时,也会得到不同的结果.另外这两种方法也未比较不同模糊相似矩阵的分类结果. 系统聚类法是基于模糊等价关系的模糊聚类分析法。在经典的聚类分析方法中可用经典等价关系对样本集X进行聚类。设R是 X上的经典等价关系。对X中的两个元素x和y,若xRy或(x,y)∈R,则将x和y并为一类,否则x和y不属于同一类。
相应地,可用X上的模糊等价关系对样本集X进行模糊聚类。设慒是X上的模糊等价关系,是慒 的隶属函数。对于任何α∈【0,1】,定义慒 的α截关系 Sα是X上的经典等价关系。根据Sα得到X 的一种聚类,称为在α水平上的聚类。
应用这种方法,分类的结果与α的取值大小有关。α取值越大,分的类数越多。α小到某一值时,X中的所有样本归并为一类。这种方法的优点在于可按实际需要选取α的值,以便得到恰当的分类。
系统聚类法的步骤如下:
①用数字描述样本的特征。设被聚类的样本集为 X={x1,…,xn}。每个样本均有p种特征,记作xi=(xi1,…,xip);i=1,2,…,n;xip表示描述样本xi的第p个特征的数。 ②规定样本之间的相似系数rij(0≤rij≤1;i,j=1,…,n)。rij描述样本xi与xj之间的差异或相似的程度。rij 越接近于1,表明样本xi与xj之间的差异越小;rij 越接近于0,表明xi与xj之间的差异越大。rij可用主观评定或集体评分的方法规定,也可用公式计算,如采用夹角余弦法、最小最大法、算术平均最小法等。
因为rii=1(xi与自身没有差异),rij=rji(xi与xj之间的差异等同于xj与xi之间的差异),所以由rij(i,j=1,…,n)可得X上的模糊相似关系。
一般,R不具备可传递性,因而R不一定是 X上的模糊等价关系。
③运用合成运算R=R⋅R(或R=R⋅R等)求出最接近相似关系R的模糊等价关系S=R(或R等)。若R已是模糊等价关系,则取S=R。
④选取适当水平α(0≤α≤1),得到X 的一种聚类。 逐步聚类法是一种基于模糊划分的模糊聚类分析法。它是预先确定好待分类的样本应分成几类,然后按最优化原则进行再分类,经多次迭代直到分类比较合理为止。
在分类过程中可认为某个样本以某一隶属度隶属于某一类,又以另一隶属度隶属于另一类。这样,样本就不是明确地属于或不属于某一类。若样本集有 n个样本要分成c类,则它的模糊划分矩阵为此c×n模糊划分矩阵有下列特性:①uij∈【0,1】;i=1,…,c;j=1,…,n。②即每一样本属于各类的隶属度之和为1。③即每一类模糊子集都不是空集。

H. 如何对用户进行聚类分析

需要搜集用户的哪些特征?

聚类分析变量选择的原则是:在哪些变量组合的前提,使得类别内部的差异尽可能的小,即同质性高,类别间的差异尽可能的大,即同质性低,并且变量之间不能存在高度相关。

常用的用户特征变量有:


人口学变量:如年龄、性别、婚姻、教育程度、职业、收入等。通过人口学变量进行分类,了解每类人口的需求有何差异。


用户目标:如用户为什么使用这个产品?为什么选择线上购买?了解不同使用目的的用户的各自特征,从而查看各类目标用户的需求。


用户使用场景:用户在什么时候,什么情况下使用这个产品?了解用户在各类场景下的偏好/行为差异。


用户行为数据:如使用频率,使用时长,客单价等。划分用户活跃等级,用户价值等级等。


态度倾向量表:如消费偏好,价值观等,看不同价值观、不同生活方式的群体在消费取向或行为上的差异。

需要多少样本量?

没有限制,通常情况下与实际应用有关,如果非要加一个理论的限制,通常认为,样本的个数要大于聚类个数的平方。

①如果需要聚类的数据量较少(<100),那么三种方法(层次聚类法,K-均值聚类法,两步聚类法)都可以考虑使用。优先考虑层次聚类法,因为层次聚类法产生的树状图更加直观形象,易于解释,并且,层次聚类法提供方法、距离计算方式、标准化方式的丰富程度也是其他两种方法所无法比拟的。

②如果需要聚类的数据量较大(>1000),应该考虑选择快速聚类别法或者两步聚类法进行。

③如果数据量在100~1000之间,理论上现在的计算条件是可能满足任何聚类方法的要求的,但是结果的展示会比较困难,例如不可能再去直接观察树状图了。

应用定量方法还是定性方法?

聚类分析是一种定量分析方法,但对聚类分析结果的解释还需要结合定性资料讨论。

1.聚类分析的定义与用途

聚类分析(Cluster Analysis)是一种探索性的数据分析方法,根据指标/变量的数据结构特征,对数据进行分类,使得类别内部的差异尽可能的小,即同质性高,类别间的差异尽可能的大,即同质性低。

2.聚类分析的方法

①层次聚类法(Hierarchical),也叫系统聚类法。既可处理分类变量,也可处理连续变量,但不能同时处理两种变量类型,不需要指定类别数。聚类结果间存在着嵌套,或者说层次的关系。

②K-均值聚类法(K-Means Cluster),也叫快速聚类法。针对连续变量,也可处理有序分类变量,运算很快,但需要指定类别数。K-均值聚类法不会自动对数据进行标准化处理,需要先自己手动进行标准化分析。

③两步聚类法(Two-Step Cluster):可以同时处理分类变量和连续变量,能自动识别最佳的类别数,结果比较稳定。如果只对连续变量进行聚类,描述记录之间的距离性时可以使用欧氏(Euclidean)距离,也可以使用对数似然值(Log-likelihood),如果使用前者,则该方法和传统的聚类方法并无太大区别;但是若进行聚类的还有离散变量,那么就只能使用对数似然值来表述记录间的差异性。当聚类指标为有序类别变量时,Two-Step Cluster出来的分类结果没有K-means cluster的明晰,这是因为K-means算法假定聚类指标变量为连续变量。

3.聚类分析的步骤

①确定研究目的:研究问题关注点有哪些、是否有先验分类数…

②问卷编制:态度语句李克特项目、有序类别…

③确定分析变量:问卷变量的类型,连续or分类,有序类别or无序类别、是否纳入后台数据,变量间相关性低…

④聚类分析:聚类分析方法选择、数据标准化方法、聚类类别数确定…

⑤结果检验:类别间差异分析、是否符合常理…

⑥聚类结果解释:类别的命名、类别间的差异、结合定性资料解释…

I. 一文总结聚类分析步骤!

一、聚类

1.准备工作

(1) 研究目的

聚类分析是根据事物本身的特性研究个体分类的方法,聚类分析的原则是同一类别的个体有较大相似性,不同类别的个体差异比较大。

(2) 数据类型

1)定量:数字有比较意义,比如数字越大代表满意度越高,量表为典型定量数据。

2)定类:数字无比较意义,比如性别,1代表男,2代表女。

PS: SPSSAU会根据数据类型自动选择聚类方法。

K-modes聚类: 数据类型仅定类时。

2.上传数据到SPSSAU

登录账号后进入SPSSAU页面,点击右上角“上传数据”,将处理好的数据进行“点击上传文件”上传即可。

3.SPSSAU操作

(1)拖拽分析项

1) SPSSAU进阶方法→聚类。

2)检查

检查分析项是否都在左侧分析框中。

3)进行拖拽

(2)选择参数

聚类个数: 聚类个数设置为几类主要以研究者的研究思路为标准,如果不进行设置,SPSSAU默认聚类个数为3,通常情况下,建议设置聚类数量介于3~6个之间。

标准化: 聚类算法是根据距离进行判断类别,因此一般需要在聚类之前进行标准化处理,SPSSAU默认是选中进行标准化处理。数据标准化之后,数据的相对大小意义还在(比如数字越大GDP越高),但是实际意义消失了。

保存类别: 分析选择保存‘保存类别’,SPSSAU会生成 新标题 用于标识,也可以右上角“我的数据”处查看到分析后的“聚类类别”。

新标题类似如下:Cluster_********。

4.SPSSAU分析

(1)聚类类别基本情况汇总分析

使用聚类分析对样本进行分类,使用Kmeans聚类分析方法,从上表可以看出:最终聚类得到4类群体,此4类群体的占比分别是20.00%, 30.00%, 20.00%, 30.00%。整体来看, 4类人群分布较为均匀,整体说明聚类效果较好。

(2)聚类类别汇总图分析

上图可以直观的看到各个类别所占百分比,4类群体的占比分别是20.00%, 30.00%, 20.00%, 30.00%。

(3)聚类类别方差分析差异对比

使用方差分析去探索各个类别的差异特征,从上表可知:聚类类别群体对于所有研究项均呈现出显着性(p<0.05),意味着聚类分析得到的4类群体,他们在研究项上的特征具有明显的差异性,具体差异性可通过平均值进行对比,并且最终结合实际情况,对聚类类别进行命名处理。

(4)聚类项重要性对比

从上述结果看,所有研究项均呈现出显着性,说明不同类别之间的特征有明显的区别,聚类的效果较好。

(5)聚类中心

5.其它说明

(1)聚类中心是什么?

聚类中心是聚类类别的中心点情况,比如某类别时年龄对应的聚类中心为20,意味着该类别群体年龄基本在20岁左右。初始聚类中心基本无意义,它是聚类算法随机选择的聚类点,如果需要查看聚类中心情况,需要关注于最终聚类中心。实际分析时聚类中心的意义相对较小,其仅为聚类算法的计算值而已。

(2)k-prototype聚类是什么?

如果说聚类项中包括定类项,那么SPSSAU默认会进行K-prototype聚类算法(而不是kmeans算法)。定类数据不能通过数字大小直接分析距离,因而需要使用K-prototype聚类算法。

(3)聚类分析时SSE是什么意思?

在进行Kmeans聚类分析时SPSSAU默认输出误差平方和SSE值,该值可用于测量各点与中心点的距离情况,理论上是希望越小越好,而且如果同样的数据,聚类类别越多则SSE值会越小(但聚类类别过多则不便于分析)。

SSE指标可用于辅助判断聚类类别个数,建议在不同聚类类别数量情况下记录下SSE值,然后分析SSE值的减少幅度情况,如果发现比如从3个聚类到4个类别时SSE值减少幅度明显很大,那么此时选择4个聚类类别较好。

二、分层聚类

1.准备工作

(1)研究目的

从分析角度上看,聚类分析可分为两种,一种是按样本(或个案)聚类,此类聚类的代表是K-means聚类方法;另外一种是按变量(或标题)聚类,此类聚类的代表是分层聚类。

(2)数据类型

2.上传数据到SPSSAU

登录账号后进入SPSSAU页面,点击右上角“上传数据”,将处理好的数据进行“点击上传文件”上传即可。

3.SPSSAU操作

(1)拖拽分析项

1) SPSSAU进阶方法→分层聚类。

2)检查

检查分析项是否都在左侧分析框中。

3)进行拖拽

(2)确定参数

SPSSAU会默认聚类为3类并且呈现表格结果,如果希望更多的类别个数,可自行进行设置。

4.SPSSAU分析

(1)聚类项描述分析

上表格展示总共8个分析项(即8个裁判数据)的基本情况,包括均值,最大或者最小值,中位数等,以便对于基础数据有个概括性了解。整体上看,8个裁判的打分基本平均在8分以上。

(2)聚类类别分布表分析

总共聚类为3个类别,以及具体分析项的对应关系情况。在上表格中展示出来,上表格可以看出:裁判8单独作为一类;裁判5,3,7这三个聚为一类;以及裁判1,6,2,4作为一类。

(PS:聚类类别与分析项上的对应关系可以在上表格中得到,同时也可以查看聚类树状图得出更多信息。至于聚类类别分别应该叫做什么名字,这个需要结合对应有关系情况,自己单独进行命名。)

(3)聚类树状图分析

上图为聚类树状图的展示,聚类树状图是将聚类的具体过程用图示法手法进行展示;最上面一行的数字仅仅是一个刻度单位,代表相对距离大小;一个结点表示一次聚焦过程。

树状图的解读上,建议单独画一条垂直线,然后对应查看分成几个类别,以及每个类别与分析项的对应关系。比如上图中,红色垂直线最终会拆分成3个类别;第1个类别对应裁判8;第2个类别对应裁判5,3,7;第3个类别对应裁判1,6,2,4。

如果是聚为四类;从上图可看出,明显的已经不再合适。原因在于垂直线不好区分成四类。也即说明有2个类别本应该在一起更合适(上图中的裁判1与6/2/4);但是如果分成4类,此时裁判1会单独成一类。所以画垂直线无法区分出类别。因而综合分析来看,最终聚类为3个类别最为适合。

当然在分析时也可以考虑分成2个类别,此时只需要对应将垂直线移动即可。

5.其它说明

(1)针对分层聚类,需要注意以下几点:

(2)什么时候做因子分析后再做聚类分析?

如果题项较多,可先做因子分析,得到每个维度(因子)的数据,再进行聚类。

三、总结

聚类分析广泛的应用于自然科学、社会科学等领域。在分析时可以比较多次聚类结果,综合选择更适合的方案。

以上就是聚类分析步骤汇总,更多干货请前往官网查看!

阅读全文

与聚类分析特征选取方法相关的资料

热点内容
获得金属单质常用的方法 浏览:316
用什么方法止痒好 浏览:631
瘦肚子后背运动方法视频 浏览:186
冬天怎么除甲醛最快最有效的方法 浏览:477
胸部热敷的正确方法 浏览:447
三七食用方法降血压 浏览:690
裁员的方法和技巧 浏览:724
uv胶水的使用方法 浏览:178
淋浴架子安装方法 浏览:492
贴片电容万用表测量方法 浏览:62
婴儿病毒性感冒鼻塞用什么方法 浏览:896
植物进化的研究方法 浏览:486
使用简写方法实现背景图片不平铺 浏览:139
如何自制消灭蟑螂最快最有效的方法 浏览:684
测距仪使用方法视频 浏览:985
在家锻炼屁股肌肉的好方法 浏览:100
西式糕点制作方法图片 浏览:521
正确的刹车排空气方法 浏览:990
火龙果冰粉的制作方法和步骤 浏览:82
宽带拨号错误解决方法 浏览:238