A. 如何做好权重质量分的优化
淘宝搜索流量主要从关键词进入,上位流量自然上升,搜索流量上升代表某个关键词的产品排名上升。排名上升的方法只是从直通车的角度来考虑,直通车的权重上升与点击量和点击率的量级有很大关系,其他因素也有关系,但转化率等影响不大。开车容易,开车难,怎么开车,不让情况越来越差?首先,让我们谈谈更值得注意的事情。
在驾驶方面
进入流量时,会影响你的店铺标签和产品标签,影响可能是正向的,也可能是负向的,正确的不管什么神的操作,最重要的基础一定要做好,基础做好的想法逐渐明确。否则,一切都会混乱,没有任何意义,结果也无法估量。
二、提高直通车质量分:
,首先分析影响直通车质量分的几个因素:创造性质量、相关性和购买者购物体验。
。创意品质
。图片的创意和观赏性
不同角度的视角有不同的效果,如果想让买方知道的欲望,通过照片的细节和细节,卖方会觉得可靠。另外,推进图必须具有一定的创造性。千篇一律是普通的,要抓住产品的各个点,抓住买方需要的点。
图像的清晰度足够高
购买者想买你的东西,你的推广图太模糊,这在一定程度上影响了购买者,不能说是转换了。而且,既然能看到什么,为什么不高度明确,不要想什么模糊的感觉,明确度高也说明店铺的水平,买家也觉得可靠。
要强调宝物的卖点
最重要的是,卖点不太追求精致,你宝物的卖点可能有十几个或几十个,但是抓住的点太多的话,买方会感到夸张或不太真实,所以抓住卖点最主要的几个
。关联性
关键词关联性也很重要,主要从类别和属性方面进行分析,利用数据进行分析,找到适合自己产品的关键词是最好的。
3。购买者体验
说到购买者体验,相关因素比较多,转化率、收藏购买和呼叫等因素对购买者体验的维度有影响。从买方的角度来看,如果婴儿本身在价格、图片细节和收藏方面有一定的优势,点击和交易的可能性仍然很高,随之因素会正向增加,买方体验必须做得更好。
今天主要简单分享质量点,实际上想经营店铺,产品、投资等各个方面都是必不可少的,需要自己的技术,了解各方面的合理优化,促进店铺的更好发展。如果你想走在竞争对手面前,你必须了解你的朋友和你自己,规则会改变,数据会改变,所以你需要有能力结合数据分析和调整。
推荐阅读:
。这十种提高淘宝运营权重的方法
是什么?提高淘宝的权利从什么方面开始?
权重值是什么意思,提升淘宝权重的有效方法
<p
B. 不知道怎样计算权重告诉你8种确定权重方法
计算权重是一种常见的分析方法,在实际研究中,需要结合数据的特征情况进行选择,比如数据之间的波动性是一种信息量,那么可考虑使用CRITIC权重法或信息量权重法;也或者专家打分数据,那么可使用AHP层次法或优序图法。
本文列出常见的权重计算方法,并且对比各类权重计算法的思想和大概原理,使用条件等,便于研究人员选择出科学的权重计算方法。
首先列出常见的8类权重计算方法,如下表所示:
这8类权重计算的原理各不相同,结合各类方法计算权重的原理大致上可分成4类,分别如下:
第一类、信息浓缩 (因子分析和主成分分析)
计算权重时,因子分析法和主成分法均可计算权重,而且利用的原理完全一模一样,都是利用信息浓缩的思想。因子分析法和主成分法的区别在于,因子分析法加带了‘旋转’的功能,而主成分法目的更多是浓缩信息。
‘旋转’功能可以让因子更具有解释意义,如果希望提取出的因子具有可解释性,一般使用因子分析法更多;并非说主成分出来的结果就完全没有可解释性,只是有时候其解释性相对较差而已,但其计算更快,因而受到广泛的应用。
比如有14个分析项,该14项可以浓缩成4个方面(也称因子或主成分),此时该4个方面分别的权重是多少呢?此即为因子分析或主成分法计算权重的原理,它利用信息量提取的原理,将14项浓缩成4个方面(因子或主成分),每个因子或主成分提取出的信息量(方差解释率)即可用于计算权重。接下来以SPSSAU为例讲解具体使用因子分析法计算权重。
如果说预期14项可分为4个因子,那么可主动设置提取出4个因子,相当于14句话可浓缩成4个关键词。
但有的时候并不知晓到底应该多少个因子更适合,此时可结合软件自动推荐的结果和专业知识综合进行判断。点击SPSSAU‘开始分析’后,输出关键表格结果如下:
上表格中黄色底纹为‘旋转前方差解释率’,其为没有旋转前的结果,实质上就是主成分的结果。如果是使用因子分析,一般使用‘旋转后方差解释率’对应的结果。
结果中方差解释率%表示每个因子提取的信息量,比如第1个因子提取信息量为22.3%,第2个因子为21.862%,第3个因子为18.051%,第4个因子为10.931%。并且4个因子累积提取的信息量为73.145%。
那么当前4个因子可以表述14项,而且4个因子提取出14项的累积信息量为73.145%。现希望得到4个因子分别的权重,此时可利用归一化处理,即相当于4个因子全部代表了整体14项,那么第1个因子的信息量为22.3%/73.145%=30.49%;类似的第2个因子为21.862%/73.145%=29.89%;第3个因子为18.051%/73.145%=24.68%;第4个因子为10.931%/73.145%=14.94%。
如果是使用主成分法进行权重计算,其原理也类似,事实上结果上就是‘旋转前方差解释率’值的对应计算即可。
使用浓缩信息的原理进行权重计算时,只能得到各个因子的权重,无法得到具体每个分析项的权重,此时可继续结合后续的权重方法(通常是熵值法),得到具体各项的权重,然后汇总在一起,最终构建出权重体系。
通过因子分析或主成分分析进行权重计算的核心点即得到方差解释率值,但在得到权重前,事实上还有较多的准备工作,比如本例子中提取出4个因子,为什么是4个不是5个或者6个;这是结合专业知识和分析方法提取的其它指标进行了判断;以及有的时候某些分析项并不适合进行分析,还需要进行删除处理后才能进行分析等,此类准备工作是在分析前准备好,具体可参考SPSSAU帮助手册里面有具体的实际案例和视频说明等。
第二类、数字相对大小 (AHP层次法和优序图法)
计算权重的第二类方法原理是利用数字相对大小,数字越大其权重会相对越高。此类原理的代表性方法为AHP层次法和优序图法。
1. AHP层次法
AHP层次分析法的第一步是构建判断矩阵,即建立一个表格,表格里面表述了分析项的相对重要性大小。比如选择旅游景点时共有4个考虑因素,分别是景色,门票,交通和拥护度,那么此4个因素的相对重要性构建出判断矩阵如下表:
表格中数字代表相对重要的大小,比如门票和景色的数字为3分,其说明门票相对于景色来讲,门票更加重要。当然反过来,景色相对于门票就更不重要,因此得分为1/3=0.3333分。
AHP层次分析法正是利用了数字大小的相对性,数字越大越重要权重会越高的原理,最终计算得到每个因素的重要性。AHP层次分析法一般用于专家打分,直接让多位专家(一般是4~7个)提供相对重要性的打分判断矩阵,然后进行汇总(一般是去掉最大值和最小值,然后计算平均值得到最终的判断矩阵,最终计算得到各因素的权重。
SPSSAU共有两个按键可进行AHP层次分析法计算。
如果是问卷数据,比如本例中共有4个因素,问卷中可以直接问“景色的重要性多大?”,“门票的重要性多大?”,“交通的重要性多大?”,“拥护度的重要性多大?”。可使用SPSSAU【问卷研究】--【权重】,系统会自动计算平均值,然后直接利用平均值大小相除得到相对重要性大小,即自动计算得到判断矩阵而不需要研究人员手工输入。
如果是使用【综合评价】--【AHP层次分析法】,研究人员需要自己手工输入判断矩阵。
2. 优序图法
除了AHP层次分析法外,优序图法也是利用数字的相对大小进行权重计算。
数字相对更大时编码为1,数字完全相同为0.5,数字相对更我码为0。然后利用求和且归一化的方法计算得到权重。比如当前有9个指标,而且都有9个指标的平均值,9个指标两两之间的相对大小可以进行对比,并且SPSSAU会自动建立优序图权重计算表并且计算权重,如下表格:
上表格中数字0表示相对不重要,数字1表示相对更重要,数字0.5表示一样重要。比如指标2的平均值为3.967,指标1的平均值是4.1,因此指标1不如指标2重要;指标4的平均值为4.3,重要性高于指标1。也或者指标7和指标9的平均得发均为4.133分,因此它们的重要性一样,记为0.5。结合上面最关键的优序图权重计算表,然后得到各个具体指标(因素)的权重值。
优序图法适用于专家打分法,专家只需要对每个指标的重要性打分即可,然后让软件SPSSAU直接结合重要性打分值计算出相对重要性指标表格,最终计算得到权重。
优序图法和AHP法的思想上基本一致,均是利用了数字的相对重要性大小计算。一般在问卷研究和专家打分时,使用AHP层次分析法或优序图法较多。
第三类、信息量 (熵值法)
计算权重可以利用信息浓缩,也可利用数字相对重要性大小,除此之外,还可利用信息量的多少,即数据携带的信息量大小(物理学上的熵值原理)进行权重计算。
熵值是不确定性的一种度量。信息量越大,不确定性就越小,熵也就越小;信息量越小,不确定性越大,熵也越大。因而利用熵值携带的信息进行权重计算,结合各项指标的变异程度,利用信息熵这个工具,计算出各项指标的权重,为多指标综合评价提供依据。
在实际研究中,通常情况下是先进行信息浓缩法(因子或主成分法)得到因子或主成分的权重,即得到高维度的权重,然后想得到具体每项的权重时,可使用熵值法进行计算。
SPSSAU在【综合评价】模块中提供此方法,其计算也较为简单易懂,直接把分析项放在框中即可得到具体的权重值。
第四类、数据波动性或相关性 (CRITIC、独立性和信息量权重)
可利用因子或主成分法对信息进行浓缩,也可以利用数字相对大小进行AHP或优序图法分析得到权重,还可利用物理学上的熵值原理(即信息量携带多少)的方法得到权重。除此之外,数据之间的波动性大小也是一种信息,也或者数据之间的相关关系大小,也是一种信息,可利用数据波动性大小或数据相关关系大小计算权重。
1. CRITIC权重法
CRITIC权重法是一种客观赋权法。其思想在于用两项指标,分别是对比强度和冲突性指标。对比强度使用标准差进行表示,如果数据标准差越大说明波动越大,权重会越高;冲突性使用相关系数进行表示,如果指标之间的相关系数值越大,说明冲突性越小,那么其权重也就越低。权重计算时,对比强度与冲突性指标相乘,并且进行归一化处理,即得到最终的权重。使用SPSSAU时,自动会建立对比强度和冲突性指标,并且计算得到权重值。
CRITIC权重法适用于这样一类数据,即数据稳定性可视作一种信息,并且分析的指标或因素之间有着一定的关联关系时。比如医院里面的指标:出院人数、入出院诊断符合率、治疗有效率、平均床位使用率、病床周转次数共5个指标;此5个指标的稳定性是一种信息,而且此5个指标之间本身就可能有着相关性。因此CRITIC权重法刚好利用数据的波动性(对比强度)和相关性(冲突性)进行权重计算。
SPSSAU综合评价里面提供CRITIC权重法,如下图所示:
2. 独立性权重法
独立性权重法是一种客观赋权法。其思想在于利用指标之间的共线性强弱来确定权重。如果说某指标与其它指标的相关性很强,说明信息有着较大的重叠,意味着该指标的权重会比较低,反之如果说某指标与其它指标的相关性较弱,那么说明该指标携带的信息量较大,该指标应该赋予更高的权重。
独立性权重法仅仅只考虑了数据之间相关性,其计算方式是使用回归分析得到的复相关系数R 值来表示共线性强弱(即相关性强弱),该值越大说明共线性越强,权重会越低。比如有5个指标,那么指标1作为因变量,其余4个指标作为自变量进行回归分析,就会得到复相关系数R 值,余下4个指标重复进行即可。计算权重时,首先得到复相关系数R 值的倒数即1/R ,然后将值进行归一化即得到权重。
比如某企业计划招聘5名研究岗位人员,应聘人员共有30名,企业进行了五门专业方面的笔试,并且记录下30名应聘者的成绩。由于专业课成绩具有信息重叠,因此不能简单的直接把成绩加和用于评价应聘者的专业素质。因此使用独立性权重进行计算,便于得到更加科学客观的评价,选出最适合的应聘者。
SPSSAU综合评价里面提供独立性权重法,如下图所示:
3. 信息量权重法
信息量权重法也称变异系数法,信息量权重法是一种客观赋权法。其思想在于利用数据的变异系数进行权重赋值,如果变异系数越大,说明其携带的信息越大,因而权重也会越大,此种方法适用于专家打分、或者面试官进行面试打分时对评价对象(面试者)进行综合评价。
比如有5个水平差不多的面试官对10个面试者进行打分,如果说某个面试官对面试者打分数据变异系数值较小,说明该面试官对所有面试者的评价都基本一致,因而其携带信息较小,权重也会较低;反之如果某个面试官对面试者打分数据变异系数值较大,说明该面试官对所有面试者的评价差异较大,因而其携带信息大,权重也会较高。
SPSSAU综合评价里面提供信息量权重法,如下图所示:
对应方法的案例说明、结果解读这里不再一一详述,有兴趣可以参考SPSSAU帮助手册。
C. 产品运营要用哪些数据分析方法
在产品运营优化方面,数据分析是其核心,一般常用如下数据分析方法:
1 细分分析
细分分析是分析的基础,单一维度下的指标数据的信息价值很低。细分方法可以分为两类,一类逐步分析,比如:来北京市的访客可分为朝阳,海淀等区;另一类是维度交叉,如:来自付费SEM的新访客。
2 对比分析
对比分析主要是指将两个相互联系的指标数据进行比较,从数量上展示和说明研究对象的规模大小,水平高低,速度快慢等相对数值,通过相同维度下的指标对比,可以发现,找出业务在不同阶段的问题。
常见的对比方法包括:时间对比,空间对比,标准对比。
3 漏斗分析
转化漏斗分析是业务分析的基本模型,最常见的是把最终的转化设置为某种目的的实现,最典型的就是完成交易。但也可以是其他任何目的的实现,比如一次使用app的时间超过10分钟。
漏斗帮助我们解决两方面的问题:在一个过程中是否发生泄漏,如果有泄漏,我们能在漏斗中看到,并且能够通过进一步的分析堵住这个泄漏点;在一个过程中是否出现了其他不应该出现的过程,造成转化主进程收到损害。
4用户分析
用户分析是互联网运营的核心,常用的分析方法包括:活跃分析,留存分析,用户分群,用户画像,用户细查等。用户画像基于自动标签系统将用户完整的画像描绘清晰,更有力的支撑运营决策。
5 表单分析
填写表单是每个平台与用户交互的必备环节,优秀的表单设计,对转化率的提升起到重要作用。
用户从进入表单页面之时起,就产生了微漏斗,从进入总人数到最终完成并成功提交表单人数,这个过程之中,有多少人开始填写表单,填写表单时,遇到了什么困难导致无法完成表单,都影响最终的转化效果。
以上是常见的数据分析方法,更多应用方法需要根据业务场景灵活应用。
D. 运营数据分析怎么做
1、明确分析的目的和思路
运营是靠目标驱动,做事情带有很强的目的性,同样地,在数据分析方面也同样遵循这个原则。对数据进行分析,最终的目的是什么?我想要解决什么样的问题。
2、数据收集
运营数据收集,越详细越好,所以在要求前期进行数据统计的时候就需要有关大局观,将后期数据分析可能会用到的数据尽可能多地收集起来,以方便后期进行数据分析。
3、数据处理
对收集到的数据进行加工整理,形成适合数据分析的样式,从大量的,杂乱无章、难以理解的数据中,抽取并推导出对于解决问题有价值,有意义的数据。包括数据清洗,数据转化、数据提取以及数据计算等处理方法。
4、数据分析
运用适当的数据分析的方法和工具,对处理过的数据进行分析,提取有价值的信息,形成有效结论。
5、数据展现
对数据进行可视化地展现,尽可能地多用图标、趋势图、饼图等形式进行说明和解释,能够直观地传达出数据分析的结果和观点。如果是最终数据是供自己参考,那么在数据展现时,能够清楚地了解到自己想要的数据,能够从数据中得到一定的启发即可。
如果是需要供领导作决策和参考,则需要表现数据的可视化,在数据图标中做进一步的分析和说明。
6、撰写报告,提出解决方案
如果是自己进行数据分析,则对数据进行分析处理后,发现数据变化的原因,并提出解决出现这个数据的解决办法,投入优化和使用中。在多次测试中,找到解决问题的最优解。
E. 网站分析数据指标权重的方法有哪些
站长工具基本就可以胜任了,对关键词、内链、外链以及收录、网站的权重等都有分析报告。
F. 数据分析:数据量较大的情况下,不同维度的数据怎么通过模糊加权得到商品的综合权重
这是个权重确定的问题吧,一般来说,权重确定主要是两种方法,主观法:也就是专家法,通过不同人对权重的认可度确定每个指标的权重。客观法。比如熵权法,通过数据的变化对结果的影响客观的反应数据的重要性。还有层次分析法等,希望对你有帮助!
G. 除了主成分分析法还有什么确定多变量权重的方法
权重计算的确定方法在综合评价中重中之重,不同的方法对应的计算原理并不相同。在实际分析过程中,应结合数据特征及专业知识选择适合的权重计算。
第一类为AHP层次法和优序图法;此类方法利用数字的相对大小信息进行权重计算;此类方法为主观赋值法,通常需要由专家打分或通过问卷调研的方式,得到各指标重要性的打分情况,得分越高,指标权重越大。
此类方法适合于多种领域。比如想构建一个员工绩效评价体系,指标包括工作态度、学习能力、工作能力、团队协作。通过专家打分计算权重,得到每个指标的权重,并代入员工数据,即可得到每个员工的综合得分情况。
第二类为熵值法(熵权法);此类方法利用数据熵值信息即信息量大小进行权重计算。此类方法适用于数据之间有波动,同时会将数据波动作为一种信息的方法。
比如收集各地区的某年份的经济指标数据,包括产品销售率(X1)、资金利润率(X2)、成本费用利润率(X3)、劳动生产率(X4)、流动资金周转次数(X5),用熵值法计算出各指标权重,再对各地区经济效益进行比较。
第三类为CRITIC、独立性权重和信息量权重;此类方法主要是利用数据的波动性或者数据之间的相关关系情况进行权重计算。
比如研究利用某省医院2011年共计5个科室的数据指标(共计6个指标数据)进行CRITIC权重计算,最终可得到出院人数、入出院诊断符合率、治疗有效率、平均床位使用率、病床周转次数、出院者平均住院日这6个指标的权重。如果希望针对各个科室进行计算综合得分,那么可以直接将权重与自身的数据进行相乘累加即可,分值越高代表该科室评价越高。
第四类为因子分析和主成分法;此类方法利用了数据的信息浓缩原理,利用方差解释率进行权重计算。
比如对30个地区的经济发展情况的8项指标作主成分分析,主成分分析法可以将8个指标浓缩为几个综合指标(主成分),用这些指标(主成分)反映原来指标的信息,同时利用方差解释率得出各个主成分的权重。
H. 如何设定指标权重
考核指标权重的分配,大都是凭人为经验判定,但也不能随意拍脑袋,通常也得遵循一般的规律和原则:
1、一般一个岗位的考核指标有5~8个,而每一指标的权重一般设定在5~30%之间,不能太高,也不能太低,如果某个指标的权重太高,可能会使员工只关注高权重指标而忽略其它,而如果权重过低,则引不起他的足够重视而放弃这个指标,这个指标就没有意义了。
2、越是高层的岗位,他所承担的财务性经营指标和业绩指标的权重就越大;越是低层的岗位,所承担的流程类指标的权重就越小,而工作结果类指标的权重越大。
3、对于多数岗位来说,根据指标“定量为主,定性为辅,先定量后定性”的制订原则,一般优先设定定量类指标权重,而且定量类指标总权重要大于定性类指标权重。
4、根据20/80法则,通常最重要的指标往往只有那么两三个,如果有1个,那么其权重一般要超60%;如果有2个,那么一般每个指标权重都在30%以上;如果有3个,那么每个指标权重一般在20%以上。
5、为了便于计算和比较,指标权重一般都为5%的倍数,最小为5%,太小就无意义了。设立指标权重的方法有“简单排序编码法(人为赋编码值,过于简单主观)、倍数环比法(需要有
历史数据的支撑)、优序对比法(比较实用)、层次分析法(太过复杂)”等,根据我们的实操经验,我们用得最多的是采用德尔菲法和两两对比法结合的方式来确定指标权重。具体操作时我们会请该岗位的任职者、上下游同事代表、直属上司、部门负责人、HR和公司绩效委员会成员代表组成专家组,按如下步骤来进行:
第一步,先对指标的重要性进行两两比较,排序,得出票数最高的指标排序组合方式即为指标的重要程度最终次序。重要程度越高,排在越前面,权重相应就越大,反之亦然。
第二步,根据指标权重的设置原则,由专家组成员对各指标所占权重进行设定,然后由HR进行
汇总平均并将该结果反馈给各“专家”,然后,专家根据这一反馈结果,对各自设定的指标权重进行调整,最后由HR负责汇总平均(取整数),即为最终的指标权重。这其中,HR会尽量收集更多的历史数据和组织战略目标要求供“专家”借鉴参考,并在评定前对专家进行“权重设置的普遍规律和原则”的相关培训。
因此,即使是人为凭经验确定指标权重,也要有所根据和规律,由跟被考核岗位密切相关的多人进行综合评议决定,而不是交给一个人随意拍脑袋。
I. 运营数据如何进行分析
1、明确分析的目的和思路
运营是靠目标驱动,做事情带有很强的目的性,同样地,在数据分析方面也同样遵循这个原则。对数据进行分析,最终的目的是什么?我想要解决什么样的问题。
2、数据收集
运营数据收集,越详细越好,所以在要求前期进行数据统计的时候就需要有关大局观,将后期数据分析可能会用到的数据尽可能多地收集起来,以方便后期进行数据分析。
3、数据处理
对收集到的数据进行加工整理,形成适合数据分析的样式,从大量的,杂乱无章、难以理解的数据中,抽取并推导出对于解决问题有价值,有意义的数据。包括数据清洗,数据转化、数据提取以及数据计算等处理方法。
4、数据分析
运用适当的数据分析的方法和工具,对处理过的数据进行分析,提取有价值的信息,形成有效结论。
5、数据展现
对数据进行可视化地展现,尽可能地多用图标、趋势图、饼图等形式进行说明和解释,能够直观地传达出数据分析的结果和观点。如果是最终数据是供自己参考,那么在数据展现时,能够清楚地了解到自己想要的数据,能够从数据中得到一定的启发即可。
如果是需要供领导作决策和参考,则需要表现数据的可视化,在数据图标中做进一步的分析和说明。
6、撰写报告,提出解决方案
如果是自己进行数据分析,则对数据进行分析处理后,发现数据变化的原因,并提出解决出现这个数据的解决办法,投入优化和使用中。在多次测试中,找到解决问题的最优解。