㈠ 常用统计分析方法
数据分析师针对不同业务问题可以制作各种具体的数据模型去分析问题,运用各种分析方法去探索数据,这里介绍最常用的三种分析方法,希望可以对您的工作有一定的的帮助
文中可视化图表均使用DataFocus数据分析工具制作。
1.相关分析
相关分析显示变量如何与另一个变量相关。例如,它显示了计件工资是否会带来更高的生产率。
2.回归分析
回归分析是对一个变量值与另一个变量值之间差异的定量预测。回归模拟依赖变量和解释变量之间的关系,这些变量通常绘制在散点图上。您还可以使用回归线来显示这些关系是强还是弱。
另请注意,散点图上的异常值非常重要。例如,外围数据点可能代表公司最关键供应商或畅销产品的输入。但是,回归线的性质通常会让您忽略这些异常值。
3.假设检验
假设检验是基于某些假设并从样本到人口的数理统计中的统计分析方法。主要是为了解决问题的需要,对整体研究提出一些假设。通常,比较两个统计数据集,或者将通过采样获得的数据集与来自理想化模型的合成数据集进行比较。提出了两个数据集之间统计关系的假设,并将其用作理想化零假设的替代方案。建议两个数据集之间没有关系。
在掌握了数据分析的基本图形和分析方法之后,数据分析师认为有一点需要注意:“在没有确认如何表达你想要解决的问题之前,不要开始进行数据分析。”简而言之,如果您无法解释您试图用数据分析解决的业务问题,那么没有数据分析可以解决问题。
㈡ 5种常用的统计学方法是什么
1、大量观察法
(2)队列研究最常用的统计方法扩展阅读:
(一)大量观察法
这是统计活动过程中搜集数据资料阶段(即统计调查阶段)的基本方法:即要对所研究现象总体中的足够多数的个体进行观察和研究,以期认识具有规律性的总体数量特征。大量观察法的数理依据是大数定律,大数定律是指虽然每个个体受偶然因素的影响作用不同而在数量上几存有差异。
但对总体而言可以相互抵消而呈现出稳定的规律性,因此只有对足够多数的个体进行观察,观察值的综合结果才会趋向稳定,建立在大量观察法基础上的数据资料才会给出一般的结论。统计学的各种调查方法都属于大量观察法。
(二)、统计分组法
由于所研究现象本身的复杂性、差异性及多层次性,需要我们对所研究现象进行分组或分类研究,以期在同质的基础上探求不同组或类之间的差异性。统计分组在整个统计活动过程中都占有重要地位,在统计调查阶段可通过统计分组法来搜集不同类的资料,并可使抽样调查的样本代表性得以提高(即分层抽样方式);
在统计整理阶段可以通过统计分组法使各种数据资料得到分门别类的加工处理和储存,并为编制分布数列提供基础;在统计分析阶段则可以通过统计分组法来划分现象类型、研究总体内在结构、比较不同类或组之间的差异(显着性检验)和分析不同变量之间的相关关系。统计学中的统计分组法有传统分组法、判别分析法和聚类分析法等。
(三)、综合指标法
统计研究现象的数量方面的特征是通过统计综合指标来反映的。所谓综合指标,是指用来从总体上反映所研究现象数量特征和数量关系的范畴及其数值,常见的有总量指标、相对指标,平均指标和标志变异指标等。
综合指标法在统计学、尤其是社会经济统计学中占有十分重要的地位,是描述统计学的核心内容。如何最真实客观地记录、描述和反映所研究现象的数量特征和数量关系,是统计指标理论研究的一大课题。
㈢ 统计研究的基本方法有哪些
统计学的基本研究方法有5种。
大量观察法
这是统计活动过程中搜集数据资料阶段(即统计调查阶段)的基本方法:即要对所研究现象总体中的足够多数的个体进行观察和研究,以期认识具有规律性的总体数量特征。大量观察法的数理依据是大数定律,大数定律是指虽然每个个体受偶然因素的影响作用不同而在数量上几存有差异,但对总体而言可以相互抵消而呈现出稳定的规律性,因此只有对足够多数的个体进行观察,观察值的综合结果才会趋向稳定,建立在大量观察法基础上的数据资料才会给出一般的结论。统计学的各种调查方法都属于大量观察法。
统计分组法
由于所研究现象本身的复杂性、差异性及多层次性,需要我们对所研究现象进行分组或分类研究,以期在同质的基础上探求不同组或类之间的差异性。统计分组在整个统计活动过程中都占有重要地位,在统计调查阶段可通过统计分组法来搜集不同类的资料,并可使抽样调查的样本代表性得以提高(即分层抽样方式);在统计整理阶段可以通过统计分组法使各种数据资料得到分门别类的加工处理和储存,并为编制分布数列提供基础;在统计分析阶段则可以通过统计分组法来划分现象类型、研究总体内在结构、比较不同类或组之间的差异(显着性检验)和分析不同变量之间的相关关系。统计学中的统计分组法有传统分组法、判别分析法和聚类分析法等。
综合指标法
统计研究现象的数量方面的特征是通过统计综合指标来反映的。所谓综合指标,是指用来从总体上反映所研究现象数量特征和数量关系的范畴及其数值,常见的有总量指标、相对指标,平均指标和标志变异指标等。综合指标法在统计学、尤其是社会经济统计学中占有十分重要的地位,是描述统计学的核心内容。如何最真实客观地记录、描述和反映所研究现象的数量特征和数量关系,是统计指标理论研究的一大课题。
统计模型法
在以统计指标来反映所研究现象的数量特征的同时,我们还经常需要对相关现象之间的数量变动关系进行定量研究,以了解某一(些)现象数量变动与另一(些)现象数量变动之间的关系及变动的影响程度。在研究这种数量变动关系时,需要根据具体的研究对象和一定的假定条件,用合适的数学方程来进行模拟,这种方法就叫做统计模型法。
统计推断法
在统计认识活动中,我们所观察的往往只是所研究现象总体中的一部分单位,掌握的只是具有随机性的样本观察数据,而认识总体数量特征是统计研究的目的,这就需要我们根据概率论和样本分布理论,运用参数估计或假设检验的方法,由样本观测数据来推断总体数量特征。这种由样本来推断总体的方法就叫统计推断法。统计推断法已在统计研究的许多领域得到应用,除了最常见的总体指标推断外,统计模型参数的估计和检验、统计预测中原时间序列的估计和检验等,也都属于统计推断的范畴,都存在着误差和置信度的问题。在实践中这是一种有效又经济的方法,其应用范围很广泛,发展很快,统计推断法已成为现代统计学的基本方法。
㈣ 统计学简答题统计研究的具体方法有哪些
统计研究的具体方法有以下5种,具体为:
1、大量观察法:即对研究总体的全部或足够多数的单位进行调查并进行综合分析。
2、统计分组法:应用分组来研究总体内部差异的方法。
3、统计指标法:应用统计指标来反映和研究现象总体的数量状况。
4、归纳推断法:以一定的置信标准,根据样本数据来判断总体数量特征。
5、实验设计:即对实验进行科学合理的安排,以达到最好的实验效果。
统计学其他情况简介。
统计学是一门很古老的科学,一般认为其学理研究始于古希腊的亚里士多德时代,迄今已有两千三百多年的历史。它起源于研究社会经济问题,在两千多年的发展过程中,统计学至少经历了“城邦政情”、“政治算数”和“统计分析科学”三个发展阶段。
所谓“数理统计”并非独立于统计学的新学科,确切地说,它是统计学在第三个发展阶段所形成的所有收集和分析数据的新方法的一个综合性名词。概率论是数理统计方法的理论基础,但是它不属于统计学的范畴,而是属于数学的范畴。
㈤ 队列研究专用的卡方检验的专用公式是什么
卡方检验是用途很广的一种假设检验方法,它在分类资料统计推断中的应用,包括:两个率或两个构成比比较的卡方检验;多个率或多个构成比比较的卡方检验以及分类资料的相关分析等。目录一、卡方检验基本思想 二、四格表资料的卡方检验 三、行X列表资料的卡方检验 四、列联表资料的卡方检验:编辑本段一、卡方检验基本思想在分类资料统计分析中我们常会遇到这样的资料,如两组大白鼠在不同致癌剂作用下的发癌率如下表,问两组发癌率有无差别? -------------------------------------------------------------------------------- 处理 发癌数 未发癌数 合计 发癌率% -------------------------------------------------------------------------------- 甲组 52 19 71 73.24 乙组 39 3 42 92.86 -------------------------------------------------------------------------------- 合计 91 22 113 80.33 -------------------------------------------------------------------------------- 52 19 39 3 是表中最基本的数据,因此上表资料又被称之为四格表资料。卡方检验的统计量是卡方值,它是每个格子实际频数A与理论频数T差值平方与理论频数之比的累计和。每个格子中的理论频数T是在假定两组的发癌率相等(均等于两组合计的发癌率)的情况下计算出来的,如第一行第一列的理论频数为71*91/113=57.18,故卡方值越大,说明实际频数与理论频数的差别越明显,两组发癌率不同的可能性越大。 利用统计学软件分析结果如下: data kafang; input row column number @@; cards; 1 1 52 1 2 19 2 1 39 2 2 3 ; run; proc freq; tables row*column/chisq; weight number; run; 统计量自由度值概率卡方16.47770.0109(有统计学意义)似然比卡方17.31010.0069连续校正卡方15.28680.0215Mantel-Haenszel 卡方16.42030.0113Phi 系数
-0.2394
列联系数
0.2328
Cramer 的 V
-0.2394编辑本段二、四格表资料的卡方检验四格表资料的卡方检验用于进行两个率或两个构成比的比较。 1. 专用公式: 若四格表资料四个格子的频数分别为a,b,c,d,则四格表资料卡方检验的卡方值=(ad-bc)2*n/(a+b)(c+d)(a+c)(b+d), 自由度v=(行数-1)(列数-1) 2. 应用条件: 要求样本含量应大于40且每个格子中的理论频数不应小于5。当样本含量大于40但理论频数有小于5的情况时卡方值需要校正,当样本含量小于40时只能用确切概率法计算概率。 编辑本段三、行X列表资料的卡方检验行X列表资料的卡方检验用于多个率或多个构成比的比较。 1. 专用公式: r行c列表资料卡方检验的卡方值=n[(A11/n1n1+A12/n1n2+...+Arc/nrnc)-1] 2. 应用条件: 要求每个格子中的理论频数T均大于5或1<T<5的格子数不超过总格子数的1/5。当有T<1或1<T<5的格子较多时,可采用并行并列、删行删列、增大样本含量的办法使其符合行X列表资料卡方检验的应用条件。而多个率的两两比较可采用行X列表分割的办法。 编辑本段四、列联表资料的卡方检验:同一组对象,观察每一个个体对两种分类方法的表现,结果构成双向交叉排列的统计表就是列联表。 1. R*C 列联表的卡方检验: R*C 列联表的卡方检验用于R*C列联表的相关分析,卡方值的计算和检验过程与行X列表资料的卡方检验相同。 2. 2*2列联表的卡方检验: 2*2列联表的卡方检验又称配对记数资料或配对四格表资料的卡方检验,根据卡方值计算公式的不同,可以达到不同的目的。当用一般四格表的卡方检验计算时,卡方值=n(ad-bc)^2/[(a+b)(c+d)(a+c)(b+d)],此时用于进行配对四格表的相关分析,如考察两种检验方法的结果有无关系;当卡方值=(|b-c|-1)2/(b+c)时,此时卡方检验用来进行四格表的差异检验,如考察两种检验方法的检出率有无差别。 列联表卡方检验应用中的注意事项同R*C表的卡方检验相同。 卡方检验就是统计样本的实际观测值与理论推断值之间的偏离程度,实际观测值与理论推断值之间的偏离程度就决定卡方值的大小,卡方值越大,越不符合,偏差越小,卡方值就越小,越趋于符合,若量值完全相等时,卡方值就为0,表明理论值完全符合。
㈥ 统计分析 请问这个是用什么统计方法做到的
很显然,这是队列研究,分析方法是卡方检验
用SPSS的话,在“分析菜单”的“描述统计”里的“交叉表”里,进入界面后,在“统计量”里选择卡方、风险,前者是求P值的,后者求OR及其95%可信区间
㈦ 常用的统计方法有哪些
统计方法有:
1、计量资料的统计方法
分析计量资料的统计分析方法可分为参数检验法和非参数检验法。
参数检验法主要为t检验和 方差分析(ANOVN,即F检验)等,两组间均数比较时常用t检验和u检验,两组以上均数比较时常用方差分析;非参数检验法主要包括秩和检验等。t检验可分为单组设计资料的t检验、配对设计资料的t检验和成组设计资料的t检验;当两个小 样本比较时要求两 总体分布为 正态分布且方差齐性,若不能满足以上要求,宜用t 检验或非参数方法( 秩和检验)。 方差分析可用于两个以上 样本均数的比较,应用该方法时,要求各个样本是相互独立的随机样本,各样本来自正态总体且各处理组总体方差齐性。根据设计类型不同,方差分析中又包含了多种不同的方法。对于 定量资料,应根据所采用的设计类型、资料所具备的条件和分析目的,选用合适的统计分析方法,不应盲目套用t检验和 单因素方差分析。
2、计数资料的统计方法
计数资料的统计方法主要针对四格表和R×C表利用检验进行分析。
检验或u检验,若不能满足 检验:当计数资料呈配对设计时,获得的四格表为配对四格表,其用到的检验公式和校正公式可参考书籍。 R×C表可以分为双向无序,单向有序、双向有序属性相同和双向有序属性不同四类,不同类的行列表根据其研究目的,其选择的方法也不一样。
3、等级资料的统计方法
等级资料(有序变量)是对性质和类别的等级进行分组,再清点每组观察单位个数所得到的资料。在临床医学资料中,常遇到一些定性指标,如临床疗效的评价、疾病的临床分期、病症严重程度的临床分级等,对这些指标常采用分成若干个等级然后分类计数的办法来解决它的量化问题,这样的资料统计上称为等级资料。
统计方法的选择:
统计资料丰富且错综复杂,要想做到合理选用统计分析方法并非易事。对于同一 个资料,若选择不同的统计分析方法处理,有时其结论是截然不同的。
正确选择统计方法的依据是:
①根据研究的目的,明确研究试验设计类型、研究因素与水平数;
②确定数据特征(是否正态分布等)和样本量大小;
③ 正确判断统计资料所对应的类型(计量、计数和等级资料),同时应根据统计方法的适宜条件进行正确的统计量值计算;
最后,还要根据专业知识与资料的实际情况,结合统计学原则,灵活地选择统计分析方法。
㈧ 正确选择相关性分析的统计方法
转自: https://www.medsci.cn/article/show_article.do?id=55c91839569a
相关性分析主要用于:(1)判断两个或多个变量之间的统计学关联;(2)如果存在关联,进一步分析关联强度和方向。
那么,什么样的研究可以进行相关性分析呢?我们在这里列举了几个相关性研究的例子供大家参考:
确定要进行相关性分析后,对两个变量或多个变量进行相关性分析所采取的统计方法是不同的。那么,怎么判断研究变量的数量呢?
我们分别就两个变量的研究和三个及以上变量的研究进行了举例,帮助大家理解。同时,我们也对例子中变量数据类型进行了描述(如,连续变量、二分类变量、无序分类变量和有序分类变量)。
确定拟分析变量之间的相关性后,我们需要判断变量的数据类型。
变量的数据类型主要分为连续变量、二分类变量、无序分类变量和有序分类变量4类。拟分析的变量可以同属于一个数据类型,也可以分属不同的数据类型。根据这两个变量数据类型的不同,应采用的统计分析方法也不同。
连续变量是指对连续的指标测量所得到的数值,比如体重。其特点是等距区间的差异相同,例如体重在50kg-60kg之间的差异与60kg-70kg之间的差异相同。连续变量的示例如下:
有序分类变量可以有两个或者多个已排序的类别。举例来说,如果某患者的治疗结果是“痊愈”、“好转”、“不变”或者“恶化”。这就是一个有序分类变量,因为可以对四个类别进行排序。
需要注意的是,虽然我们可以对有序分类变量的类别排序,但还需要判断这种类别排序是不是等距的。例如,用各年龄段的近似中位数代表年龄类别,即24(18-30)岁、40(31-50)岁、60(51-70)岁、80(70岁以上)岁,可以将年龄视为定距变量。
但将患者的诊疗结果“痊愈”、“好转”、“无变化”或者“恶化”就不能认为是等距的,换句话说,不能认为“好转”是“无变化”的2倍;也不能认为“痊愈”和“好转”的差异与“不变”和“恶化很满意”的差异一样,即有序分类变量各类别之间不是可能是定距、也可能不是定距的,这是与连续变量的根本不同。有序分类变量的示例如下:
患者对医疗效果的满意程度,用5类测量:1-非常不满意、2-不满意、3-一般、4-满意、5-非常满意
对疾病的疗效:用4类测量:1-痊愈、2-好转、3-不变、4-变差
BMI指数是一种用于评估体重水平的指标。一般来说,BMI是连续变量(例如BMI为23.7或BMI为34.1),但按以下方式分类时可以视为有序分类变量:体重过轻(BMI小于18.5)、健康/正常体重(BMI在18.5—23.9之间)、超重(BMI在24—27.9之间)和肥胖(BMI大于28)。
二分类变量是只有两个类别的分类变量。二分类变量的类别之间没有顺序,不能像有序分类变量的类别那样进行排序。比如,性别变量就是一个二分类变量,可以分为“男性”和“女性”两个分类。再如,罹患心脏病也是一个二分类变量,分为“是”和“否”两个分类。
二分类变量类别是互斥的,一个研究对象不能同时分属于两个类别,比如一个人不能同时是男性或者女性,也不能同时患有心脏病又没有心脏病。二分类变量的示例如下:
性别,两个类别:男性或女性
罹患心脏病,两个类别:是或否
研究分组,两个类别:实验组或对照组
无序分类变量是具有三个及以上类别的分类变量。无序分类变量的类别之间没有内在顺序,也不能像有序分类变量类别那样进行排序。比如,出行方式是一个典型的无序分类变量,可以分为自行车、自驾、出租车、地铁或公交5个类别。无序分类变量的类别也是互斥的,一个研究对象不能同时分属于不同的类别,比如一次出行不能同时坐地铁又自己开车。无序分类变量的示例如下:
手机品牌,四个类别:苹果、三星、华为或其他
头发的颜色,五个类别:棕色、黑色、金色、红色或者灰色
民族,七个类别:汉族、回族、蒙古族、满族、维吾尔族、朝鲜族或其他
自变量也称为预测变量或解释变量,因变量也称为应答变量或结局变量。两者的区分在于,自变量可以影响因变量,因变量的值取决于对应自变量的值。也可以用因果关系来区分自变量和因变量,即自变量的变化导致了因变量的变化(但自变量和因变量之间并不一定真的存在因果关系)。自变量是对因变量的描述,而因变量可以被自变量所解释。
研究设计也可以帮助我们区分自变量和因变量。举例来说,我们计划开展一项研究分析不同剂量药物的治疗效果,治疗药物就是这个研究的自变量,治疗效果则是因变量。
比如我们想知道抗感染药物剂量(1.5 mg / d、4 mg /d或者 8 mg/d)与患者发热时长的关系,抗感染药物剂量就是自变量,因为这个剂量的是由研究者干预产生的,且很可能是发热时长差异的原因;而同时发热时长就是这项研究的因变量。
横断面调查并不区分自变量和因变量。举例来说,研究者根据问卷调查研究对象的工作效率(1-5类:1代表非常高效、5代表非常低效)和锻炼情况(1-4类:1代表经常锻炼、4代表不锻炼)的关系。
在该研究中,受调查者的工作效率和锻炼情况并不存在明确的因果关系,因为效率高可能意味着受调查者有更多的锻炼时间,而反之经常锻炼可能也会提高工作效率。因此,我们就不区分该研究的自变量和因变量。
本文先说说研究中涉及两个变量的情况。
Pearson相关用于评估两个连续变量之间的线性关联强度。这种统计方法本身不区分自变量和因变量,但如果您根据研究背景已经对变量进行了区分,我们仍可以采用该方法判断相关性。
Pearson相关不区分自变量和因变量。虽然这不影响我们采用Pearson相关分析两个连续变量的相关性,但如果还是想通过统计方法区分一下,可以采用线性回归。
这里还需要判断有序分类变量是否为定距变量。如果认为拟分析的有序分类变量是定距变量,我们就可以为变量中的类别赋值,然后根据这些数值进行分析(即看作连续变量),比如测量满意度(从“完全同意”到“完全不同意”5个类别)就是一个定距变量,可以用1-5为各类别赋值,即1 =完全同意、2 =同意、3 =一般、4 =不同意、5 =完全不同意。
对于不能作为定距变量的有序分类变量,比如军衔的类别(少将、中将、上将、大将等)之间就不是等距的,就不能赋值后对数值进行分析(只能对类别进行分析)。
实际上,将有序分类变量作为连续变量进行分析,这在大多数情况下可能不符合我们的研究目的。对类别进行分析是对有序分类变量相关性分析的常见选择。但是,如果基于的研究背景,待分析的有序分类变量确实可以作为定距变量处理,也是可以的。
Mantel-Haenszel 趋势检验。该检验也被称为Mantel-Haenszel 卡方检验、Mantel-Haenszel 趋势卡方检验。该检验根据研究者对有序分类变量类别的赋值,判断两个有序分类变量之间的线性趋势。
Spearman相关又称Spearman秩相关,用于检验至少有一个有序分类变量的关联强度和方向。
Kendall's tau-b 相关系数是用于检验至少有一个有序分类变量关联强度和方向的非参数分析方法。该检验与Spearman相关的应用范围基本一致,但更适用于存在多种关联的数据(如列联表)。
卡方检验常用于分析无序分类变量之间的相关性,也可以用于分析二分类变量之间的关系。但是该检验只能分析相关的统计学意义,不能反映关联强度。因此,我们常联合Cramer's V检验提示关联强度。
Fisher精确检验可以用于检验任何R C数据之间的相关关系,但最常用于分析2 2数据,即两个二分类变量之间的相关性。与卡方检验只能拟合近似分布不同的是,Fisher精确检验可以分析精确分布,更适合分析小样本数据。但是该检验与卡方检验一样,只能分析相关的统计学意义,不能反映关联强度。
确定进行两个二分类变量的相关性分析后,我们需要判断是否区分自变量和因变量。
相对风险是流行病学或前瞻性队列研究中的常用指标,可以在一定条件下比较两个比例之间的关系,但其提示的结果是比值而不是差异。
比值比可以计算多类研究的关联强度,也是很多统计检验(如二分类logistic回归)的常用指标。在相对风险指标不适用的病例对照研究中,比值比仍可以很好地反映结果。
卡方检验可用于分析两个二分类变量之间的关系。但是该检验只能分析相关的统计学意义,不能反映关联强度。因此,该检验可以联合Phi (φ)系数提示关联强度。
Fisher精确检验可以用于检验任何R C数据之间的关系,但最常用于分析2 2数据,即两个二分类变量之间的相关性。与卡方检验只能拟合近似分布不同的是,Fisher精确检验可以分析数据的精确分布,更适用于小样本数据。但是该检验与卡方检验一样,只能分析相关的统计学意义,不能反映关联强度。
Point-biserial相关。Point-biserial相关适用于分析二分类变量和连续变量之间的相关性。其实,该检验是Pearson相关的一种特殊形式,与Pearson相关的数据假设一致,也可以在SPSS中通过Pearson相关模块进行计算,我们会在教程中具体介绍。
确定进行二分类变量和有序分类变量的相关性分析后,我们需要判断是否区分自变量和因变量:
有序Logistic回归。有序Logistic回归在本质上并不是为了分析二分类变量和有序分类变量之间的相关性。但我们仍可以用有序logistic回归及其对应的OR值判断这两类变量之间的统计学关联。
Cochran-Armitage 检验。Cochran-Armitage 检验又称Cochran-Armitage 趋势检验,常用于分析有序分类自变量和二分类因变量之间的线性趋势。该检验可以判断随着有序分类变量的增加,二分类因变量比例的变化趋势,是对其线性趋势的统计学分析。我们将在教程中进一步解释这一问题。
此问题可以使用Mantel-Haenszel卡方检验或Cochran-Armitage趋势检验。Mantel-Haenszel卡方检验也称线性趋势检验(Test for Linear Trend)或定序检验(Linear by Linear Test)。
Mantel-Haenszel卡方检验和Cochran-Armitage趋势检验的区别是:Mantel-Haenszel卡方检验要求一个变量是有序分类变量,另一个变量可以是二分类变量,也可以是有序多分类变量。而Cochran-Armitage趋势检验要求一个变量是有序分类变量,另一个变量是二分类变量。
SPSS不提供Cochran-Armitage趋势检验, Mantel-Haenszel卡方可以得到近似的结果。Cochran-Armitage趋势检验可以在SAS等其它软件中实现(SAS可以同时提供Cochran-Armitage趋势检验和Mantel-Haenszel卡方检验的结果)。
Biserial秩相关:Biserial秩相关可以用于分析二分类变量和有序分类变量之间的相关性。在用二分类变量预测有序分类变量时,该检验又称为Somers' d检验。此外,Mann-Whitney U检验也可以输出Biserial秩相关结果。
Spearman相关。没有适用于分析有序分类变量和连续变量相关性的检验方法,我们需要将连续变量视为有序分类变量进行检验,即分析两个有序分类变量之间的关系。在这种情况下,我们可以应用Spearman相关或者其他针对有序分类变量的检验方法。
㈨ 常用统计分析方法有哪些
1、对比分析法
对比分析法指通过指标的对比来反映事物数量上的变化,属于统计分析中常用的方法。常见的对比有横向对比和纵向对比。
横向对比指的是不同事物在固定时间上的对比,例如,不同等级的用户在同一时间购买商品的价格对比,不同商品在同一时间的销量、利润率等的对比。
纵向对比指的是同一事物在时间维度上的变化,例如,环比、同比和定基比,也就是本月销售额与上月销售额的对比,本年度1月份销售额与上一年度1月份销售额的对比,本年度每月销售额分别与上一年度平均销售额的对比等。利用对比分析法可以对数据规模大小、水平高低、速度快慢等做出有效的判断和评价。
2、分组分析法
分组分析法是指根据数据的性质、特征,按照一定的指标,将数据总体划分为不同的部分,分析其内部结构和相互关系,从而了解事物的发展规律。
根据指标的性质,分组分析法分为属性指标分组和数量指标分组。所谓属性指标代表的是事物的性质、特征等,如姓名、性别、文化程度等,这些指标无法进行运算;而数据指标代表的数据能够进行运算,如人的年龄、工资收入等。分组分析法一般都和对比分析法结合使用。
3、预测分析法
预测分析法主要基于当前的数据,对未来的数据变化趋势进行判断和预测。预测分析一般分为两种:一种是基于时间序列的预测,例如,依据以往的销售业绩,预测未来3个月的销售额;另一种是回归类预测,即根据指标之间相互影响的因果关系进行预测,例如,根据用户网页浏览行为,预测用户可能购买的商品。
4、漏斗分析法
漏斗分析法也叫流程分析法,它的主要目的是专注于某个事件在重要环节上的转化率,在互联网行业的应用较普遍。比如,对于信用卡申请的流程,用户从浏览卡片信息,到填写信用卡资料、提交申请、银行审核与批卡。
最后用户激活并使用信用卡,中间有很多重要的环节,每个环节的用户量都是越来越少的,从而形成一个漏斗。使用漏斗分析法,能使业务方关注各个环节的转化率,并加以监控和管理,当某个环节的转换率发生异常时,可以有针对性地优化流程,采取适当的措施来提升业务指标。
5、AB测试分析法
AB 测试分析法其实是一种对比分析法,但它侧重于对比A、B两组结构相似的样本,并基于样本指标值来分析各自的差异。
例如,对于某个App的同一功能,设计了不同的样式风格和页面布局,将两种风格的页面随机分配给使用者,最后根据用户在该页面的浏览转化率来评估不同样式的优劣,了解用户的喜好,从而进一步优化产品。
除此之外,要想做好数据分析,读者还需掌握一定的数学基础,例如,基本统计量的概念(均值、方差、众数、中位数等),分散性和变异性的度量指标(极差、四分位数、四分位距、百分位数等),数据分布(几何分布、二项分布等),以及概率论基础、统计抽样、置信区间和假设检验等内容,通过相关指标和概念的应用,让数据分析结果更具专业性。
㈩ 常见的数据统计方法有什么
常见的数据统计方法有:表格、折线统计图、条形统计图、扇形统计图。举一个例子来具体分说明一下,比如说:我在淘宝开了个童装店,为了方便统计每半个月的销售额,现在用以上这四种统计方法来演示一下。
1.表格就是通过画格子的方式来统计数据,在这里可以画三行横线,得到两条细长的格子,再把这两行均匀的分为15个上下格子。横一为日期,横二为销售额,半个月下来都填进去就一目了然。
2.折线是通过画点,把15天的销售额都连成一条折线,通过上下起伏来看波动的数据。先画一“L”形,横线作日期,竖线作销售额,销售额可以自己写一个数,一直往上数与数之间相差一样。均匀的把横竖线分为15份,每个日期对应多少销售额,就在“L”的半框里,以对应的日期和销售画横线和竖线,交叉的位置取一点。然后每天如此,再用直线连接这15个点,就能清楚的看到这半个月哪一天销售最好,哪一天销售垫底。
3.条形统计图作出的是条状的数据统计图,和折线统计图一样,画“L”,横为日期竖为销售额。只不过这里不画点点,画倒立的长方形,然后通过高高低低的条形图来分析半个月的销售额。
4.扇形统计图就是把一个圆形,平均分为15份,一个月下来把所有的日销售额加起来,用当天的数据除以总数,乘以百分数。每一分里写上日期和当天销售额占总数的百分比,用这个百分数来统计半个月的数据。每个图的做法都不一样,但表达的意思都是同样的,这就是日常生活中最常见的几种数据统计。