① (三)时间序列分析的基本方法
1.模型的选择和建模基本步骤
(1)建模基本步骤
1)用观测、调查、取样,取得时间序列动态数据。
2)作相关图,研究变化的趋势和周期,并能发现跳点和拐点。拐点则是指时间序列从上升趋势突然变为下降趋势的点,如果存在拐点,则在建模时必须用不同的模型去分段拟合该时间序列。
3)辨识合适的随机模型,进行曲线拟合。
(2)模型的选择
当利用过去观测值的加权平均来预测未来的观测值时,赋予离得越近的观测值以更多的权,而“老”观测值的权数按指数速度递减,称为指数平滑(exponential smoothing),它能用于纯粹时间序列的情况。
对于短的或简单的时间序列,可用趋势模型和季节模型加上误差来进行拟合。对于平稳时间序列,可用自回归(AR)模型、移动平均(MA)模型或其组合的自回归移动平均(ARMA)模型等来拟合。
一个纯粹的AR模型意味着变量的一个观测值由其以前的p个观测值的线性组合加上随机误差项而成,就像自己对自己回归一样,所以称为自回归模型。
MA模型意味着变量的一个观测值由目前的和先前的n个随机误差的线性的组合。
当观测值多于50个时一般采用ARMA模型。
对于非平稳时间序列,则要先将序列进行差分(Difference,即每一观测值减去其前一观测值或周期值)运算,化为平稳时间序列后再用适当模型去拟合。这种经差分法整合后的ARMA模型称为整合自回归移动平均模型(Autoregressive Integrated Moving Average),简称ARIMA模型(张文彤,2002;薛薇,2005;G.E.P.Box et al.,1994)。
ARIMA模型要求时间序列满足平稳性和可逆性的条件,即序列均值不随着时间增加或减少,序列的方差不随时间变化。但由于我们所关注的地层元素含量变化为有趋势和周期成分的时间序列,都不是平稳的,这就需要对其进行差分来消除这些使序列不平稳的成分。所以我们选择更强有力的ARIMA模型。
2.平稳性和周期性研究
有些数学模型要检验周期性变化是否为平稳性过程,即其统计特性不随时间而变化,我们可根据序列图、自相关函数图、偏自相关函数图和谱密度图等对序列的平稳性和周期性进行识别。当序列图上表现有明显分段特征时可采用分段计算法,若分段求得的每段频谱图基本一致或相似,则认为过程是平稳的,否则是非平稳的。
自相关函数ACF(Autocorrelations function)是描述序列当前观测值与序列前面的观测值之间简单和常规的相关系数;而偏自相关函数PACF(Partial autocorrelations function)是在控制序列其他的影响后,测度序列当前值与某一先前值之间的相关程度。
平稳过程的自相关系数和偏自相关系数只是时间间隔的函数,与时间起点无关,都会以某种方式衰减趋近于0。
当ACF维持许多期的正相关,且ACF的值通常是很缓慢地递减到0,则序列为非平稳型。
序列的自相关-偏自相关函数具有对称性,即反映了周期性变化特征。
3.谱分析
确定性周期函数X(t)(设周期为T)在一定条件下通过傅里叶(Fourier)级数展开可表示成一些不同频率的正弦和余弦函数之和(陈磊等,2001),这里假设为有限项,即:
洞庭湖区第四纪环境地球化学
其中,频率fk=k/T,k=1,2,…,N。
上式表明:如果抛开相位的差别,这类函数的周期变化完全取决于各余弦函数分量的频率和振幅。换句话说,我们可以用下面的函数来表示X(t)的波动特征:
洞庭湖区第四纪环境地球化学
函数p(f)和函数X(t)表达了同样的周期波动,两者实际上是等价的,只不过是从频域和时域两个不同角度来描述而已。称p(f)为X(t)的功率谱密度函数,简称谱密度。它不仅反映了X(t)中各固有分量的周期情况,还同时显示出这些周期分量在整体X(t)中各自的重要性。具体说,在X(t)中各周期分量的对应频率处,谱密度函数图应出现较明显的凸起,分量的振幅越大,峰值越高,对X(t)的整体影响也越大。
事实上,无论问题本身是否具有周期性或不确定性(如连续型随机过程或时间序列)都可以采用类似的方法在频域上加以描述,只是表示的形式和意义比上面要复杂得多。时间序列的谱分析方法就是要通过估计时间序列的谱密度函数,找出序列中的各主要周期分量,通过对各分量的分析达到对时间序列主要周期波动特征的把握。
根据谱分析理论,对一个平稳时间序列{Xt},如果其自协方差函数R(k)满足
如何从实际问题所给定的时间序列 {Xt,t=1,2,…,n} 中估计出其谱密度或标准谱密度函数是谱分析要解决的主要问题。本书采用图基-汉宁(Tukey-Hanning)窗谱估计法。
② 16种常用的数据分析方法-时间序列分析
时间序列(time series)是系统中某一变量的观测值按时间顺序(时间间隔相同)排列成一个数值序列,展示研究对象在一定时期内的变动过程,从中寻找和分析事物的变化特征、发展趋势和规律。它是系统中某一变量受其它各种因素影响的总结果。
研究时间序列主要目的可以进行预测,根据已有的时间序列数据预测未来的变化。时间序列预测关键:确定已有的时间序列的变化模式,并假定这种模式会延续到未来。
时间序列的基本特点
假设事物发展趋势会延伸到未来
预测所依据的数据具有不规则性
不考虑事物发展之间的因果关系
时间序列数据用于描述现象随时间发展变化的特征。
时间序列考虑因素
时间序列分析就其发展历史阶段和所使用的统计分析方法看分为传统的时间序列分析和现代时间序列分析,根据观察时间的不同,时间序列中的时间可以是可以是年份、季度、月份或其他任何时间形式。
时间序列分析时的主要考虑的因素是:
l长期趋势(Long-term trend)
时间序列可能相当稳定或随时间呈现某种趋势。
时间序列趋势一般为线性的(linear),二次方程式的 (quadratic)或指数函数(exponential function)。
l季节性变动(Seasonal variation)
按时间变动,呈现重复性行为的序列。
季节性变动通常和日期或气候有关。
季节性变动通常和年周期有关。
l周期性变动(Cyclical variation)
相对于季节性变动,时间序列可能经历“周期性变动”。
周期性变动通常是因为经济变动。
l随机影响(Random effects)
除此之外,还有偶然性因素对时间序列产生影响,致使时间序列呈现出某种随机波动。时间序列除去趋势、周期性和季节性后的偶然性波动,称为随机性(random),也称不规则波动(irregular variations)。
时间序列的主要成分
时间序列的成分可分为4种:
l趋势(T)、
l季节性或季节变动(S)、
l周期性或循环波动(C)、
l随机性或不规则波动(I)。
传统时间序列分析的一项主要内容就是把这些成分从时间序列中分离出来,并将它们之间的关系用一定的数学关系式予以表达,而后分别进行分析。
时间序列建模基本步骤
1)用观测、调查、统计、抽样等方法取得被观测系统时间序列动态数据。
2)根据动态数据作相关图,进行相关分析,求自相关函数。
相关图能显示出变化的趋势和周期,并能发现跳点和拐点。
跳点是指与其他数据不一致的观测值。如果跳点是正确的观测值,在建模时应考虑进去,如果是反常现象,则应把跳点调整到期望值。
拐点则是指时间序列从上升趋势突然变为下降趋势的点。如果存在拐点,则在建模时必须用不同的模型去分段拟合该时间序列,例如采用门限回归模型。
3)辨识合适的随机模型,进行曲线拟合,即用通用随机模型去拟合时间序列的观测数据。
对于短的或简单的时间序列,可用趋势模型和季节模型加上误差来进行拟合。
对于平稳时间序列,可用通用ARMA模型(自回归滑动平均模型)及其特殊情况的自回归模型、滑动平均模型或组合-ARMA模型等来进行拟合。
当观测值多于50个时一般都采用ARMA模型。对于非平稳时间序列则要先将观测到的时间序列进行差分运算,化为平稳时间序列,再用适当模型去拟合这个差分序列。
spss时间序列分析过程
第一步:定义日期标示量:
打开数据文件,单击"数据",选择"定义日期和时间",弹出"定义日期"对话框,
数据中的起始时间就是数据文件里面的单元格第一个时间,我的第一个是1997年8月,每行表示的是月度销售量,因此,需要从"定义日期"对话框的左侧"个案是"框中选择"年,月",在左侧输入‘1997’,月框中输入‘8’,表示第一个个案的起始月是1997年8月,
最后点击确认,这样spss数据文件里面就会生成3个新的变量
如下图:
第二步:了解时间序列的变化趋势
了解时间序列的变化趋势做一个序列表就可以了,单击"分析",里面选择"时间序列预测,选择"序列图"对话框,然后把'平均值'移到"变量"框里面,‘DATE_’移到"时间轴标签"框中,单击"确定"。结果如图
根据序列图的分析知道,序列的波动随着季节的波动越来越大,所以我们选择乘法模型;
第三步:分析
单击“分析”,选择时间序列预测,然后选择“季节性分解”,弹出“季节性分解”对话框,确认无误之后点击确定,如图:
多了四个变量:
lERR表示误差分析;
lSAS表示季节因素校正后序列;
lSAF表示季节因子;
lSTC表示长期趋势和循环变动序列。
我们可以把新出现的四个变量、平均值和DATE_做序列图。先把ERR、SAS、STC和平均值和DATE_做个序列图,效果如下:
再单独做个SAT和DATE_的时间序列图
第四步:预测
1、 单击“分析”,选择“时间序列预测”,然后选择“创建传统模型”,之后就会弹出“时间序列建模”对话框。
2、 将“平均值”移至“因变量”框中,然后确定中间的“方法”,在下拉列表中选择“专家建模器”项,单击右侧的“条件”按钮,弹出“时间序列建模器:专家建模器条件”对话框。
3、 在“时间序列建模器:专家建模器条件”对话框的“模型”选项卡中,在“模型类型”框中选择“所有模型”项,并勾选“专家建模器考虑季节性模型”复选框,设置完,点“继续”按钮
4、 在“时间序列建模器”对话框中,切换至“保存”选项卡中,勾选“预测值”复选框,单击“导出模型条件”框中“XML文件”后面的“浏览”按钮,然后设置导出的模型文件和保存路径,然后单击“确定”按钮就可以了。
做完上面的步骤之后,在原始数据上面就又会多一列预测值出现。如图:
之前保存了预测的模型,我们现在就利用那个模型进行预测数据。
1、 单击“分析”,选择“时间序列预测”,然后选择“应用传统模型”,弹出“应用模型序列”对话框。具体的操作如下图:
最后一步切换至“保存”界面,勾选“预测值”之后单击确定就可以了。
从预测值直接看看不出来,可以把预测的数据和原始数据放到一起看下,也是直接做序列图就可以。
这样就完成了一次时间序列的模型,具体的预测数据可以看原始数据上面的出现的新的一列数据。
- End -
③ 时间序列的种类
一、绝对数时间序列
1、时期序列:由时期总量指标排列而成的时间序列 。
时期序列的主要特点有:
1)、序列中的指标数值具有可加性。
2)、序列中每个指标数值的大小与其所反映的时期长短有直接联系。
3)、序列中每个指标数值通常是通过连续不断登记汇总取得的。
2、时点序列:由时点总量指标排列而成的时间序列
时点序列的主要特点有:
1)、序列中的指标数值不具可加性。
2)、序列中每个指标数值的大小与其间隔时间的长短没有直接联系。
3)、序列中每个指标数值通常是通过定期的一次登记取得的。
二、相对数时间序列
把一系列同种相对数指标按时间先后顺序排列而成的时间序列叫做相对数时间序列。
三、平均数时间序列
平均数时间序列是指由一系列同类平均指标按时间先后顺序排列的时间序列。
(3)时间序列分析方法的主要流派及发展历程扩展阅读
时间序列数据变动存在着规律性与不规律性
时间序列中的每个观察值大小,是影响变化的各种不同因素在同一时刻发生作用的综合结果。从这些影响因素发生作用的大小和方向变化的时间特性来看,这些因素造成的时间序列数据的变动分为四种类型。
1、趋势性:某个变量随着时间进展或自变量变化,呈现一种比较缓慢而长期的持续上升、下降、停留的同性质变动趋向,但变动幅度可能不相等。
2、周期性:某因素由于外部影响随着自然季节的交替出现高峰与低谷的规律。
3、随机性:个别为随机变动,整体呈统计规律。
4、综合性:实际变化情况是几种变动的叠加或组合。预测时设法过滤除去不规则变动,突出反映趋势性和周期性变动。
④ 时间序列预测方法有哪些分类,分别适合使用的情况是
时间序列预测方法根据对资料分析方法的不同,可分为:简单序时平均数法、加权序时平均数法、移动平均法、加权移动平均法、趋势预测法、指数平滑法、季节性趋势预测法、市场寿命周期预测法等。
1、简单序时平均数法只能适用于事物变化不大的趋势预测。如果事物呈现某种上升或下降的趋势,就不宜采用此法。
2、加权序时平均数法就是把各个时期的历史数据按近期和远期影响程度进行加权,求出平均值,作为下期预测值。
3、简单移动平均法适用于近期期预测。当产品需求既不快速增长也不快速下降,且不存在季节性因素时,移动平均法能有效地消除预测中的随机波动。
4、加权移动平均法即将简单移动平均数进行加权计算。在确定权数时,近期观察值的权数应该大些,远期观察值的权数应该小些。
5、指数平滑法即根用于中短期经济发展趋势预测,所有预测方法中,指数平滑是用得最多的一种。
6、季节趋势预测法根据经济事物每年重复出现的周期性季节变动指数,预测其季节性变动趋势。
7、市场寿命周期预测法,适用于对耐用消费品的预测。这种方法简单、直观、易于掌握。
(4)时间序列分析方法的主要流派及发展历程扩展阅读:
时间序列预测法的特征
1、时间序列分析法是根据过去的变化趋势预测未来的发展,前提是假定事物的过去延续到未来。运用过去的历史数据,通过统计分析,进一步推测未来的发展趋势。不会发生突然的跳跃变化,是以相对小的步伐前进;过去和当前的现象,可能表明现在和将来活动的发展变化趋向。
2.时间序列数据变动存在着规律性与不规律性
时间序列中的每个观察值大小,是影响变化的各种不同因素在同一时刻发生作用的综合结果。从这些影响因素发生作用的大小和方向变化的时间特性来看,这些因素造成的时间序列数据的变动分为四种类型:趋势性、周期性、随机性、综合性。
⑤ 应用时间序列分析有哪几种方法
时间序列分析常用的方法:趋势拟合法和平滑法。
1、趋势拟合法就是把时间作为自变量,相应的序列观察值作为因变量,建立序列值随时间变化的回归模型的方法。包括线性拟合和非线性拟合。
线性拟合的使用场合为长期趋势呈现出线形特征的场合。参数估计方法为最小二乘估计。
非线性拟合的使用场合为长期趋势呈现出非线形特征的场合。其参数估计的思想是把能转换成线性模型的都转换成线性模型,用线性最小二乘法进行参数估计。实在不能转换成线性的,就用迭代法进行参数估计。
2、平滑法是进行趋势分析和预测时常用的一种方法。它是利用修匀技术,削弱短期随机波动对序列的影响,使序列平滑化,从而显示出长期趋势变化的规律 。
(5)时间序列分析方法的主要流派及发展历程扩展阅读
时间序列分析的主要用途:
1、系统描述
根据对系统进行观测得到的时间序列数据,用曲线拟合方法对系统进行客观的描述。
2、系统分析
当观测值取自两个以上变量时,可用一个时间序列中的变化去说明另一个时间序列中的变化,从而深入了解给定时间序列产生的机理。
3、预测未来
一般用ARMA模型拟合时间序列,预测该时间序列未来值。
4、决策和控制
根据时间序列模型可调整输入变量使系统发展过程保持在目标值上,即预测到过程要偏离目标时便可进行必要的控制。
⑥ 时间序列分析法是什么
时间序列分析法是一种历史资料延伸预测,也称历史引申预测法。它是对以时间数列所能反映的社会经济现象的发展过程和规律性进行引申外推、预测其发展趋势的方法。
时间序列,也叫时间数列、历史复数或动态数列。它是将某种统计指标的数值,按时间先后顺序排列所形成的数列。时间序列预测法就是通过编制和分析时间序列,根据时间序列所反映出来的发展过程、方向和趋势进行类推或延伸,借以预测下一段时间或以后若干年内可能达到的水平。其内容包括:收集与整理某种社会现象的历史资料;对这些资料进行检查鉴别,排成数列;分析时间数列,从中寻找该社会现象随时间变化而变化的规律,得出一定的模式;以此模式去预测该社会现象将来的情况。
⑦ 五种经典的时间序列类型
时间序列类型只有三种:
1、绝对数时间序列:由时期总量指标排列而成的时间序列。
2、相对数时间序列:把一系列同种相对数指标按时间先后顺序排列而成的时间序列叫做相对数时间序列。
3、平均数时间序列:平均数时间序列是指由一系列同类平均指标按时间先后顺序排列的时间序列。
时间序列的特征:
1、时间序列分析法是根据过去的变化趋势预测未来的发展,它的前提是假定事物的过去延续到未来。
2、时间序列数据变动存在着规律性与不规律性。
以上内容参考:网络-时间序列
⑧ 时间序列分析方法
时间序列是指一组在连续时间上测得的数据,其在数学上的定义是一组向量x(t), t=0,1,2,3,...,其中t表示数据所在的时间点,x(t)是一组按时间顺序(测得)排列的随机变量。包含单个变量的时间序列称为单变量时间序列,而包含多个变量的时间序列则称为多变量。
时间序列在很多方面多有涉及到,如天气预报,每天每个小时的气温,股票走势等等,在商业方面有诸多应用,如:
下面我们将通过一个航班数据来说明如何使用已有的工具来进行时间序列数据预测。常用来处理时间序列的包有三个:
对于基于AR、MA的方法一般需要数据预处理,因此本文分为三部分:
通过简单的初步处理以及可视化可以帮助我们有效快速的了解数据的分布(以及时间序列的趋势)。
观察数据的频率直方图以及密度分布图以洞察数据结构,从下图可以看出:
使用 statsmodels 对该时间序列进行分解,以了解该时间序列数据的各个部分,每个部分都代表着一种模式类别。借用 statsmodels 序列分解我们可以看到数据的主要趋势成分、季节成分和残差成分,这与我们上面的推测相符合。
如果一个时间序列的均值和方差随着时间变化保持稳定,则可以说这个时间序列是稳定的。
大多数时间序列模型都是在平稳序列的前提下进行建模的。造成这种情况的主要原因是序列可以有许多种(复杂的)非平稳的方式,而平稳性只有一种,更加的易于分析,易于建模。
在直觉上,如果一段时间序列在某一段时间序列内具有特定的行为,那么将来很可能具有相同的行为。譬如已连续观察一个星期都是六点出太阳,那么可以推测明天也是六点出太阳,误差非常小。
而且,与非平稳序列相比,平稳序列相关的理论更加成熟且易于实现。
一般可以通过以下几种方式来检验序列的平稳性:
如果时间序列是平稳性的,那么在ACF/PACF中观测点数据与之前数据点的相关性会急剧下降。
下图中的圆锥形阴影是置信区间,区间外的数据点说明其与观测数据本身具有强烈的相关性,这种相关性并非来自于统计波动。
PACF在计算X(t)和X(t-h)的相关性的时候,挖空在(t-h,t)上所有数据点对X(t)的影响,反应的是X(t)和X(t-h)之间真实的相关性(直接相关性)。
从下图可以看出,数据点的相关性并没有急剧下降,因此该序列是非平稳的。
如果序列是平稳的,那么其滑动均值/方差会随着时间的变化保持稳定。
但是从下图我们可以看到,随着时间的推移,均值呈现明显的上升趋势,而方差也呈现出波动式上升的趋势,因此该序列是非平稳的。
一般来讲p值小于0.05我们便认为其是显着性的,可以拒绝零假设。但是这里的p值为0.99明显是非显着性的,因此接受零假设,该序列是非平稳的。
从上面的平稳性检验我们可以知道该时间序列为非平稳序列。此外,通过上面1.3部分的序列分解我们也可以看到,该序列可分解为3部分:
我们可以使用数据转换来对那些较大的数据施加更大的惩罚,如取对数、开平方根、立方根、差分等,以达到序列平稳的目的。
滑动平均后数据失去了其原来的特点(波动式上升),这样损失的信息过多,肯定是无法作为后续模型的输入的。
差分是常用的将非平稳序列转换平稳序列的方法。ARIMA中的 'I' 便是指的差分,因此ARIMA是可以对非平稳序列进行处理的,其相当于先将非平稳序列通过差分转换为平稳序列再来使用ARMA进行建模。
一般差分是用某时刻数值减去上一时刻数值来得到新序列。但这里有一点区别,我们是使用当前时刻数值来减去其对应时刻的滑动均值。
我们来看看刚刚差分的结果怎么样。
让我们稍微总结下我们刚刚的步骤:
通过上面的3步我们成功的将一个非平稳序列转换成了一个平稳序列。上面使用的是最简单的滑动均值,下面我们试试指数滑动平均怎么样。
上面是最常用的指数滑动平均的定义,但是pandas实现的指数滑动平均好像与这个有一点区别,详细区别还得去查pandas文档。
指数滑动均值的效果看起来也很差。我们使用差分+指数滑动平均再来试试吧。
在上面我们通过 取log+(指数)滑动平均+差分 已经成功将非平稳序列转换为了平稳序列。
下面我们看看,转换后的平稳序列的各个成分是什么样的。不过这里我们使用的是最简单的差分,当前时刻的值等于原始序列当前时刻的值减去原始序列中上一时刻的值,即: x'(t) = x(t) - x(t-1)。
看起来挺不错,是个平稳序列的样子。不过,还是检验一下吧。
可以看到,趋势(Trend)部分已基本被去除,但是季节性(seasonal)部分还是很明显,而ARIMA是无法对含有seasonal的序列进行建模分析的。
在一开始我们提到了3个包均可以对时间序列进行建模。
为了简便,这里 pmdarima 和 statsmodels.tsa 直接使用最好的建模方法即SARIMA,该方法在ARIMA的基础上添加了额外功能,可以拟合seasonal部分以及额外添加的数据。
在使用ARIMA(Autoregressive Integrated Moving Average)模型前,我们先简单了解下这个模型。这个模型其实可以包括三部分,分别对应着三个参数(p, d, q):
因此ARIMA模型就是将AR和MA模型结合起来然后加上差分,克服了不能处理非平稳序列的问题。但是,需要注意的是,其仍然无法对seasonal进行拟合。
下面开始使用ARIMA来拟合数据。
(1) 先分训练集和验证集。需要注意的是这里使用的原始数据来进行建模而非转换后的数据。
(2)ARIMA一阶差分建模并预测
(3)对差分结果进行还原
先手动选择几组参数,然后参数搜索找到最佳值。需要注意的是,为了避免过拟合,这里的阶数一般不太建议取太大。
可视化看看结果怎么样吧。
(6)最后,我们还能对拟合好的模型进行诊断看看结果怎么样。
我们主要关心的是确保模型的残差(resial)部分互不相关,并且呈零均值正态分布。若季节性ARIMA(SARIMA)不满足这些属性,则表明它可以进一步改善。模型诊断根据下面的几个方面来判断残差是否符合正态分布:
同样的,为了方便,我们这里使用 pmdarima 中一个可以自动搜索最佳参数的方法 auto_arima 来进行建模。
一般来说,在实际生活和生产环节中,除了季节项,趋势项,剩余项之外,通常还有节假日的效应。所以,在prophet算法里面,作者同时考虑了以上四项,即:
上式中,
更多详细Prophet算法内容可以参考 Facebook 时间序列预测算法 Prophet 的研究 。
Prophet算法就是通过拟合这几项,然后把它们累加起来得到时间序列的预测值。
Prophet提供了直观且易于调整的参数:
Prophet对输入数据有要求:
关于 Prophet 的使用例子可以参考 Prophet example notebooks
下面使用 Prophet 来进行处理数据。
参考:
Facebook 时间序列预测算法 Prophet 的研究
Prophet example notebooks
auto_arima documentation for selecting best model
数据分析技术:时间序列分析的AR/MA/ARMA/ARIMA模型体系
https://github.com/advaitsave/Introction-to-Time-Series-forecasting-Python
时间序列分析
My First Time Series Comp (Added Prophet)
Prophet官方文档: https://facebookincubator.github.io
⑨ 1.3 时间序列分析方法
早期的时序分析通常都是通过直观的数据比较或绘图观测,寻找序列中蕴含的发展规律,这种分析方法就成为描述性时序分析。古埃及人发现尼罗河泛滥的规律就是依靠这种分析方法。而在天文、物理、海洋学等自然科学领域,这种简单的描述性时序分析方法也常常使人们发现意想不到的规律。
比如根据《史记 货殖列传》记载,早在春秋战国时期,范蠡和计然就提出我国农业生产具有“六岁穰、六岁旱,十二岁一大饥”的自然规律。《越绝书 计倪内经》则描述的更加详细,“太阴三岁处金则穰,三岁处氺则毁,三岁处木则康,三岁处火则旱......天下六岁一穰,六岁一康,凡十二岁一饥”。
用现代汉语来表述就是“木星绕天空运行,运行三年,如果处于金位,则该年为大丰收年;如果处于水位,则该年为大灾年;再运行三年,如果处于木位,则该年为小丰收年,如果处于火位,则该年为小灾年,所以天下平均六年一个大丰收年,六年一个小丰收年,十二年为一个大饥荒”。这是2500多年前,我国对农业生成具有3年一个小波动,12年左右一个大周期的记录,是一个典型的描述性时间序列分析。
描述性时序序列分析方法是人民在认识自然、改造自然的过程中发现的实用方法,对于很多自然现象,只要人们观察时间足够长,就能运描述性时序分析发现蕴含在时间里的自然规律,根据自然规律,做恰当的政策安排,就能有利于社会的发展和进步。
人们没有采取任何复杂的模型或分析方法,仅仅是按照时间序列收集数据,描述和呈现序列的波动,就了解到小麦产量的周期波动特征,产生该周期特征的气候原因以及周期波动对价格的影响。操作简单,直观有效是描述性时间序列分析方法的突出特点。它通常也是人们进行统计时序分析的第一步,通过图示的方法直观的反映出序列的波动特征。
随着研究领域的不断拓广,人们发现单纯的描述性时序分析有很大的局限性,在金融、保险、法律、人口、心理学等社会科学研究领域,随机变量的发展通常会呈现出非常强的随机性,想通过对时序序列简单的观察和描述,总结出随机变量发展变化的规律,并准确预测出它们将来的走势通常是非常困难的。
为了更准确的估计随机时序发展变化的规律,从20世纪20年代开始,学术界利用数理统计学原理分析时序序列。研究重心从总结表现现象转移到分析序列值内在的相互关系上,由此开辟了一门应用统计学科,时序序列分析。
纵观时间序列分析方法的发展历史可以将时间序列分析方法分为两大类。
频域分析方法也成为频谱分析或谱分析方法
早期的频谱分析方法假设任何一种无趋势的时间序列都可以分解成若干不同频率的周期波动,借助傅里叶分析从频率的角度揭示时间序列的规律,后来又借助了傅里叶变换,用正弦、余弦项之和来逼近某个函数。20世纪60年代,burg在分析地震信号时提出最大熵谱值估值理论,该理论克服了传统谱分析所有雇的分辨率不高和频率漏泄等缺点,使得谱分析仅以一个新阶段,称之为现代谱分析阶段。
目前谱分析方法主要用于电器工程,信息工程,物理学,天文学,海洋学和气象科学等领域,它是一种非常有用的纵向数据分析方法,但是由于谱分析过程一般都比较复杂,研究人员通常需要很强的数学基础才能熟练使用它,同时它的分析结果也比较抽象,不易于进行直观的解释,所以谱分析方法的使用具有很大的局限性。
时域(time domain)分析方法主要是从序列自相关的角度解释时间序列的发展规律。相对于谱分析方法,它具有理论基础扎实、操作步骤规范、分析结果易于解释等有点。目前它已经广泛应用于自然科学和社会科学的各个领域,成为时间序列分析的主流方法。本书就是介绍时域分析方法。
时域分析方法的基本思想是事件的发展通常都具有一定的惯性,这种惯性用统计的语言来描述就是序列值之间存在一定的相互关系,而且这种相互关系具有某种统计规律。我们分析的重点就是寻找这种规律,并拟合出适当的数学模型来描述这种规律,进而利用这个拟合模型来预测序列未来的走势。
时域分析方法具有相对固定的分析套路,通常都遵循如下分析步骤:
时域分析方法的产生最早可以最早追溯到1987年,英国统计学家G.M.JenKins联合出版了 Times Series Ananlysis Forecasting and Control一书。在书中,Box和Jenkins在总结前人的基础上,系统的阐述了对求和自回归移动平均(autoregressive integrated moving average)ARIMA模型的识别、估计、检验及预测的原理和方法。这些知识现在被称为经典的时序序列分析方法,是时域分析的核心方法。为了纪念Box和Jinkens对时间序列的发展的特殊贡献,现在人们也常把ARIMA模型称为Box-Jenkins模型。
Box-Jenkins模型实际上是主要运用于单变量、同方差的线性模型。随着人们对各领域时序序列的深入研究,发现该经典模型在理论和应用上都还存在许多局限性。所以近20年来,统计学家纷纷转向多变量场合、异方差场合和非线性场合的时序序列分析方法的研究,并且取得了突破进展。
⑩ 时间序列分析的简介
它包括一般统计分析(如自相关分析,谱分析等),统计模型的建立与推断,以及关于时间序列的最优预测、控制与滤波等内容。经典的统计分析都假定数据序列具有独立性,而时间序列分析则侧重研究数据序列的互相依赖关系。后者实际上是对离散指标的随机过程的统计分析,所以又可看作是随机过程统计的一个组成部分。例如,记录了某地区第一个月,第二个月,……,第N个月的降雨量,利用时间序列分析方法,可以对未来各月的雨量进行预报。
随着计算机的相关软件的开发,数学知识不再是空谈理论,时间序列分析主要是建立在数理统计等知识之上,应用相关数理知识在相关方面的应用等。