导航:首页 > 研究方法 > 协方差分析方法

协方差分析方法

发布时间:2022-10-02 09:30:50

❶ 协方差分析有什么分析方法

协方差分析是加入协变量的方差分析,协变量实际上就是我们所说的控制变量,你的调查研究中如果有一些你并不真正关心、但有可能对因变量有影响的变量,可以将其作为协变量,这就意味着你控制了该变量对因变量的效应

❷ 协方差分析是怎么分析的

方差分析(analysis of covariance)是关于如何调节协变量对因变量的影响效应,从而更加有效地分析实验处理效应的一种统计技术,也是对实验进行统计控制的一种综合方差分析和回归分析的方法。

❸ 什么是协方差

收藏
意见反馈
协方差
正在加载查看图集
协方差分析是建立在方差分析和回归分析基础之上的一种统计分析方法。方差分析是从质量因子的角度探讨因素不同水平对实验指标影响的差异。一般说来,质量因子是可以人为控制的。回归分析是从数量因子的角度出发,通过建立回归方程来研究实验指标与一个(或几个)因子之间的数量关系。但大多数情况下,数量因子是不可以人为加以控制的。两个不同参数之间的方差就是协方差。若两个随机变量X和Y相互独立,则E[(X-E(X))(Y-E(Y))]=0,因而若上述数学期望不为零,则X和Y必不是相互独立的,亦即它们之间存在着一定的关系。
基本信息
中文名:协方差
英文名:covariance
所属学科:数学
属性:统计分析方法
网络名片
正在加载协方差
协方差分析是建立在方差分析和回归分析基础之上的一种统计分析方法。 方差分析是从质量因子的角度探讨因素不同水平对实验指标影响的差异。一般说来,质量因子是可以人为控制的。 回归分析是从数量因子的角度出发,通过建立回归方程来研究实验指标与一个(或几个)因子之间的数量关系。但大多数情况下,数量因子是不可以人为加以控制的。
属性
两个不同参数之间的方差就是协方差 若两个随机变量X和Y相互独立,则E[(X-E(X))(Y-E(Y))]=0,因而若上述数学期望不为零,则X和Y必不是相互独立的,亦即它们之间存在着一定的关系。
定义
E[(X-E(X))(Y-E(Y))]称为随机变量X和Y的协方差,记作Cov(X,Y),即Cov(X,Y)=E[(X-E(X))(Y-E(Y))]。
协方差与方差之间有如下关系:
D(X+Y)=D(X)+D(Y)+2Cov(X,Y)
D(X-Y)=D(X)+D(Y)-2Cov(X,Y)
协方差与期望值有如下关系:
Cov(X,Y)=E(XY)-E(X)E(Y)。
协方差的性质:
(1)Cov(X,Y)=Cov(Y,X);
(2)Cov(aX,bY)=abCov(X,Y),(a,b是常数);
(3)Cov(X+X,Y)=Cov(X,Y)+Cov(X,Y)。
由协方差定义,可以看出Cov(X,X)=D(X),Cov(Y,Y)=D(Y)。
协方差作为描述X和Y相关程度的量,在同一物理量纲之下有一定的作用,但同样的两个量采用不同的量纲使它们的协方差在数值上表现出很大的差异。为此引入如下概念:
正在加载协方差
定义
称为随机变量X和Y的(Pearson)相关系数。
定义
若ρXY=0,则称X与Y不线性相关。
即ρXY=0的充分必要条件是Cov(X,Y)=0,亦即不相关和协方差为零是等价的。
定理
设ρXY是随机变量X和Y的相关系数,则有
(1)∣ρ∣≤1;
(2)∣ρ∣=1充分必要条件为P{Y=aX+b}=1,(a,b为常数,a≠0)
定义
设X和Y是随机变量,若E(X^k),k=1,2,...存在,则称它为X的k阶原点矩,简称k阶矩。
若E{[X-E(X)]},k=1,2,...存在,则称它为X的k阶中心矩。
若E{(X^k)(Y^p)},k、l=1,2,...存在,则称它为X和Y的k+p阶混合原点矩。
若E{[X-E(X)]^k[Y-E(Y)]^l },k、l=1,2,...存在,则称它为X和Y的k+l阶混合中心矩。
显然,X的数学期望E(X)是X的一阶原点矩,方差D(X)是X的二阶中心矩,协方差Cov(X,Y)是X和Y的二阶混合中心矩。

❹ 协方差分析的介绍

协方差分析(analysis of covariance)是关于如何调节协变量对因变量的影响效应,从而更加有效地分析实验处理效应的一种统计技术,也是对实验进行统计控制的一种综合方差分析和回归分析的方法。

❺ 协方差分析

在我们的研究过程中经常会出现除了关注的自变量和因变量,还有一些其他的因素也会影响因变量,但我们又不想考虑他们,这个时候就需要借助协方差分析了。比如,想研究不同教学方法的作用,那么自变量是教学方法,因变量是学生的成绩,但是我们知道学生最初的水平也对最后的成绩有影响,所以为了更好研究教学方法,我们需要采用统计的方法对学生原本的水平进行控制。

因素(自变量):二分或分类变量
协变量:连续的等距或等比数据,且数据无界
因变量:连续的等距或等比数据,且数据无界

结果变量的每个值都应该是独立的

在每个组内,结果变量应该近似服从正态分布。可用 直方图 目测,用统计方法: 正态性统计检验方法(如K-S统计检验)

每个组的方差应该是近似的。统计检验: Levene统计量,若不显着,则齐性

(1)也就是协变量在自变量的不同水平之间是无差异的
(2)SPSS操作:独立样本t检验(或方差分析)
具体过程与结果见假设4

(1)线性关系可以用散点图来检验

(2) 检验各组的回归系数之间是否有差异。在此需要作 自变量和协变量的交互作用分析 ,且只看自变量和协变量之间的交互作用是否显着, 如果不显着表明协变量和因变量之间的关系不会因自变量各处理水平的不同而有所差异,即因变量对协变量的回归斜率相等 ,满足协方差分析条件;显着则不可进行。

在协方差分析中,协变量的作用是用于控制实验中我们不想关注但却会对因变量产生影响的变量,而且要求协变量与自变量之间没有交互作用。
但是值得关注的是,有一种特殊情况,也就是 协变量与自变量之间本身就相关,且协变量是连续变量时, 这种一个情况下, 协变量不再是用于被控制掉的变量,而是也变成自变量来作分析

❻ 方差和协方差的计算方法是什么

协方差分析是建立在方差分析和回归分析基础之上的一种统计分析方法。即ρXY=0的充分必要条件是COV(X,Y)=0,亦即不相关和协方差为零是等价的

cov(x,y)=EXY-EX*EY

协方差的定义,EX为随机变量X的数学期望,同理,EXY是XY的数学期望,挺麻烦的,建议你看一下概率论cov(x,y)=EXY-EX*EY

方差公式:

❼ 协方差分析的方法

如果那些不能很好地进行试验控制的因素是可量测的,且又和试验结果之间存在直线回归关系,就可利用这种直线回归关系将各处理的观测值都矫正到初始条件相同时的结果,使得处理间的比较能在相同基础上进行,而得出正确结论。这一做法在统计上称为统计控制。
这时所进行的协方差分析是将回归分析和方差分析结合起来的一种统计分析方法,这种协方差分析称为回归模型的协方差分析。 方差分析中根据均方MS与期望均方EMS间的关系,可获得不同变异来源的方差分量估计值;在协方差分析中,根据均积MP与期望均积EMP间的关系,可获得不同变异来源的协方差分量估计值。
这种协方差分析称为相关模型的协方差分析。

❽ 协方差的计算方法

cov(x,y)=EXY-EX*EY

协方差的定义,EX为随机变量X的数学期望,同理,EXY是XY的数学期望,挺麻烦的,建议你看一下概率论cov(x,y)=EXY-EX*EY

协方差的定义,EX为随机变量X的数学期望,同理,EXY是XY的数学期望,挺麻烦的,建议你看一下概率论

举例:

Xi 1.1 1.9 3

Yi 5.0 10.4 14.6

E(X) = (1.1+1.9+3)/3=2

E(Y) = (5.0+10.4+14.6)/3=10

E(XY)=(1.1×5.0+1.9×10.4+3×14.6)/3=23.02

Cov(X,Y)=E(XY)-E(X)E(Y)=23.02-2×10=3.02

此外:还可以计算:D(X)=E(X^2)-E^2(X)=(1.1^2+1.9^2+3^2)/3 - 4=4.60-4=0.6 σx=0.77

D(Y)=E(Y^2)-E^2(Y)=(5^2+10.4^2+14.6^2)/3-100=15.44 σy=3.93

X,Y的相关系数:

r(X,Y)=Cov(X,Y)/(σxσy)=3.02/(0.77×3.93) = 0.9979

表明这组数据X,Y之间相关性很好!

如果两个变量的变化趋势一致,也就是说如果其中一个大于自身的期望值时另外一个也大于自身的期望值,那么两个变量之间的协方差就是正值;如果两个变量的变化趋势相反,即其中一个变量大于自身的期望值时另外一个却小于自身的期望值,那么两个变量之间的协方差就是负值。

如果X与Y是统计独立的,那么二者之间的协方差就是0,因为两个独立的随机变量满足E[XY]=E[X]E[Y]。

但是,反过来并不成立。即如果X与Y的协方差为0,二者并不一定是统计独立的。

协方差Cov(X,Y)的度量单位是X的协方差乘以Y的协方差。而取决于协方差的相关性,是一个衡量线性独立的无量纲的数。

协方差为0的两个随机变量称为是不相关的。

阅读全文

与协方差分析方法相关的资料

热点内容
医学全景拼接常用方法 浏览:681
哪些数学方法帮你解决了问题 浏览:852
卷帘百叶窗免打孔安装的方法 浏览:715
自拍杆拍手机的方法 浏览:550
bod5分析方法名称 浏览:255
小米5无线显示在哪里设置方法 浏览:445
炖汆闷属于什么加热方法 浏览:209
激光方法治疗胃息肉有没有伤口 浏览:571
一个人转移注意力的方法有哪些 浏览:211
鱼缸除油膜最简单的方法 浏览:440
咳嗽小便失禁锻炼方法 浏览:904
简单做鱼方法 浏览:104
大小脸自我矫正方法图片集 浏览:80
从台账中快速抓取数据的方法 浏览:785
高血压的剁辽方法有哪些 浏览:96
幼儿心理发展研究最基本的方法 浏览:51
商业研究方法和人力资源管理问题 浏览:248
帆布包变黄有什么方法解决 浏览:786
轻感冒怎么办速效方法 浏览:11
焦油含量检测方法 浏览:291