① 如何判断奇偶性
函数奇偶性,首先必须是关于x的对称区间上的函数否则无奇偶性可言,然后若根据定义奇函数需满足任意的x都使f(x)=-f(-x)成立,对于偶函数则任意x需满足f(x)=f(-x)成立,从直角坐标系的图像上来看就是奇函数的图像关于原点对称,偶函数的图像关于y轴对称,这里奇函数就有一个特点,奇函数在x=0处的值必然为0,这就给我们提供了一个思路,判断函数奇偶性的时候,首先看区间是否对称,不对称不言奇偶性,对称则首先看f(0)=0是否成立,不成立则一定不是奇函数,则按照定义验证是否为偶函数;若f(0)=0成立了,也需要验证是否为奇函数,不是奇函数时也要验证是否为偶函数的,切记!还有可以利用导函数来判断,导函数为奇函数则原来函数为偶函数,但是导函数为偶函数时,原函数则不一定为奇函数.其实最重要的方法就是定义!有个解题技巧就是判断f(x)和f(-x)的关系时一般采用f(x)+f(-x)=0或者f(x)-f(-x)=0的问题,做起来比较简单.
② 奥数数论之奇偶分析
这没什么为什么吧。。。这只是种方法技巧,可以简单快速地算出答案
终止时S就是剩下的数啊
如果硬算|a909-|a908-|a907-......|a3-|a2-a1||...|那不累死你
③ 怎么判断奇偶性
奇偶性
1.定义
一般地,对于函数f(x)
(1)如果对于函数定义域内的任意一个x,都有f(-x)=-f(x),那么函数f(x)就叫做奇函数。
(2)如果对于函数定义域内的任意一个x,都有f(-x)=f(x),那么函数f(x)就叫做偶函数。
(3)如果对于函数定义域内的任意一个x,f(-x)=-f(x)与f(-x)=f(x)同时成立,那么函数f(x)既是奇函数又是偶函数,称为既奇又偶函数。
(4)如果对于函数定义域内的任意一个x,f(-x)=-f(x)与f(-x)=f(x)都不能成立,那么函数f(x)既不是奇函数又不是偶函数,称为非奇非偶函数。
说明:①奇、偶性是函数的整体性质,对整个定义域而言
②奇、偶函数的定义域一定关于原点对称,如果一个函数的定义域不关于原点对称,则这个函数一定不是奇(或偶)函数。
(分析:判断函数的奇偶性,首先是检验其定义域是否关于原点对称,然后再严格按照奇、偶性的定义经过化简、整理、再与f(x)比较得出结论)
③判断或证明函数是否具有奇偶性的根据是定义
2.奇偶函数图像的特征:
定理 奇函数的图像关于原点成中心对称图表,偶函数的图象关于y轴或轴对称图形。
f(x)为奇函数《==》f(x)的图像关于原点对称
点(x,y)→(-x,-y)
奇函数在某一区间上单调递增,则在它的对称区间上也是单调递增。
偶函数 在某一区间上单调递增,则在它的对称区间上单调递减。
单调函数
一般地,设函数f(x)的定义域为I:
如果对于属于I内某个区间上的任意两个自变量的值x1、x2,当x1f(x2).那么就是f(x)在这个区间上是减函数。
如果函数y=f(x)在某个区间是增函数或减函数。那么就说函说y=f(x)在这一区间具有(严格的)单调性,这一区间叫做y= f(x)的单调区间,在单调区间上增函数的图像是上升的,减函数的图像是下降的。
注意:(1)函数的单调性也叫函数的增减性;
(2)函数的单调性是对某个区间而言的,它是一个局部概念;
(3)判定函数在某个区间上的单调性的方法步骤有两种主要方法:
1)定义法
a.设x1、x2∈给定区间,且x1<x2.
b.计算f(x1)- f(x2)至最简。
c.判断上述差的符号。
2)求导法
利用导数公式进行求导,然后判断导函数和0的大小关系,从而判断增减性,导函数值大于0,说明是增函数,导函数值小于0,说明是减函数,前提是原函数必须是连续的。
④ 什么叫做奇偶分析法
一个整数或是奇数,或是偶数,两者必居其一,因此,奇偶性是整数的一种不变的特性,利用整数的奇偶性来解决问题的方法叫做奇偶分析法.
⑤ 函数定义域、值域、单调性、奇偶性的解题思路和方法
1.
求函数的解析式(1)求函数解析式的常用方法:①换元法(
注意新元的取值范围)②待定系数法(已知函数类型如:一次、二次函数、反比例函数等)③整体代换(配凑法)④构造方程组(如自变量互为倒数、已知f(x)为奇函数且g(x)为偶函数等)(2)求函数的解析式应指明函数的定义域,函数的定义域是使式子有意义的自变量的取值范围,同时也要注意变量的实际意义。(3)理解轨迹思想在求对称曲线中的应用。2.
求函数的定义域求用解析式y=f(x)表示的函数的定义域时,常有以下几种情况:①若f(x)是整式,则函数的定义域是实数集R;②若f(x)是分式,则函数的定义域是使分母不等于0的实数集;③若f(x)是二次根式,则函数的定义域是使根号内的式子大于或等于0的实数集合;④若f(x)是由几个部分的数学式子构成的,则函数的定义域是使各部分式子都有意义的实数集合;⑤若f(x)是由实际问题抽象出来的函数,则函数的定义域应符合实际问题.3.
求函数值域(最值)的一般方法:(1)利用基本初等函数的值域;(2)配方法(二次函数或可转化为二次函数的函数);(3)不等式法(利用基本不等式,尤其注意形如型的函数)(4)函数的单调性:特别关注的图象及性质(5)部分分式法、判别式法(分式函数)(6)换元法(无理函数)(7)导数法(高次函数)(8)反函数法(9)数形结合法4.
求函数的单调性(1)定义法:(2)导数法:
(3)利用复合函数的单调性:(4)关于函数单调性还有以下一些常见结论:①两个增(减)函数的和为_____;一个增(减)函数与一个减(增)函数的差是______;②奇函数在对称的两个区间上有_____的单调性;偶函数在对称的两个区间上有_____的单调性;③互为反函数的两个函数在各自定义域上有______的单调性;
(5)求函数单调区间的常用方法:定义法、图象法、复合函数法、导数法等(6)应用:比较大小,证明不等式,解不等式。5.
函数的奇偶性奇偶性:定义:注意区间是否关于原点对称,比较f(x)
与f(-x)的关系。f(x)
-f(-x)=0f(x)
=f(-x)
f(x)为偶函数;f(x)+f(-x)=0f(x)
=-f(-x)
f(x)为奇函数。判别方法:定义法,图象法,复合函数法应用:把函数值进行转化求解。6.
周期性:定义:若函数f(x)对定义域内的任意x满足:f(x+T)=f(x),则T为函数f(x)的周期。其他:若函数f(x)对定义域内的任意x满足:f(x+a)=f(x-a),则2a为函数f(x)的周期.应用:求函数值和某个区间上的函数解析式。
⑥ 与奇偶性有关问题要善于从哪些角度思考
从整体角度进行数学教学的几点思考
高中数学知识体系及其结构已经形成一个较为完整的系统,从高中数学教材改革的指导思想及其重点,便可看出在数学教学中应注重以问题引导数学知识产生的背景、过程、历史、思想及文化,最终落实到数学知识的应用这一重要环节。为此,在数学教学中教师要培养学生从数学的基本思想、基本方法、基本概念的理解与认识,以及对数学的基本态度等方面来形成对数学的总体认识,进而使学生对数学形成整体的认知结构。
要让学生对数学有一个整体的认知结构,提高学生数学能力、创新意识、理性精神并着眼于学生的终身发展,教师也就应该从系统和整体的角度来开展数学教学,以下笔者就此结合教学实践谈几点思考。
一、从整体的角度在数学知识形成过程中寻找联系
如果教师能够从整体数学知识的角度考虑,用联系的眼光来看问题,就会发现在数学基础知识的形成过程中往往隐含着丰富的教育价值,这正是培养学生的数学观念、提升学生的数学素质、形成学生数学整体认知结构的一条重要途径。
比如,高中数学新课标教材中“函数奇偶性定义”是这样呈现:先由学生熟悉的日常生活中对称现象与两个分别关于原点和y轴对称的函数图象引出函数奇偶性概念,再将它们的图象特征转化成代数特征f(-x)=f(x)与f(-x)=-f(x),从而得到函数奇偶性的定义。这样体现了化“未知”为“已知”、化“形”为“数”和形数结合的数学思想方法,也符合学生由熟悉到陌生、由特殊到一般、由直观到抽象的认知规律。
针对这一过程我们还可以从整体的角度进行深入的思考,进一步从如何激发学生的认知需求提出这样的问题:为什么要研究函数的奇偶性?为什么要学习函数奇偶性的定义?如何体现高中数学新课标倡导的自主探索、动手实践、合作交流的学习方式?因此,教师可以在日常生活中的对称现象的基础上,让学生观察他们熟悉的正比例函数f(x)=kx(k≠0)、反比例函数f(x)=(x≠0)、缺一次项的二次函数f(x)=ax+c(a≠0)的图象,学生会发现这些函数的图象具有关于原点对称或关于y轴对称共同的特征。教师进而提出问题:具有这种对称性的函数图象有什么优点?(以激发学生思考的兴趣)由此引导学生分析讨论可以得到:这些函数图象不仅具有形态对称的美,而且知道它在原点或y轴的一侧的图象就可以画出它另一侧的图象。
在介绍了函数奇偶性图象特征后,教师可以先让学生判断以下一些函数的奇偶性:①f(x)=x,x∈[0,+∞);②f(x)=x;③f(x)=x+2x+;④f(x)=.对于①的函数图象,学生容易作答;对于②的函数图象,学生利用描点法也不难画出图象后作答;对于③、④的函数图象,学生会感到难以画出。由此可以说明利用函数的图象特征判断函数的奇偶性有其局限性,即使有的函数图象能够画出,但还会存在准确性和视觉的可靠性等问题。由此可以使学生产生认知冲突,从而激发学生在“形”转化为“数”、直观转化为抽象、感性转化为理性等认知方面的需求,这样进一步去探讨函数奇偶性定义就更符合学生学习的心理需求。
通过上述过程可以把函数相关的新旧知识有机地联系起来,一方面激发了学生认知需求,另一方面强化了学生对函数奇偶性的直观认识,同时为函数奇偶性定义形成作了铺垫,从而使学生能够自然地掌握用图象法和定义法来判断函数的奇偶性。这样一来就可以从整体的角度揭示和研究函数的奇偶性,也能够使学生对函数的奇偶性形成一个完整的认知结构。
二、从整体的角度在数学解题教学中寻找联系
从广义的数学知识角度来看,数学的思想方法是在一定范围内具有普遍性、隐性的知识,是数学知识的精髓和灵魂,是学生形成良好数学认知结构的纽带,是知识形成能力的关键。教师在数学解题教学中,要注重其中所蕴含的数学思想方法,在探讨数学题型及其解法过程中引导学生从整体的角度寻求数学知识间的联系,从而通过解题教学使学生形成良好的数学认知结构,提高数学能力。
例如,已知函数y=+的最大值为M,最小值为m,则的值为( )
A. B. C. D.
在解此题的教学中,若教师仅直接讲述其解法一为:先将函数式两边平方,得到y=4+(-3≤x≤1)后转化为求二次函数在给定区间上的最值;解法二为:由-3≤x≤1得0≤x+3≤4,设x+3=4cosβ(β∈[0,90 ]),转化为求三角函数的最值;解法三为:令u=,v=,则u+v=4(u≥0, v≥0),u+v=y,再用解析法求最值。这样似乎问题很容易就被解决了,但学生的反应仍是很茫然,感到困惑的地方是老师怎么会想到这样做。为了避免出现这种现象,教师在解题教学中要重视引导学生在数学知识与数学思想方法之间,从整体的角度探讨其联系,揭示数学知识的本质,使学生的数学认知结构得到优化与完善。
为此,教师要进一步揭示上述解题过程中所体现出的化无理式为有理式、化未知为已知的这种数学化归思想和数形结合思想,使学生领悟解法的本质所在。同时教师还可以从整体的角度,用联系的眼光看问题,引导学生对上述问题进一步探究。比如,可以启发学生联想到借助函数的导数,从而得出函数的单调性来求最值;如果仅是求此函数的最大值,还可以启发学生借助柯西不等式等。教师还可以进一步提出以下变式问题让学生思考:(1)、如果把函数改为y=+或y=+时,如何求解呢?(可直接利用其单调性求解);(2)、如果把函数改为y=1-x+或y=x+1+时,如何求解呢?(前者可设t=≥0,转化为关于t的二次函数;后者可直接利用其单调性求解)等等,这样便可以把求一次无理函数的最值的方法有机地联系成一个整体。
三、从整体的角度在数学探究过程中寻找联系
高中数学新课改倡导培养学生的探究意识和理性精神,为此在数学教学中,教师可以引导学生对数学学习中感到困惑的问题进行探究。在探究过程中,教师可以指导学生从整体的角度去注意寻找知识间的联系,这样可以丰富学生的认知结构,为形成新的知识网络创造条件。
比如,高中数学中随机变量的方差概念是初中数学中一组数据的方差概念的拓展,是刻画随机变量(一组数据)与数学期望(一组数据的平均数)离散程度的量。在此教学中,可以让学生探究为什么将一组数据x,x,…,x 的方差定义为而不是呢?其探究思路可以如下:设f(x)= ,当x==时,f(x)= ;又设g(x)= ,可以证明当①n为奇数时,x为数据x,x,…,x的中位数,②当n为偶数时,x时,都有g(x)取最小值。所以,用来刻画数据x,x,…,x与平均数的离散程度最佳,用来刻画数据x,x,…,x与其中位数x的离散程度最佳。在探究过程中,教师可以适当的把数学史上着名的最小二乘法与最小一乘法这一统计学背景给学生介绍一下,以丰富学生的数学知识和提高探究的兴趣。
探究之后,可以让学生完成以下练习:(1)、函数f(x)=最小值为( ) A.190 B.171 C.90 D.45
(2)、在测量某物理量的过程中,因仪器和观察的误差,使得n次测量分别得到x,x,…,x共n个数据。我们规定的所测物理量的“最佳近似值”x是这样一个量:与其它近似值比较,与各数据差的平方和最小,以此规定,从x,x,…,x推出x=_______。
学生在上述探究的基础上,就能把看似没有关联的知识有机地联系起来,很容易得到:(1)题中x=10(1,2,…,19的中位数)时,f(x)=90;(2)题中x=(x+x+…+x)(即数据x,x,…,x的平均数)。
通过上述探究过程,从整体的角度角度联系了函数最值知识与误差理论,深化了学生对方差概念的理解,拓宽了学生的视野,培养学生的理性精神,使学生学会用联系的眼光看问题,从整体的角度认识数学概念。这样学生对数学知识的理解便是深刻的,通过知识的正迁移获得数学知识本质上的东西。
四、从整体的角度在数学与数学外部之间寻找联系
曾有数学教育家认为,数学与其外部的联系对学生来说是更自然和更重要的。数学与其外部的联系是极为广泛的,主要包括数学与其它学科间的联系和数学与现实生活间的联系。高中数学新课程也倡导要加强数学与其它学科及生活实际的沟通和联系,使学生从中体会数学的价值和作用。
在数学教学过程中,教师可以从整体的角度指导学生学会用数学的思维方式去思考、解决生活实际中的问题,同时能够用生活实际中的现象来诠释数学问题,让学生体会到数学知识与现实生活的相同性,由此培养学生的联想意识和习惯,培养学生的创新意识和创造能力。
比如,在进行高中数学概率教学时,可以从整体的角度在概率知识与生活实际之间寻找联系,创设问题情境,从而这样引入新课:
教师:在经济比较发达和文明程度较高的某些大城市的街头,经常有人在摆摊算卦,前来问卦的人有普通百姓,也有知识分子。请同学们想一想是什么原因?
学生:众说纷纭。
教师:我认为是它满足了人们对预测未来的一种心理渴求,尽管许多人明知问卦是不科学的。
教师:我们还经常会听到人们常说某件事发生的可能性较大,那么我们就会想这种事件发生的可能性到底有多大?如何来体现和刻画这种可能性呢?
学生:如何能够用具体数字来反映和刻事件发生可能性的大小就好了,因为数据能够很好的说明问题。
教师:人们通常习惯用数字来说明问题,也就是对问题进行定量分析,但可能会有较大的难度。但有一种数学知识就可以用数字特征来科学地体现这种可能性大小,那就是概率。
通过这样引导学生思考,培养学生形成在数学与其它学科间、在数学与现实生活间进行联系思考的意识,并形成一种自然的习惯。
总之,在教学过程中要尽可能地从整体的角度出发去思考教学设计,让学生从整体的角度去认识和学习数学,而不要孤立地看待数学知识,人为地把数学知识割裂开来。从整体的高度来看待和认识数学,使学生把数学知识有机地联系起来,让学生的数学认知结构不断趋于完善,从而提高学生的数学能力和素质。
参考文献:
①宁连华.数学探究教学设计研究[J].数学教育学报,2006,15(4).
②潘小明.数学探究教学中异化现象探析[J].数学教育学报,2008,17(2).
③中华人民共和国教育部.普通高中数学课程标准(实验)[M].北京:人民教育出版社,2003.
④唐锐光.一道高考题新解法引发的命题[J].中学数学杂志(高中版),2008,11
⑦ 怎么判断函数奇偶性
(1)奇函数在对称的单调区间内有相同的单调性
偶函数在对称的单调区间内有相反的单调性
(2)若f(x-a)为奇函数,则f(x)的图像关于点(a,0)对称
若f(x-a)为偶函数,则f(x)的图像关于直线x=a对称
(3)在f(x),g(x)的公共定义域上:奇函数±奇函数=奇函数
偶函数±偶函数=偶函数
奇函数×奇函数=偶函数
偶函数×偶函数=偶函数
奇函数×偶函数=奇函数
(7)奇偶分析思路和方法扩展阅读
函数的早期概念:
十七世纪伽俐略在《两门新科学》一书中,几乎全部包含函数或称为变量关系的这一概念,用文字和比例的语言表达函数的关系。
1637年前后笛卡尔在他的解析几何中,已注意到一个变量对另一个变量的依赖关系,但因当时尚未意识到要提炼函数概念,因此直到17世纪后期牛顿、莱布尼兹建立微积分时还没有人明确函数的一般意义,大部分函数是被当作曲线来研究的。
⑧ 如何判断函数奇偶性
1 先分解函数为常见的一般函数,比如多项式x^n,三角函数,判断奇偶性
2 根据分解的函数之间的运算法则判断,一般只有三种种f(x)g(x)、f(x)+g(x),f(g(x))(除法或减法可以变成相应的乘法和加法)
3 若f(x)、g(x)其中一个为奇函数,另一个为偶函数,则f(x)g(x)奇、f(x)+g(x)非奇非偶函数,f(g(x))奇
4 若f(x)、g(x)都是偶函数,则f(x)g(x)偶、f(x)+g(x)偶,f(g(x))偶
5 若f(x)、g(x)都是奇函数,则f(x)g(x)偶、f(x)+g(x)奇,f(g(x))奇
(8)奇偶分析思路和方法扩展阅读:
偶函数:若对于定义域内的任意一个x,都有f(-x)=f(x),那么f(x)称为偶函数。
奇函数:若对于定义域内的任意一个x,都有f(-x)=-f(x),那么f(x)称为奇函数。
定理奇函数的图像关于原点成中心对称图表,偶函数的图象关于y轴成轴对称图形。
f(x)为奇函数《==》f(x)的图像关于原点对称
点(x,y)→(-x,-y)
奇函数在某一区间上单调递增,则在它的对称区间上也是单调递增。
偶函数在某一区间上单调递增,则在它的对称区间上单调递减。
(1)奇函数在对称的单调区间内有相同的单调性
偶函数在对称的单调区间内有相反的单调性
(2)若f(x+a)为奇函数,则f(x)的图像关于点(a,0)对称
若f(x+a)为偶函数,则f(x)的图像关于直线x=a对称
(3)在f(x),g(x)的公共定义域上:奇函数±奇函数=奇函数
偶函数±偶函数=偶函数
奇函数×奇函数=偶函数
偶函数×偶函数=偶函数
奇函数×偶函数=奇函数
上述奇偶函数乘法规律可总结为:同偶异奇
⑨ 如何判断函数的奇偶性步骤及方法
一般地,如果对于函数f(x)的定义域内任意一个x,都有f(-x)=f(x),那么函数f(x)就叫偶函数。
一般地,如果对于函数f(x)的定义域内任意一个x,都有f(-x)=-f(x),那么函数f(x)就叫奇函数。
奇函数在其对称区间[a,b]和[-b,-a]上具有相同的单调性,即已知是奇函数,它在区间[a,b]上是增函数(减函数),则在区间[-b,-a]上也是增函数(减函数);偶函数在其对称区间[a,b]和[-b,-a]上具有相反的单调性,即已知是偶函数且在区间[a,b]上是增函数(减函数),则在区间[-b,-a]上是减函数(增函数)。但由单调性不能倒推其奇偶性。验证奇偶性的前提要求函数的定义域必须关于原点对称。
⑩ 关于函数奇偶的一系列解题技巧及方法
一般地,对于函数f(x)
⑴如果对于函数f(x)定义域内的任意一个x,都有f(x)=f(-x)或f(x)/f(-x)=1那么函数f(x)就叫做偶函数。关于y轴对称,f(-x)=f(x)。
⑵如果对于函数f(x)定义域内的任意一个x,都有f(-x)=-f(x)或f(x)/f(-x)=-1,那么函数f(x)就叫做奇函数。关于原点对称,-f(x)=f(-x)。
⑶如果对于函数定义域内的任意一个x,都有f(-x)=-f(x)和f(-x)=f(x),(x∈r,且r关于原点对称.)那么函数f(x)既是奇函数又是偶函数,称为既奇又偶函数。
⑷如果对于函数定义域内的存在一个a,使得f(-a)≠f(a),存在一个b,使得f(-b)≠f(b),那么函数f(x)既不是奇函数又不是偶函数,称为非奇非偶函数。
定义域互为相反数,定义域必须关于y轴对称
特殊的,f(x)=0既是奇函数,又是偶函数。
说明:①奇、偶性是函数的整体性质,对整个定义域而言。
②奇、偶函数的定义域一定关于原点对称,如果一个函数的定义域不关于原点对称,则这个函数一定不具有奇偶性。
(分析:判断函数的奇偶性,首先是检验其定义域是否关于原点对称,然后再严格按照奇、偶性的定义经过化简、整理、再与f(x)比较得出结论)
③判断或证明函数是否具有奇偶性的根据是定义。
④如果一个奇函数f(x)在x=0处有意义,则这个函数在x=0处的函数值一定为0。并且关于原点对称。
编辑本段奇偶函数图像的特征奇函数图像的特征定理
奇函数的图像关于原点成中心对称图形
f(x)为奇函数<=>f(x)的图像关于原点对称
奇函数
奇函数在某一区间上单调递增,则在它的对称区间上也是单调递增。
点(x,y)→(-x,-y)偶函数图像的特征定理
偶函数的图像关于y轴成轴对称图形
f(x)为偶函数<=>f(x)的图像关于Y轴对称
偶函数
点(x,y)→(-x,y)
偶函数在某一区间上单调递减,则在它的对称区间上单调递增。
编辑本段证明方法⑴定义法:函数定义域是否关于原点对称,对应法则是否相同
⑵图像法:f(x)为奇函数<=>f(x)的图像关于原点对称
点(x,y)→(-x,-y)
f(x)为偶函数<=>f(x)的图像关于Y轴对称
点(x,y)→(-x,y)
⑶特值法:根据函数奇偶性定义,在定义域内取特殊值自变量,计算后根据因变量的关系判断函数奇偶性。
⑷性质法
利用一些已知函数的奇偶性及以下准则(前提条件为两个函数的定义域交集不为空集):两个奇函数的代数和(差)是奇函数;两个偶函数的和(差)是偶函数;奇函数与偶函数的和(差)既非奇函数也非偶函数;两个奇函数的积(商)为偶函数;两个偶函数的积(商)为偶函数;奇函数与偶函数的积(商)是奇函数。
编辑本段性质1、偶函数没有反函数(偶函数在整个定义域内非单调函数),奇函数的反函数仍是奇函数。
2、偶函数在定义域内关于y轴对称的两个区间上单调性相反,奇函数在定义域内关于原点对称的两个区间上单调性相同。
3、奇±奇=奇
偶±偶=偶
奇X奇=偶
偶X偶=偶
奇X偶=奇(两函数定义域要关于原点对称)
4、对于F(x)=f[g(x)]:若g(x)是偶函数,则F[x]是偶函数
若g(x)奇函数且f(x)是奇函数,则F(x)是奇函数
若g(x)奇函数且f(x)是偶函数,则F(x)是偶函数
5、奇函数与偶函数的定义域必须关于原点对称