‘壹’ 探究机器人用的科学方法有哪些
探究机器人用的科学方法主要有3种,科学实验、系统科学、数学方法。 科学实验 科学实验、生产实践和社会实践并称为人类的三大实践活动。实践不仅是理论的源泉,而且也是检验理论正确与否的惟一标准,科学实验就是自然科学理论的源泉和检验标准。
机器人技术的进步将会对科学与技术的发展产生重要影响,只有开启机器人教育,才能使我们不在机器人时代落伍。机器人的教育价值既可以作为家庭的益智玩具,也可以作为学校课外活动的载体,还可以作为基础教育课程的载体。
机器人作为一个平台能使学生全面综合地了解现代工业设计、机械、电子、传感器、计算机软件硬件、人机交互、人工智能等诸多领域的先进技术,并亲身接触和体验现代高新技术,在学生获得科技知识和实践能力的同时激发他们的创新意识和创造发明的潜能。
‘贰’ 请问机械工程专业的研究生有哪些研究方向可以选择
第一个方向,有限元分析。高精密减速机、电梯、高铁、汽车等行业都用得到,各种机械研究所也需要这方面的人才。
第二个方向,工程材料分析。
第三个方向,机器人运动分析。
说来说去,还是有限元分析好。
有限元分析(FEA,Finite Element Analysis)利用数学近似的方法对真实物理系统(几何和载荷工况)进行模拟。还利用简单而又相互作用的元素,即单元,就可以用有限数量的未知量去逼近无限未知量的真实系统。
有限元分析是用较简单的问题代替复杂问题后再求解。它将求解域看成是由许多称为有限元的小的互连子域组成,对每一单元假定一个合适的(较简单的)近似解,然后推导求解这个域总的满足条件(如结构的平衡条件),从而得到问题的解。这个解不是准确解,而是近似解,因为实际问题被较简单的问题所代替。由于大多数实际问题难以得到准确解,而有限元不仅计算精度高,而且能适应各种复杂形状,因而成为行之有效的工程分析手段。
有限元是那些集合在一起能够表示实际连续域的离散单元。有限元的概念早在几个世纪前就已产生并得到了应用,例如用多边形(有限个直线单元)逼近圆来求得圆的周长,但作为一种方法而被提出,则是最近的事。有限元法最初被称为矩阵近似方法,应用于航空器的结构强度计算,并由于其方便性、实用性和有效性而引起从事力学研究的科学家的浓厚兴趣。经过短短数十年的努力,随着计算机技术的快速发展和普及,有限元方法迅速从结构工程强度分析计算扩展到几乎所有的科学技术领域,成为一种丰富多彩、应用广泛并且实用高效的数值分析方法。
‘叁’ 机械设计方法如何分类
机械设计方法,可以从不同的角度做出不同的分类。目前较为流行的分类方法是把过去长期采用的设计方法称为常规的(或传统的)设计方法,近几十年发展起来的设计方法称为现代设计方法。本节主要阐明常规设计方法,至于现代设计方法在下一节中介绍。机械的常规设计方法可概括地划分为以下三种:
(1)理论设计。
根据长期研究与实践总结出来的设计理论和实验数据所进行的设计,称为理论设计。理论设计的计算过程分为设计计算和校核计算两部分,如图4-13所示。前者是指按照已知的运动要求,载荷情况及零、部件的材料特性等,运用一定的理论公式设计零、部件尺寸和形状的计算过程。设计计算多用于能通过简单的力学模型进行设计的零、部件,如转轴的强度、刚度计算等;后者是指,先根据类比法、实验法等其他方法初步定出零、部件的尺寸和形状;再用理论公式进行精确校核的计算过程,它多用于结构复杂,应力分布较复杂,但又能用现有的应力分析方法(以强度为设计准则时)或变形分析方法(以刚度为设计准则时)进行计算的场合。理论设计可得到比较精确可靠的结果,重要的零、部件大都选择这种方法。
(2)经验设计。
根据对某些零、部件已有的设计与使用实践而归纳出的经验关系式,或根据设计者本人的工作经验用类比的办法所进行的设计称为经验设计。对一些次要的零、部件;或者对于一些理论上不够成熟或虽有理论但没有必要用繁复、高级的理论进行设计的零、部件大多采用这种设计方法。这对那些使用要求不大变动而结构形状已典型化的零件,是很有效的设计方法,例如,箱体、机架、传动零件的各结构要素的设计等,如图4-14所示。
图4-15汽车模型制作
‘肆’ 请问机械工程专业中的设计和制造的研究内容有什么
你好。设计的主要研究方向包括机械设计,产品设计,设计方法学,计算机辅助设计,工业设计。这个方向适合具有机械理论基础又有设计基础(包括一定的艺术功底,电脑绘图软件等)。制造的主要研究方向包括计算机辅助制造,产品实现,高级制造,制造科学,制造系统,纳米制造。国内的学生多申请设计与制造方向,且多集中在机械制造和计算机辅助制造。
‘伍’ 机械设计理论研究生,有哪些方向可以研究
·机械工程及自动化(模具方向)··· 培养目标:本专业培养模具设计与制造方面的高级工程技术人才,使学生得到机械工程师的基本训练,具备成为机械工程师的基本素质,系统全面地掌握模具设计与制造方面的基本理论知识和必要的应用技能,能够从事模具设计、制造、研究及生产管理等方面的高级工程技术人才。 培养要求:本专业学生主要学习机械设计与制造的基本理论,掌握模具设计与制造专业知识,能够较熟练地承担塑料模具及冲压模具的设计与制造工作,具有计算机辅助设计与制造的基础理论和应用技能,能够运用所学知识、理论和方法解决模具及机械相关领域的实际问题。主要研究方向包括:塑料模具设计与制造,冲压模具设计与制造。毕业生应获得以下几方面的专业知识和能力:1、具有模具设计与制造专业知识;2、较好地掌握和运用计算机辅助设计与制造和信息处理技术;3、具有机械类计算机应用软件及相关领域的技术开发能力。 主干学科:机械工程、材料科学与工程、计算机科学与控制技术。 主要课程:控制工程基础、模具CAD/CAM、数控加工与编程、液压与气压传动、数控原理与技术、模具制造基础、塑料成型原理与工艺、塑料成型模具设计、冲压工艺与模具设计、塑料成型设备、模具CAE、机械原理、机械设计、电工电子技术。 毕业生去向:本专业学生毕业后既可以在机械工程、自动化、计算机及工业管理等领域继续深造,也可以在相关行业从事模具设计与制造等工作,或从事机械、自动化、计算机应用、管理等方面的工作
‘陆’ 机械原理的教学方法
(1)应用多媒体与板书相结合的教学方法。充分发挥学校数字化教室的硬件优势。多媒体软件和资源对于提出问题,揭示矛盾,从工程背景引出理论问题,培养学生发现问题的能力具有很好的效果。并对于扩大课堂信息量,增进工程实践意识,开展师生交互式教学,加强学生对重点、难点的理解和记忆,具有明显的效果。同时,也要利用板书解决讲授中的重点、难点,遵循由浅入深、由简单到复杂、由易到难的教学规律,使学生易于理解所学知识。
(2)在教学中注意在简捷的数学推导过程中突出思路、突出方法。因此,在数学推导前,首先要有定性分析,使学生懂得“问题是什么?”、“问题的性质是什么?”、“解决问题的方法是什么?”特别注意启发式教学,少一些理论与推导,多一些问题的分析与讨论。
(3)大学教育应该是“授人以渔” 不是“授人以鱼”。因而在教学过程中关键是要教会学生学习的方法,使得终身受益。要为学生留出充分的思维空间,留出一些问题让学生去想、去自学、去研究;要改变教师“一言堂”,展开课堂讨论,活跃学术气氛。在选课后习题时,要精而少,避免学生照猫画虎,让学生自己去思考学过的知识,并把知识应用到解题中。
通过该课程的先进教学方法和教学手段,使学生在较短课时掌握较多知识。学生从对本专业的茫然到了解,最后热爱专业,学生不仅要知道机械原理的内容、思维方式和解决问题的方法,而且要激发他们对机制专业的探索和开拓激情,以及对科学执着的追求精神。
2.学习、研究方法指导
本课程是一门技术基础课,其最显着的特点是基础理论与工程实际的结合。要用到物理、数学、力学、机械制图和工程材料及机械制造基础等先修课程的知识,尤其是理论力学的知识。但并不是这些课程的简单重复,而是要引导学生如何应用所学的只是解决工程实际中所遇到的问题。所以本课程的学习不同于理论课程的学习,也不同于专业课,而具有一定的理论系统性及逻辑性和较强的工程实践性的特点。因此,在学习本课程时应注意掌握基本的概念、原理及机构的分析与综合的方法。
注重理论联系实际:本课程并不是研究某种具体的机械,而是着重研究一般机械的共性问题,即机构的结构分析和综合的基本理论和基本的方法。这些基本理论和方法是紧密为工程服务的。因此,在本课程的学习过程中,一方面要注意这些理论和方法在理论上建立和推演的严密性和逻辑性,另一方面更要注意这些理论和方法如何在工程实际中的应用。此外还应随时留意日常生活和生产中遇到的各种机械,以丰富自己的感性认识;并用所学到的理论和方法认识分析这些机械,以加深理解,使理论和实践相互促进。
初步建立工程观点:本课程要用到很多与工程有关的名词、符合、公式、标准及参数和对机械研究的一些常用的简化方法,如倒置、反转、转化、当量、等效、代换等等。在机构分析与综合中,除解析法外还介、实验法以及试凑等一些工程中实用的方法。因此在学习时,对名词应正确理解其含义,对公式应着重于应用,而对方法则着重掌握其基本原理和作法。另外,实际工程工程问题都是涉及多方面的因素的问题,其求解可采用多种方法,其解一般也不是唯一的。这就要求设计者具有分析、判断、决策的能力,要养成综合分析、全面考虑问题的习惯和科学严谨、一丝不苟的工作作风。
认真对待教学的每一个环节: 本课程全部教学工作的完成,需要自学、听课、习题课、实验课、课后作业、答疑和考试等教学环节。要学好这门课,希望大家对每个教学环节予以充分重视。
‘柒’ 研究方法包括哪些
研究方法,一般包括文献调查法、观察法、文献研究法、跨学科研究法、个案研究法等等。
1、调查法
调查法是科学研究中最常用的方法之一。调查法中最常用的是问卷调查法,它是以书面提出问题的方式搜集资料的一种研究方法,即调查者就调查项目编制成表式,分发或邮寄给有关人员,请示填写答案,然后回收整理、统计和研究。
2、观察法
观察法是指研究者根据一定的研究目的、研究提纲或观察表,用自己的感官和辅助工具去直接观察被研究对象,从而获得资料的一种方法。科学的观察具有目的性和计划性、系统性和可重复性。
3、文献研究法
文献研究法是根据一定的研究目的或课题,通过调查文献来获得资料,从而全面地、正确地了解掌握所要研究问题的一种方法。文献研究法被广泛用于各种学科研究中。
4、跨学科研究法
运用多学科的理论、方法和成果从整体上对某一课题进行综合研究的方法,也称“交叉研究法”。科学发展运动的规律表明,科学在高度分化中又高度综合,形成一个统一的整体。
据有关专家统计,现在世界上有2000多种学科,而学科分化的趋势还在加剧,但同时各学科间的联系愈来愈紧密,在语言、方法和某些概念方面,有日益统一化的趋势。
5、个案研究法
个案研究法是认定研究对象中的某一特定对象,加以调查分析,弄清其特点及其形成过程的一种研究方法。
‘捌’ 机械动力学的研究内容
1.在已知外力作用下求具有确定惯性参量的机械系统的真实运动规律。为了简化问题,常把机械系统看作具有理想、稳定约束的刚体系统处理。对于单自由度的机械系统,用等效力和等效质量的概念可以把刚体系统的动力学问题转化为单个刚体的动力学问题;对多自由度机械系统动力学问题一般用拉格朗日方程求解。机械系统动力学方程常常是多参量非线性微分方程,只在特殊条件下可直接求解,一般情况下需要用数值方法迭代求解。许多机械动力学问题可借助电子计算机分析。计算机根据输入的外力参量、构件的惯性参量和机械系统的结构信息,自动列出相应的微分方程并解出所要求的运动参量。
2.分析机械运动过程中各构件之间的相互作用力。这些力的大小和变化规律是设计运动副的结构、分析支承和构件的承载能力以及选择合理润滑方法的依据。在求出机械真实运动规律后可算出各构件的惯性力,再依据达朗伯原理用静力学方法求出构件间的相互作用力。
3.研究回转构件和机构平衡的理论和方法。平衡的目的是消除或减少作用在机械基础上周期变化的振颤力和振颤力矩。对于刚性转子的平衡已有较成熟的技术和方法:对于工作转速接近或超过转子自身固有频率的挠性转子平衡问题,不论是理论和方法都需要进一步研究。
平面或空间机构中包含有往复运动和平面或空间一般运动的构件。其质心沿一封闭曲线运动。根据机构的不同结构,可以应用附加配重或附加构件等方法全部或部分消除其振颤力。但振颤力矩的全部平衡较难实现。优化技术应用于机构平衡领域已经取得较好的成果。
4.研究机械运转过程中能量的平衡和分配关系。这包括:机械效率的计算和分析;调速器的理论和设计;飞轮的应用和设计等。
5.机械振动的分析研究是机械动力学的基本内容之一。它已发展成为内容丰富、自成体系的一门学科。 6.机构分析和机构综合一般是对机构的结构和运动而言,但随着机械运转速度的提高,机械动力学已成为分析和综合高速机构时不可缺少的内容。
‘玖’ 机械设计及理论的研究方向
主要研究机器人的运动和动力分析、设计理论、方法及其应用,包括串联和并联柔性机器人动力学分析、柔性冗余度机械臂振动控制、柔性并联机器人冗余驱动规划、多柔性机器人协调操作及控制等领域。
智能结构与机械系统监控
主要研究机电自动化中的制造系统监控、智能机械结构等关键技术。涉及传感器集成检测、多信号融合、神经网络分析、智能决策以及敏捷材料的原理和应用、智能机械执行器的设计和实现等方面。 主要从事微机电系统(MEMS)技术极其应用、传感器技术、智能机器人技术等与机械学交叉领域的研究。
精密特种加工技术
属于现代制造技术的范畴,主要研究精密电火花加工、激光加工、超声波加工、电子束加工、离子束加工和等离子体加工等特种加工技术,涉及光机电一体化、信号的采集与分析、神经网络、智能控制、精密微机械等的机理、设计及应用等方面。
‘拾’ 研究机械运动常用的方法
动能定理,能量守恒,动量守恒,牛顿三定理