❶ 低频噪音如何处理
低频噪声主要是通过振动传播的结构声,采用隔振并辅助以吸声隔声的方法能有效降低结构噪声,从而减少噪声的低频成分,将有效地降低此类噪声对住宅室内的影响。实践中对设备安装稳定高效的减振隔离装置,机房内安装性能稳定、吸隔声效果好的降噪设施是控制低频噪声的有效方法。 低频噪声污染已经渐渐的引起了人们的重视,它不仅影响人们正常的工作和学习,而且还会危害到人的身体健康。现在生活配套辅助设备作为低频噪音的主要声源,我们很多时间都生活在其环境下。因此,我们应该更进一步的对生活配套辅助设备所产生的低频噪音以及其影响和控制展开研究,使我们的生活环境更加舒适、健康。 北京安百康声控科技有限公司专业承接隔音、降噪工程,其中包括功能厅、迪厅、影院、音乐室、教室、实验室、录音棚、琴房、隔音隔断、隔音吊顶、隔音墙、隔音地面、隔音窗、隔音门等工程。同时供应隔音材料和多种降噪吸音材料,工程师随时为你解决环境中的噪音难题。本条信息由北京安百康声控科技有限公司自行发布,有业务请直接联系北京安百康声控科技有限公司。
❷ 什么是工程结构减震控制,基础隔震原理是什么
基础隔震技术是在建筑上部结构与地基这间采用柔性连接,设置足够安全的隔震系统,由于隔震层的"隔震"、"吸震"作用,地震时上部结构作近似平动,结构反应急仅相当于不隔震情况下的1/4-1/8(强震观测结果可达1/2-1/16),从而"隔离"了地震,通俗地说:使用隔震技术的房屋经历8级地震的震动仅相当于5.5级地不仅达到了减轻地震对上部结构造成损坏的目的,而且建筑装修及室内设备也得到有效保护。
工程结构减震控制是利用外部减震装置对建筑结构进行有效的控制。基础隔震原理是在建筑基础添加隔震层,形成柔性基层,会消耗和减震地震波的作用力,从而保护建筑物的整体结构安全。现在越来越多的建筑中加入建筑减震装置来弥补建筑物本身抗震能力的不足。
目前常用的几种减隔震装置有板式橡胶支座、聚四氟乙烯支座、铅芯橡胶支座、双曲面球型减隔震支座和摩擦摆支座等。减隔震装置必须有足够的柔性以延长周期、减小地震反应,但在运营荷载下,又要保证结构不发生大变形和有害振动。通过选择某种特性的弹性支承材料,可以达到上述目的。
❸ 弹塑性分析方法的动力弹塑性时程分析
弹塑性时程分析方法将结构作为弹塑性振动体系加以分析,直接按照地震波数据输入地面运动,通过积分运算,求得在地面加速度随时间变化期间内,结构的内力和变形随时间变化的全过程,也称为弹塑性直接动力法。 多自由度体系在地面运动作用下的振动方程为:
式中 、 、 分别为体系的水平位移、速度、加速度向量; 为地面运动水平加速度, 、 、
分别为体系的刚度矩阵、阻尼矩阵和质量矩阵。将强震记录下来的某水平分量加速度-时间曲线划分为很小的时段,然后依次对各个时段通过振动方程进行直接积分,从而求出体系在各时刻的位移、速度和加速度,进而计算结构的内力。
式中结构整体的刚度矩阵、阻尼矩阵和质量矩阵通过每个构件所赋予的单元和材料类型组装形成。动力弹塑性分析中对于材料需要考虑包括:在往复循环加载下,混凝土及钢材的滞回性能、混凝土从出现开裂直至完全压碎退出工作全过程中的刚度退化、混凝土拉压循环中强度恢复等大量非线性问题。 弹塑性动力分析包括以下几个步骤:
(1) 建立结构的几何模型并划分网格;
(2) 定义材料的本构关系,通过对各个构件指定相应的单元类型和材料类型确定结构的质量、刚度和阻尼矩阵;
(3) 输入适合本场地的地震波并定义模型的边界条件,开始计算;
(4) 计算完成后,对结果数据进行处理,对结构整体的可靠度做出评估。 在常用的商业有限元软件中,ABAQUS、ADINA、ANSYS、MSC.MARC都内置了混凝土的本构模型,并提供了丰富的单元类型及相应的前后处理功能。在这些程序中一般都有专用的钢筋模型,可以建立组合式或整体式钢筋。
以ABAQUS为例,它提供了混凝土弹塑性断裂和混凝土损伤模型以及钢筋单元。其中弹塑性断裂和损伤的混凝土模型非常适合于钢筋混凝土结构的动力弹塑性分析。它的主要优点有:
(1) 应用范围广泛,可以使用在梁单元、壳单元和实体单元等各种单元类型中,并与钢筋单元共同工作;
(2) 可以准确模拟混凝土结构在单调加载、循环加载和动力荷载下的响应,并且可以考虑应变速率的影响;
(3) 引入了损伤指标的概念,可以对混凝土的弹性刚度矩阵进行折减,可以模拟混凝土的刚度随着损伤增加而降低的特点;
(4) 将非关联硬化引入到了混凝土弹塑性本构模型中,可以更好的模拟混凝土的受压弹塑性行为,可以人为指定混凝土的拉伸强化曲线,从而更好的模拟开裂截面之间混凝土和钢筋共同作用的情况;
(5) 可以人为的控制裂缝闭合前后的行为,更好的模拟反复荷载作用下混凝土的反应。
对于钢材等材料的屈服和强化, ABAQUS提供了各种屈服准则,流动法则和强化准则,并可以考虑加载时的应变速率等问题。
在ABAQUS的后处理模块中,可以给出整个模型在地震作用下每个时刻的结构变形形态、应力等相关数据,可以查看结构所有混凝土单元的损伤、混凝土中分布的钢筋应力等,了解结构的破坏情况,也可以根据结构的总侧移量和层间位移等控制指标对结构进行整体的判定分析。 相比弹性分析中的振型分解反应谱法和POA方法,弹塑性时程分析方法的优点是:
(1) 由于输入的是地震波的整个过程,可以真实反映各个时刻地震作用引起的结构响应,包括变形、应力、损伤形态(开裂和破坏)等;
(2) 目前许多程序是通过定义材料的本构关系来考虑结构的弹塑性性能,因此可以准确模拟任何结构,计算模型简化较少;
(3) 该方法基于塑性区的概念,相比POA中单一的塑性铰判别法,特别是对于带剪力墙的结构,结果更为准确可靠。
该方法的缺点是:
(1) 计算量大,运算时间长,由于可进行此类分析的大型通用有限元分析软件均不是面向设计的,因此软件的使用相对复杂,建模工作量大,数据前后处理繁琐,不如设计软件简单、直观;
(2) 分析中需要用到大量有限元、钢筋混凝土本构关系、损伤模型等相关理论知识,对计算人员要求较高。
但是随着理论研究的不断发展,计算机软硬件水平的不断提高,动力弹塑性时程分析方法已经开始应用于少数超高层和复杂的大型结构分析中。
❹ 3D中阻尼器什么意思
大家知道,使自由振动衰减的各种摩擦和其他阻碍作用,我们称之为阻尼。而安置在结构系统上的“特殊”构件可以提供运动的阻力,耗减运动能量的装置,我们称为阻尼器。 利用阻尼来吸能减震不是什么新技术,在航天、航空、军工、枪炮、汽车等行业中早已应用各种各样的阻尼器(或减震器)来减振消能。从二十世纪七十年代后,人们开始逐步地把这些技术转用到建筑、桥梁、铁路等结构工程中,其发展十分迅速。特别是有五十多年历史的液压粘滞阻尼器, 在美国被结构工程界接受以前,经历了一个大量实验,严格审查,反复论证,特别是地震考验的漫长过程。下面的流程1中示的过程,就概括了它在美国的发展过程: ·在航天、航空、军工、机械等行业中广泛应用,几十年成功应用的历史 ·上世纪80年代开始在美国东西两个地震研究中心等单位作了大量试验研究, 发表了几十篇有关论文 ·90年代,美国国家科学基金会和土木工程学会等单位组织了两次大型联合,由第三者作出的对比试验,给出了权威性的试验报告,供教授和工程师们参考 ·在肯定以上成果的基础上被几乎各有关机构,规范审查,肯定并规定了应用办法 ·管理部门通过,带来了上百个结构工程实际应用。 这些结构工程,成功地经历了地震、大风等灾害考验,十分成功。工程结构减震与阻尼器二十世纪,特别是近二、三十年人们对建筑物的抗振动的能力的提高已经做了巨大的努力,取得了显着的成果。这一成果中最引以为自豪的是“结构的保护系统”。人们跳出了传统增强梁、柱、墙提高抗振动的能力的观念,结合结构的动力性能,巧妙的避免或减少了地震,风力的破坏。基础隔震(Base Isolation),各种利用阻尼器(Damper) 吸能,耗能系统, 高层建筑屋顶上的质量共振阻尼系统(TMD)和主动控制( Active Control)减震体系都是已经走向了工程实际。有的已经成为减少振动不可少的保护措施。特别是对于难于预料的地震,破坏机理还不十分清楚的多维振动,这些结构的保护系统就显得更加重要。 这些结构保护系统中争议最少,有益无害的系统要属利用阻尼器来吸收这难予预料的地震能量。利用阻尼来吸能减震不是什么新技术,在航天航空,军工,枪炮,汽车等行业中早已应用各种各样的阻尼器来减振消能。从二十世纪七十年代后,人们开始逐步地把这些技术转用到建筑、桥梁、铁路等工程中,其发展十分迅速。到二十世纪末,全世界已有近100多个结构工程运用了阻尼器来吸能减震。到2003年,仅Taylor公司就在全世界安装了110个建筑,桥梁或其它结构构筑物。 泰勒Taylor公司从1955年起经过长期大量航天、军事工业的考验,第一个实验将这一技术应用到结构工程上,在美国地震研究中心作了大量振动台模型实验,计算机分析,发表了几十篇有关论文。结构用阻尼器的关键是持久耐用,时间和温度变化下稳定,泰勒公司的阻尼器经过了长期考验和各种对比分析,其他公司的产品很难望其向背。美国相应设计规范的制定都是基于泰勒公司阻尼器的产品。其产品技术先进,构造合理可靠,技术的透明度高,而且可以按设计者的要求制造适合各种用途的阻尼器。每个产品出厂前都经过最严格的测试,给出滞回曲线。泰勒Taylor公司从世界上130多个工程,32座桥梁的实际应用中,积累了大量的实际经验。 阻尼器之分类:Damper:用于减振;Snubber:用于防震,低速时允许移动,在速度或加速度超过相应的值时闭锁,形成刚性支撑。一、阻尼器的发展过程简介 大家知道,使自由振动衰减的各种摩擦和其他阻碍作用,我们称之为阻尼。而安置在结构系统上的“特殊”构件可以提供运动的阻力,耗减运动能量的装置,我们称为阻尼器。 利用阻尼来吸能减震不是什么新技术,在航天、航空、军工、枪炮、汽车等行业中早已应用各种各样的阻尼器(或减震器)来减振消能。从二十世纪七十年代后,人们开始逐步地把这些技术转用到建筑、桥梁、铁路等结构工程中,其发展十分迅速。特别是有五十多年历史的液压粘滞阻尼器, 在美国被结构工程界接受以前,经历了一个大量实验,严格审查,反复论证,特别是地震考验的漫长过程。下面的流程1中示的过程,就概括了它在美国的发展过程: ·在航天、航空、军工、机械等行业中广泛应用,几十年成功应用的历史 ·上世纪80年代开始在美国东西两个地震研究中心等单位作了大量试验研究, 发表了几十篇有关论文 ·90年代,美国国家科学基金会和土木工程学会等单位组织了两次大型联合,由第三者作出的对比试验,给出了权威性的试验报告,供教授和工程师们参考 ·在肯定以上成果的基础上被几乎各有关机构,规范审查,肯定并规定了应用办法 ·管理部门通过,带来了上百个结构工程实际应用。 这些结构工程,成功地经历了地震、大风等灾害考验,十分成功。
❺ 多遇地震与罕遇地震计算建筑结构的抗震分析中,什么时
按《建筑抗震设计规范》GB50011-2001中的有关要求
确定工程结构的地震作用(公式、表格详见规范)
5 地震作用和结构抗震验算
5.1 一般规定
5.1.1 各类建筑结构的地震作用,应符合下列规定:
1 一般情况下,应允许在建筑结构的两个主轴方向分别计算水平地震作用并进行抗震验算,各方向的水平地震作用应由该方向抗侧力构件承担.
2 有斜交抗侧力构件的结构,当相交角度大于15°时,应分别计算各抗侧力构件方向的水平地震作用.
3 质量和刚度分布明显不对称的结构,应计入双向水平地震作用下的扭转影响;其他情况,应允许采用调整地震作用效应的方法计入扭转影响.
4 8、9度时的大跨度和长悬臂结构及9度时的高层建筑,应计算竖向地震作用.
注:8、9度时采用隔震设计的建筑结构,应按有关规定计算竖向地震作用.
5.1.2 各类建筑结构的抗震计算,应采用下列方法:
1 高度不超过40m 、以剪切变形为主且质量和刚度沿高度分布比较均匀的结构,以及近似于单质点体系的结构,可采用底部剪力法等简化方法.
2 除1款外的建筑结构,宜采用振型分解反应谱法.
3 特别不规则的建筑、甲类建筑和表5.1.2-1所列高度范围的高层建筑,应采用时程分析法进行多遇地震下的补充计算,可取多条时程曲线计算结果的平均值与振型分解反应谱法计算结果的较大值.
采用时程分析法时,应按建筑场地类别和设计地震分组选用不少于二组的实际强震记录和一组人工模拟的加速度时程曲线,其平均地震影响系数曲线应与振型分解反应谱法所采用的地震影响系数曲线在统计意义上相符,其加速度时程的最大值可按表5.1.2-2采用.弹性时程分析时,每条时程曲线计算所得结构底部剪力不应小于振型分解反应谱法计算结果的65% ,多条时程曲线计算所得结构底部剪力的平均值不应小于振型分解反应谱法计算结果的80%.
注:括号内数值分别用于设计基本地震加速度为0.15g和0.30g的地区.
4 计算罕遇地震下结构的变形,应按本章第5.5节规定,采用简化的弹塑性分析方法或弹塑性时程分析法.
注:建筑结构的隔震和消能减震设计,应采用本规范第12章规定的计算方法.
5.1.3 计算地震作用时,建筑的重力荷载代表值应取结构和构配件自重标准值和各可变荷载组合值之和.各可变荷载的组合值系数,应按表5.1.3 采用.
注:硬钩吊车的吊重较大时,组合值系数应按实际情况采用.
5.1.4 建筑结构的地震影响系数应根据烈度、场地类别、设计地震分组和结构自振周期以及阻尼比确定.其水平地震影响系数最大值应按表5.1.4-1采用;特征周期应根据场地类别和设计地震分组按表5.1.4-2采用,计算8、9度罕遇地震作用时,特征周期应增加0.05s.
注:1 周期大于6.0s的建筑结构所采用的地震影响系数应专门研究;
2 已编制抗震设防区划的城市,应允许按批准的设计地震动参数采用相应的地震影响系数.
注:括号中数值分别用于设计基本地震加速度为0.15g和0.30g的地区.
5.1.5 建筑结构地震影响系数曲线(图5.1.5)的阻尼调整和形状参数应符合下列要求:
1 除有专门规定外,建筑结构的阻尼比应取0.05,地震影响系数曲线的阻尼调整系数应按1.0采用,形状参数应符合下列规定:
1)直线上升段,周期小于0.1s的区段.
2)水平段,自0.1s至特征周期区段,应取最大值(αmax).
3)曲线下降段,自特征周期至5倍特征周期区段,衰减指数应取0.9.
4)直线下降段,自5倍特征周期至6s区段,下降斜率调整系数应取0.02.
2 当建筑结构的阻尼比按有关规定不等于0.05时,地震影响系数曲线的阻尼调整系数和形状参数应符合下列规定:
1)曲线下降段的衰减指数应按下式确定:
式中r-曲线下降段的衰减指数;
ζ - 阻尼比.
2)直线下降段的下降斜率调整系数应按下式确定:
η1=0.02+(0.05-ζ)/8(5.1.5-2)
式中η1-直线下降段的下降斜率调整系数,小于0时取0.
3)阻尼调整系数应按下式确定:
式中η2-阻尼调整系数,当小于0.55时,应取0.55.
5.1.6 结构抗震验算,应符合下列规定:
1 6度时的建筑(建造于IV类场地上较高的高层建筑除外),以及生土房屋和木结构房屋等,应允许不进行截面抗震验算,但应符合有关的抗震措施要求.
2 6度时建造于IV类场地上较高的高层建筑,7度和7度以上的建筑结构(生土房屋和木结构房屋等除外),应进行多遇地震作用下的截面抗震验算.
注:采用隔震设计的建筑结构,其抗震验算应符合有关规定.
5.1.7 符合本章第5.5节规定的结构,除按规定进行多遇地震作用下的截面抗震验算外,尚应进行相应的变形验算.
5.2 水平地震作用计算
5.2.1 采用底部剪力法时,各楼层可仅取一个自由度,结构的水平地震作用标准值,应按下列公式确定(图5.2.1):
式中FEk-结构总水平地震作用标准值;
α1-相应于结构基本自振周期的水平地震影响系数值,应按本章第5.1.4条确定,多层砌体房屋、底部框架和多层内框架砖房,宜取水平地震影响系数最大值;
Geq-结构等效总重力荷载,单质点应取总重力荷载代表值,多质点可取总重力荷载代表值的85%;
Fi-质点i的水平地震作用标准值;
Gi,Gj-分别为集中于质点i、j的重力荷载代表值,应按本章第5.1.3条确定;
Hi,Hj-分别为质点i、j的计算高度;
δn--顶部附加地震作用系数,多层钢筋混凝土和钢结构房屋可按表5.2.1采用,多层内框架砖房可采用0.2,其他房屋可采用0.0;
ΔFn-顶部附加水平地震作用.
注:T1为结构基本自振周期.
5.2.2 采用振型分解反应谱法时,不进行扭转耦联计算的结构,应按下列规定计算其地震作用和作用效应:
1 结构j振型i质点的水平地震作用标准值,应按下列公式确定:
式中Fji——j振型i质点的水平地震作用标准值;
αj——相应于j振型自振周期的地震影响系数,应按本章第5.1.4条确定;
Xji——j振型i质点的水平相对位移;
rj——j振型的参与系数.
2 水平地震作用效应(弯矩、剪力、轴向力和变形),应按下式确定:
式中SEk——水平地震作用标准值的效应;
Sj——j振型水平地震作用标准值的效应,可只取前2~3个振型,当基本自振周期大于1.5s或房屋高宽比大于5时,振型个数应适当增加.
5.2.3 建筑结构估计水平地震作用扭转影响时,应按下列规定计算其地震作用和作用效应:
1 规则结构不进行扭转耦联计算时,平行于地震作用方向的两个边榀,其地震作用效应应乘以增大系数.一般情况下,短边可按1.15采用,长边可按1.05采用;当扭转刚度较小时,宜按不小于1.3采用.
2 按扭转耦联振型分解法计算时,各楼层可取两个正交的水平位移和一个转角共三个自由度,并应按下列公式计算结构的地震作用和作用效应.确有依据时,尚可采用简化计算方法确定地震作用效应.
1)j振型i层的水平地震作用标准值,应按下列公式确定:
式中Fxji、Fyji、Ftji——分别为j振型i层的x方向、y方向和转角方向的地震作用标准值;
Xji、Yji——分别为j振型i层质心在x、y 方向的水平相对位移;
φji——j振型i层的相对扭转角;
ri——i层转动半径,可取i层绕质心的转动惯量除以该层质量的商的正二次方根;
γtj——计入扭转的j振型的参与系数,可按下列公式确定:
当仅取x方向地震作用时
当仅取y方向地震作用时
当取与x 方向斜交的地震作用时,
式中γxj、γyj——分别由式(5.2.3-2)、(5.2.3-3)求得的参与系数;
θ——地震作用方向与x方向的夹角.
2)单向水平地震作用的扭转效应,可按下列公式确定:
式中SEk——地震作用标准值的扭转效应;
Sj、Sk——分别为j、k振型地震作用标准值的效应,可取前9~15个振型;
ζj、ζk——分别为j、k振型的阻尼比;
ρjk——j振型与k振型的耦联系数;
λT——k 振型与j振型的自振周期比.
3)双向水平地震作用的扭转效应,可按下列公式中的较大值确定:
式中Sx、Sy分别为x向、y向单向水平地震作用按式(5.2.3-5)计算的扭转效应.
5.2.4 采用底部剪力法时,突出屋面的屋顶间、女儿墙、烟囱等的地震作用效应,宜乘以增大系数3,此增大部分不应往下传递,但与该突出部分相连的构件应予计入;采用振型分解法时,突出屋面部分可作为一个质点;单层厂房突出屋面天窗架的地震作用效应的增大系数,应按本规范9章的有关规定采用.
5.2.5 抗震验算时,结构任一楼层的水平地震剪力应符合下式要求:
式中 VEki——第i层对应于水平地震作用标准值的楼层剪力;
λ——剪力系数,不应小于表5.2.5规定的楼层最小地震剪力系数值,对竖向不规则结构的薄弱层,尚应乘以1.15的增大系数;
Gj——第j层的重力荷载代表值.
注:1 基本周期介于3.5s和5s之间的结构,可插入取值;
2 括号内数值分别用于设计基本地震加速度为0.15g和0.30g的地区.
5.2.6 结构的楼层水平地震剪力,应按下列原则分配:
1 现浇和装配整体式混凝土楼、屋盖等刚性楼盖建筑,宜按抗侧力构件等效刚度的比例分配.
2 木楼盖、木屋盖等柔性楼盖建筑,宜按抗侧力构件从属面积上重力荷载代表值的比例分配.
3 普通的预制装配式混凝土楼、屋盖等半刚性楼、屋盖的建筑,可取上述两种分配结果的平均值.
4 计入空间作用、楼盖变形、墙体弹塑性变形和扭转的影响时,可按本规范各有关规定对上述分配结果作适当调整.
5.2.7 结构抗震计算,一般情况下可不计入地基与结构相互作用的影响;8度和9度时建造于Ⅲ、Ⅳ类场地,采用箱基、刚性较好的筏基和桩箱联合基础的钢筋混凝土高层建筑,当结构基本自振周期处于特征周期的1.2倍至5倍范围时,若计入地基与结构动力相互作用的影响,对刚性地基假定计算的水平地震剪力可按下列规定折减,其层间变形可按折减后的楼层剪力计算.
1 高宽比小于3的结构,各楼层水平地震剪力的折减系数,可按下式计算:
式中φ——计入地基与结构动力相互作用后的地震剪力折减系数;
T1——按刚性地基假定确定的结构基本自振周期(s);
ΔT——计入地基与结构动力相互作用的附加周期(s),可按表5.2.7采用.
2 高宽比不小于3的结构,底部的地震剪力按1款规定折减,顶部不折减,中间各层按线性插入值折减.
3 折减后各楼层的水平地震剪力,应符合本章第5.2.5条的规定.
5.3 竖向地震作用计算
5.3.1 9度时的高层建筑,其竖向地震作用标准值应按下列公式确定(图5.3.1);楼层的竖向地震作用效应可按各构件承受的重力荷载代表值的比例分配,并宜乘以增大系数1.5.
式中 FEvk——结构总竖向地震作用标准值;
Fvi——质点i的竖向地震作用标准值;
avmax——竖向地震影响系数的最大值,可取水平地震影响系数最大值的65%;
Geq——结构等效总重力荷载,可取其重力荷载代表值的75%.
5.3.2 平板型网架屋盖和跨度大于24m屋架的竖向地震作用标准值,宜取其重力荷载代表值和竖向地震作用系数的乘积;竖向地震作用系数可按表5.3.2采用.
注:括号中数值分别用于设计基本地震加速度为0.15g和0.30g的地区.
5.3.3 长悬臂和其他大跨度结构的竖向地震作用标准值,8度和9度可分别取该结构、构件重力荷载代表值的10%和20%,设计基本地震加速度为0.30g时,可取该结构、构件重力荷载代表值的15%.
❻ k丅V隔音墙的做法
1、墙体隔音:
隔墙是隔绝歌厅噪音向周边区域传播的主要屏障,其合理的隔音处理最大限度的减轻了娱乐噪声对外界的影响,而且力求阻断或降低墙体的“固体声桥”作用,使KTV的娱乐噪声对周围住户的影响降到最低程度。
2、地面隔音:
房间的空气噪声可以透过楼板传到楼下,楼上的低音也会以震动的方式向楼下和结构传播。找平地面,满铺聚茂隔音材料,安装地板.以这样的方式可以很好的隔绝楼上噪音向楼下传播的途径.
3、天花板隔音:
包厢顶棚的吸隔音处理也至关重要,其效果如何是夹层能否达到声学控制设计指标的组成部分。为此,设计根据受声强弱和结构传声特点,以及所需的整体隔音量,采用单腔共振复合式吸隔音吊顶实施整体控制。
4、处理好各个门窗的隔音:
玻璃门最好上橡胶密封条,有条件的可以考虑用双重玻璃。每个房间的门都要作好隔音处理,一般采用多层木板制造,外部包上吸音材料,再用革质材料敷面,并加上定位钉。
5、音箱的合理布局,可以减少互相干扰:
一般的设计是临近的两个包房的音箱吊挂采用背靠背的设计,同时减少音箱后背板碰着墙面,一来方便布线和供电,二来也可以减少声音的干扰。
❼ 高楼大厦中阻尼器是什么作用
阻尼器,是以提供运动的阻力,耗减运动能量的装置。利用阻尼来吸能减震不是什么新技术,在航天、航空、军工、枪炮、汽车等行业中早已应用各种各样的阻尼器(或减震器)来减振消能。
从二十世纪七十年代后,人们开始逐步地把这些技术转用到建筑、桥梁、铁路等结构工程中,其发展十分迅速。特别是有五十多年历史的液压粘滞阻尼器, 在美国被结构工程界接受以前,经历了大量实验,严格审查,反复论证,特别是地震考验的漫长过程。
阻尼器只是一个构件.使用在不同地方或不同工作环境就有不同的阻尼作用。Damper:用于减振;Snubber:用于防震,低速时允许移动,在速度或加速度超过相应的值时闭锁,形成刚性支撑。
各种应用中有:弹簧阻尼器,液压阻尼器,脉冲阻尼器,旋转阻尼器,风阻尼器,粘滞阻尼器,阻尼铰链,阻尼滑轨,家具五金,橱柜五金等。
❽ 陆伟东的代表性论文、专着
[1] 陆伟东, 刘伟庆, 吴晓飞等. 昆明新国际机场航站楼A区结构模型振动台试验研究[J], 建筑结构学报, 2011, 32(6): 27-33.(EI)
[2] 陆伟东,宋二玮,岳孔,刘伟庆. FRP增强胶合木梁蠕变性能试验研究[J]. 建筑材料学报,2013, 16(2):301-304. (EI)
[3] Weidong Lu, Erwei Song, Min He, Kong Yue, Weiqing Liu. Experimental Study on BendingCreep Behavior of Reinforced Glulam Beam [A]. In: 12th World Conference onTimber Engineering [C]. Auckland, New Zealand, July 16-19, 2012.(ISTP)
[4] 陆伟东,邓大利,木结构榫卯节点抗震性能及其加固试验研究[J],地震工程与工程振动,2012, 32(3):109-116
[5] 陆伟东,吴晓飞,刘伟庆,基础隔震和非隔震结构模型振动台试验对比研究,建筑结构,2012, 42(4),34-37.
[6] 陆伟东, 邓大利, 居兴鹏等. 中国木结构建筑分布及其震害[J], 西安建筑科技大学学报, 2011, 43(4): 464-469.
[7] 陆伟东,居兴鹏,邓大利,村镇典型木结构榫卯及木构架抗震性能试验研究[J],工程抗震与加固改造,2012, 34(3):82-85.
[8] 陆伟东, 杨会峰, 刘伟庆等. 胶合木结构的发展应用、及展望[J], 南京工业大学学报, 2010, 33(5): 105~110.
[9] 陆伟东, 蓝宗建, 刘伟庆. 采用消能支撑减小结构扭转效应的参数分析[J], 工程抗震与加固改造, 2010,32(2):62-67. [10] 陆伟东, 蓝宗建, 刘伟庆. 阻尼支撑控制结构薄弱层的设计方法研究[J], 工程抗震与加固改造, 2011,33(2):60-66.
[11] 陆伟东, 蓝宗建, 刘伟庆, 吕德鹏. 某高层建筑结构动力测试与抗震性能分析[J], 世界地震工程, 2009,26(3):173-178.
[12] 陆伟东,刘学晨, 文建国等,基于振动舒适度的建筑物楼板设计方法[J],南京工业大学学报,2007, 30(1):16-18.
[13] 陆伟东, 吕西林. 方钢管混凝土压弯构件受力-变形过程分析[J], 世界地震工程, 2002,18(1):150-154.
[14] 陆伟东,基于MATLAB的地震模拟振动台试验的数据处理[J],南京工业大学学报,2011,33(6):1-4
[15] 陆伟东、刘伟庆、陈瑜,宿迁市建设大厦消能减震设计[J], 地震工程与工程振动, 2004,24(5):92-96.
[16] 陆伟东, 刘伟庆, 汪涛. 消能减震结构附加等效阻尼比计算方法[J], 南京工业大学学报, 2009,31(1):97-100.
[17] 陆伟东,吕西林,方钢管混凝土柱截面承载力的计算,南京建筑工程学院学报,2000,2000年第4期:11-16
[18] 陆伟东,吕西林,方钢管混凝土压弯构件受力-变形过程分析,世界地震工程,2002,(18)4:150-154
[19] 陆伟东,韩晓健,杨放,强夯施工环境振动影响的评价方法,南京工业大学学报,2002,(24)5:65-68 [20] 陆伟东,杨放,陈瑜,住宅结构温度应力与收缩应力的有限元分析,南京工业大学学报,2003,(25)4:20-23
[21] 陆伟东,刘伟庆,汪涛,消能减震结构附加等效阻尼比计算方法,南京工业大学学报,2009,(31)1:97-100
[22] 陆伟东、刘金龙、董军、刘学晨、刘春光,输电塔抱杆整体性试验应力状态分析,钢结构,2009,(24)2:31-33
[23] 陆伟东、刘金龙、路宏伟、杨放,混凝土结构厚度的雷达检测,无损检测,2009,(31)5:333-366
[24] 王曙光, 陆伟东, 刘伟庆, 孙臻. 昆明新国际机场航站楼基础隔震设计及抗震性能分析[J], 振动与冲击, 2011,30(11): 260-265.(EI)
[25] 吕西林, 陆伟东. 反复荷载作用下的方钢管混凝土柱的抗震性能试验研究[J], 建筑结构学报, 2000,21(2):2-11.(《建筑结构学报》30周年最优论文)(EI)
[26] Xilin Lu and WeidongLu. SEISMIC BEHAVIOR OF CONCRETE AND STEEL COMPOSITE COLUMNS UNDER CYCLICLOADING[C], 12th World Earthquake Engineering Conference, 2000, paper: 1416.
[27] Weidong Lu,Weiqing Liu. Design of the R.C. Frame-shear Wall Structure withEnergy-dissipated Braces in Suqian Construction Building[C],Proceedings of the Third International Conference on Earthquake Engineering.(ISTP)
[28] 吴晓飞, 陆伟东,基于偏心率的隔震层布置及优化方法研究[J],四川建筑科学研究,2011,37(3):135-138.
[29] 刘伟庆, 陆伟东, 胡夏闽, 王滋军等. 5.12汶川地震绵竹市房屋震灾评估与分析[J], 南京工业大学学报, 2009,31(1):9-14. [30] 汪涛, 陆伟东. 粘滞阻尼支撑框架结构弹塑性时程分析[J], 防灾减灾工程学报, 2008,38(3):303-307.
[31] 刘杏杏,陆伟东,郑维,胶合木框架-剪力墙结构性能有限元分析[J],结构工程师,2012,28(6):32-35
[32] 何敏,陆伟东,岳孔, 宋二玮,FRP增强胶合木拱的蠕变性能,南京工业大学学报,2013,35(2):107-110
[33] 杨放,陆伟东等,某高层建筑钢管混凝土柱施工技术与质量控制,南京建筑工程学院学报,2002,(2002)3:72-79
[34] 孙卫明,陆伟东,杨放,李宁,焊接空心球网架节点的焊接检测和节点试验,江苏建筑,2003,(2003)1:49-50
[35] 陈瑜,陆伟东,杨放,预制楼板挠度检测的影响因素分析,南京工业大学学报,2003,(25)4:24-27
[36] 杨放、陆伟东、赵斌、王赫、张文彬,某市麻纺小区5号住宅楼结构可靠性检测和鉴定,江苏建筑,2004,(2004)3:29-32
[37] 华志明,陆伟东,消能支撑在框架-抗震墙结构减震中的应用,江苏建筑,2007,(2007)2:23-26
[38] 吕德鹏,陆伟东,徐秀丽等,高架道路交通荷载对环境影响的功率谱方法,南京工业大学学报,2009,(31)2:57-60
[39] 陆伟东、路宏伟、刘金龙等.雷达法检测建设工程质量技术规程(DGJ32/TJ79-2009). 江苏凤凰出版集团, 2009年
[40] 陆伟东、吕德鹏、韩晓健等. 工程结构动力特性及动力响应检测技术规程(DGJ32/TJ110-2010). 江苏凤凰出版集团, 2010年
[41] 陆伟东、龚红卫、缪汉良等.地源热泵系统检测技术规程(DGJ32/TJ130-2011), 江苏凤凰出版集团. 2011年.
❾ 隔音墙怎么做,多少钱一平方其他
面对纷纷扰扰的大千世界,我们身边到处都充满了噪音。随着时代的进步,科技的不断发展,噪音越来越多,解决噪音的方法也越来越多。现在越来越多的人,都注重自己房间的室内设计,所以也越来越多的人将自己的家的墙,装成隔音墙,让自己家里可以免去那些嘈杂的噪音。但同时作为消费者,我们需要对隔音墙的市场有个初步的了解,下面小编为你们详细讲解一下隔音墙吧!
隔音墙多少钱一平方
国家大力推广的第三代环保节能隔墙板,具有防潮、抗震隔音、防火保温、占地小、强度好、施工便捷等优点。
隔墙板价格目前市面上一般从45-100元/平方米不等(价格来源于网络,仅供参考),不同的产品因其材质不同及施工难度不同而价位也不相同,具有质轻防火、隔音保温、抗折抗冲、抗渗环保,结构性(密湿度)强等优越性能。广泛应用于各类建筑保温及装饰工程,是厂房、住宅、宾馆、写字楼及公共建筑物的首选材料之一,适用于高层建筑和房屋改造工程的分室、分户,卫生间、厨房的隔墙,是国家重点推广的新型墙体材料。经环保、建设主管、市墙改办有关主管部门检测,按照国家最新型墙材标准GB/T19631-2005技术标准生产,其所有物理性能均符合国家建材行业标准。墙板:主要应用于外墙保温墙体建筑、内墙隔断板、框架或钢结构墙体建筑工程。
墙壁如何隔音—隔音墙的功能简介
隔音墙主要起隔音作用,要求用吸音材料、冷轧钢板或不锈钢板做成门扇,橡胶密封,家用隔音墙具有如下特点采用多层复合,特殊隔声结构,并可承受高温及气动负荷、分单、双扇和推拉门,并可带观察窗、密封可靠、开启灵活。特殊家用隔音墙,主要用于各种试验室、排气道。可提供成套产品(包括门框、门扇)并可负责技术指导安装调试。土建施工时应设置预埋件,也可根据客户要求,另行设计制作。除了政府部门对噪声污染的严格管控措施外,在必要的场合,安装家用隔音墙,已经成为人们自行解决噪音困扰的有效途径。
墙壁如何隔音—隔音墙是怎么样构成的
1、隔音墙的设计原则。墙壁如何隔音呢?普遍推荐的隔音墙,一般都是在内部填充吸音棉或PU,有的只是采用纸板隔成所谓的蜂巢结构,一方面增加门板的强度一方面以其所形成的密闭空气层作某一程度的隔音。基本上任何材质都有它的隔音效果,而简单讲就是质量越重的物体其隔音性越好,这就是一般所说的质量法则,也就是说为求隔音效果你可以用4cm的厚刚板作门板或在门板内灌水泥来达到提高质量以求较高的隔音效果。
2、隔音墙的塑钢门窗。墙壁如何隔音呢?横拉窗子的隔音性能取决于两片窗之间以及窗与窗框之间的密合度,而推开窗则是取决于其关闭后窗与框的密合度,塑钢门窗一般采用胶条密封,与普通铝合金窗的“硬碰硬”不同,隔音效果较明显。
3、隔音墙的中空玻璃。中空玻璃是由两层或多层平板玻璃构成,四周用高强度气密性好的复合粘剂将两片或多片玻璃与铝合金框或橡皮条粘合,密封玻璃之间留出空间,冲入惰性气体以获取优良的隔热隔音性能。由于玻璃间内封存的空气或气体传热性能差,因而产生优越的隔音效果。
好了以上就是小编的分析。面对各种各样的市场,你们是不是眼花了呢?希望小编以上的分析可以对你们有所帮助。选择一款好的隔音墙吧!为自己及家人营造出一个安静舒适的家吧!让我们每天可以有一个安静的空间,去思考,去享受吧!我们应该对隔音墙的市场有一个好的了解,防止我们花高价钱买到低廉品,减少我们对一些人力物力财力的浪费。让自己远离那纷繁的大千世界,给自己一片安静的天堂吧!