导航:首页 > 研究方法 > 数据分析方法案例

数据分析方法案例

发布时间:2022-01-13 18:49:51

Ⅰ 数据分析的案例

沃尔玛经典营销案例:啤酒与尿布
“啤酒与尿布”的故事产生于20世纪90年代的美国沃尔玛超市中,沃尔玛的超市管理人员分析销售数据时发现了一个令人难于理解的现象:在某些特定的情况下,“啤酒”与“尿布”两件看上去毫无关系的商品会经常出现在同一个购物篮中,这种独特的销售现象引起了管理人员的注意,经过后续调查发现,这种现象出现在年轻的父亲身上。
在美国有婴儿的家庭中,一般是母亲在家中照看婴儿,年轻的父亲前去超市购买尿布。父亲在购买尿布的同时,往往会顺便为自己购买啤酒,这样就会出现啤酒与尿布这两件看上去不相干的商品经常会出现在同一个购物篮的现象。如果这个年轻的父亲在卖场只能买到两件商品之一,则他很有可能会放弃购物而到另一家商店, 直到可以一次同时买到啤酒与尿布为止。沃尔玛发现了这一独特的现象,开始在卖场尝试将啤酒与尿布摆放在相同的区域,让年轻的父亲可以同时找到这两件商品,并很快地完成购物;而沃尔玛超市也可以让这些客户一次购买两件商品、而不是一件,从而获得了很好的商品销售收入,这就是“啤酒与尿布” 故事的由来。
当然“啤酒与尿布”的故事必须具有技术方面的支持。1993年美国学者Agrawal提出通过分析购物篮中的商品集合,从而找出商品之间关联关系的关联算法,并根据商品之间的关系,找出客户的购买行为。艾格拉沃从数学及计算机算法角度提 出了商品关联关系的计算方法——Aprior算法。沃尔玛从上个世纪 90 年代尝试将 Aprior 算 法引入到 POS机数据分析中,并获得了成功,于是产生了“啤酒与尿布”的故事。
Suncorp-Metway使用数据分析实现智慧营销
Suncorp-Metway是澳大利亚一家提供普通保险、银行业、寿险和理财服务的多元化金融服务集团, 旗下拥有5个业务部门,管理着14类商品,由公司及共享服务部门提供支持,其在澳大利亚和新西兰的运营业务与900多万名客户有合作关系。
该公司过去十年间的合并与收购,使客户群增长了200%,这极大增加了客户群数据管理的复杂性,如果解决不好,必将对公司利润产生负面影响.为此,IBM公司为其提供了一套解决方案,组件包括:IBM Cognos 8 BI、IBMInitiate Master Data Service谀IBM Unica。
采用该方案后,Suncorp-Metway公司至少在以下三项业务方面取得显着成效:
1、显着增加了市场份额,但没有增加营销开支;
2、每年大约能够节省1000万美元的集成与相关成本;
3、避免向同一户家庭重复邮寄相同信函并且消除冗余系统,从而同时降低直接邮寄与运营成本。
由此可见,Suncorp-Metway公司通过该方案将此前多个孤立来源的数据集成起来,实现智慧营销,对控制成本,增加利润起到非常积极的作用。
数据分析帮助辛辛那提动物园提高客户满意度
辛辛那提动植物园成立于1873年,是世界上着名的动植物园之一,以其物种保护和保存以及高成活率繁殖饲养计划享有极高声誉。它占地面积71英亩,园内有500种动物和3000多种植物,是国内游客人数最多的动植物园之一,曾荣获Zagat十佳动物园,并被《父母》(Parent)杂志评为最受儿童喜欢的动物园,每年接待游客130多万人。
辛辛那提动植物园是一个非营利性组织,是俄亥州同时也是美国国内享受公共补贴最低的动植物园,除去政府补贴,2600万美元年度预算中,自筹资金部分达到三分之二以上。为此,需要不断地寻求增加收入。而要做到这一点,最好办法是为工作人员和游客提供更好的服务,提高游览率。从而实现动植物园与客户和纳税人的双赢。
借助于该方案强大的收集和处理能力、互联能力、分析能力以及随之带来的洞察力,在部署后,企业实现了以下各方面的受益:
·帮助动植物园了解每个客户浏览、使用和消费模式,根据时间和地理分布情况采取相应的措施改善游客体验,同时实现营业收入最大化。
·根据消费和游览行为对动植物园游客进行细分,针对每一类细分游客开展营销和促销活动,显着提高忠诚度和客户保有量。.
·识别消费支出低的游客,针对他们发送具有战略性的直寄广告,同时通过具有创意性的营销和激励计划奖励忠诚客户。
· 360度全方位了解客户行为,优化营销决策,实施解决方案后头一年节省40,000多美元营销成本,同时强化了可测量的结果。
·采用地理分析显示大量未实现预期结果的促销和折扣计划,重新部署资源支持产出率更高的业务活动,动植物园每年节省100,000多美元。
·通过强化营销提高整体游览率,2011年至少新增50,000人次“游览”。
·提供洞察结果强化运营管理。例如,即将关门前冰激淋销售出现高潮,动植物园决定延长冰激淋摊位营业时间,直到关门为止。这一措施夏季每天可增加2,000美元收入。
·与上年相比,餐饮销售增加30.7%,零售销售增加5.9%。
·动植物园高层管理团队可以制定更好的决策,不需要 IT 介入或提供支持。
·将分析引入会议室,利用直观工具帮助业务人员掌握数据。

Ⅱ 数据分析到底是怎么个分析法能不能有个具体的例子说说

大数据分析与数据分析这几年一直都是个高频词,很多人都开始纷纷转行到这个领域,也有不少人开始跃跃欲试,想找准时机进到大数据或数据分析领域。如今大数据分析和数据分析火爆,要说时机,可谓处处都是时机,关键要明了的一点是,大数据分析和数据分析两者的根本区别在哪里,只有真正了解了,才会知晓更加适合自己的领域是大数据分析师还是数据分析师。毕竟职场如战场,时间就是生活,不容儿戏,更不容怠慢。

Ⅲ 常用的数据分析方法哪些


常见的数据分析方法有哪些?
1.趋势分析
当有大量数据时,我们希望更快,更方便地从数据中查找数据信息,这时我们需要使用图形功能。所谓的图形功能就是用EXCEl或其他绘图工具来绘制图形。
趋势分析通常用于长期跟踪核心指标,例如点击率,GMV和活跃用户数。通常,只制作一个简单的数据趋势图,但并不是分析数据趋势图。它必须像上面一样。数据具有那些趋势变化,无论是周期性的,是否存在拐点以及分析背后的原因,还是内部的或外部的。趋势分析的最佳输出是比率,有环比,同比和固定基数比。例如,2017年4月的GDP比3月增加了多少,这是环比关系,该环比关系反映了近期趋势的变化,但具有季节性影响。为了消除季节性因素的影响,引入了同比数据,例如:2017年4月的GDP与2016年4月相比增长了多少,这是同比数据。更好地理解固定基准比率,即固定某个基准点,例如,以2017年1月的数据为基准点,固定基准比率是2017年5月数据与该数据2017年1月之间的比较。
2.对比分析
水平对比度:水平对比度是与自己进行比较。最常见的数据指标是需要与目标值进行比较,以了解我们是否已完成目标;与上个月相比,要了解我们环比的增长情况。
纵向对比:简单来说,就是与其他对比。我们必须与竞争对手进行比较以了解我们在市场上的份额和地位。
许多人可能会说比较分析听起来很简单。让我举一个例子。有一个电子商务公司的登录页面。昨天的PV是5000。您如何看待此类数据?您不会有任何感觉。如果此签到页面的平均PV为10,000,则意味着昨天有一个主要问题。如果签到页面的平均PV为2000,则昨天有一个跳跃。数据只能通过比较才有意义。
3.象限分析
根据不同的数据,每个比较对象分为4个象限。如果将IQ和EQ划分,则可以将其划分为两个维度和四个象限,每个人都有自己的象限。一般来说,智商保证一个人的下限,情商提高一个人的上限。
说一个象限分析方法的例子,在实际工作中使用过:通常,p2p产品的注册用户由第三方渠道主导。如果您可以根据流量来源的质量和数量划分四个象限,然后选择一个固定的时间点,比较每个渠道的流量成本效果,则该质量可以用作保留的总金额的维度为标准。对于高质量和高数量的通道,继续增加引入高质量和低数量的通道,低质量和低数量的通过,低质量和高数量的尝试策略和要求,例如象限分析可以让我们比较和分析时间以获得非常直观和快速的结果。
4.交叉分析
比较分析包括水平和垂直比较。如果要同时比较水平和垂直方向,则可以使用交叉分析方法。交叉分析方法是从多个维度交叉显示数据,并从多个角度执行组合分析。
分析应用程序数据时,通常分为iOS和Android。
交叉分析的主要功能是从多个维度细分数据并找到最相关的维度,以探究数据更改的原因。

Ⅳ 数据分析与处理的案例

以自己加点文字叙述

Ⅳ 数据分析常用的4大分析方法

1. 描述型分析:发生了什么?


这是最常见的分析方法。在业务中,这种方法向数据分析师提供了重要指标和业务的衡量方法。


例如,每月的营收和损失账单。数据分析师可以通过这些账单,获取大量的客户数据。了解客户的地理信息,就是“描述型分析”方法之一。利用可视化工具,能够有效的增强描述型分析所提供的信息。


2. 诊断型分析:为什么会发生?


描述性数据分析的下一步就是诊断型数据分析。通过评估描述型数据,诊断分析工具能够让数据分析师深入地分析数据,钻取到数据的核心。


良好设计的BI dashboard能够整合:按照时间序列进行数据读入、特征过滤和钻取数据等功能,以便更好的分析数据。


3. 预测型分析:可能发生什么?


预测型分析主要用于进行预测。事件未来发生的可能性、预测一个可量化的值,或者是预估事情发生的时间点,这些都可以通过预测模型来完成。


预测模型通常会使用各种可变数据来实现预测。数据成员的多样化与预测结果密切相关。在充满不确定性的环境下,预测能够帮助做出更好的决定。预测模型也是很多领域正在使用的重要方法。


4. 指令型分析:需要做什么?


数据价值和复杂度分析的下一步就是指令型分析。指令模型基于对“发生了什么”、“为什么会发生”和“可能发生什么”的分析,来帮助用户决定应该采取什么措施。通常情况下,指令型分析不是单独使用的方法,而是前面的所有方法都完成之后,最后需要完成的分析方法。


关于数据分析常用的4大分析方法的内容,青藤小编就和您分享到这里了。如果您对大数据工程有浓厚的兴趣,希望这篇文章可以为您提供帮助。如果您还想了解更多关于数据分析师、大数据工程师的技巧及素材等内容,可以点击本站的其他文章进行学习。

Ⅵ 值得膜拜的三个数据分析案例

值得膜拜的三个数据分析案例
今天给大家分享三个数据分析的经典案例,主要是学习其中的思路,当故事看吧,不要拘泥于文中故事的真实性。每个故事我简单的做一个点评吧
1、数据分析大神 高手在民间
这天,新上任的邢县长到小吃摊吃早餐,刚找个板凳坐下,就听炸油条的胡老头一边忙活一边唠叨:“大家吃好喝好哦,城管要来撵摊儿了,起码三天你们捞不着吃咱炸的油条了!”
邢县长心里一惊:省卫生厅领导最近要来视察,昨天下午县里才决定明后两天开展突击整治,这老头儿怎么今天一早就知道了?
哪料这件事还没弄明白,另一件事儿让县长脑袋里的问号更大了。一天,他照例到胡老头这儿吃油条。没想到,老头居然又在发布消息:“上面马上要来青天大老爷了!谁有什么冤假,就去县府宾馆等着吧!”
邢县长又是吃惊,又是恼怒。省高院的工作组星期三要来清查积案,这个消息昨天晚上才在常委会上传达,这老儿咋这么快就知道了呢?让他更吃惊的是,这老家伙不但对大领导们的行程了如指掌,就连派出所要突击检查娱乐场所这样的绝密行动,他都知道得清清楚楚。
一个大字不识的老头儿,居然能知道这么多政府内部消息,毫无疑问,定是某些政府工作人员保密意识太差,嘴巴不紧。于是,他立即召开会议,把那些局长、主任狠批了一通。与会领导个个低着头、不敢出声。
还是公安局长胆大,忍不住问道:“邢县长,这胡老头儿的事是您亲眼所见,还是道听途说来的?”
邢县长声色俱厉地一拍桌子:“都是我亲耳听到的!我问你,你们城关派出所今天晚上是不是要清查娱乐城?”
公安局长一脸尴尬,楞在那里。邢县长气恼地当即下令:“你亲自去查查这老头儿到底什么背景,明天向我汇报!”公安局长赶紧换上便装,立马跑到胡老头那儿进行暗访。没想到,老家伙正在向大伙儿发布新闻:“城关镇的镇长最近要倒霉了。大伙等着瞧,事儿不会小的……”
公安局长一听,很是诧异。于是,他运了口气,腆着笑脸,装傻卖呆似的问道:“你咋知道的?难道你儿子是纪委书记?”
胡老头呵呵一笑:“我咋知道的?那孙子以前吃我的油条,都是让司机开专车来买,这两天一反常态,竟然自己步行来吃,还老是一脸愁容。那年他爹死,都没见他那么难受过。能让那孙子比死了爹还难受的事,除了丢官儿,还能是啥?”
局长听了,暗自吃惊,这老头儿还真有两下子。于是他不动声色继续问道:“那昨天派出所清查娱乐城,你是咋知道的?”
胡老头又是一笑:“你没见那几家娱乐城一大早就挂出了停业修缮的牌子?人家有眼线,消息比咱灵通!”
“那卫生厅领导来视察,你是咋知道的?”
胡老头儿说:“除了上面来人检查,你啥时见洒水车出来过?”。
最后,局长问了个他最想不通的问题:“上次省高院的工作组来指导工作,你咋那么快就得到消息了呢?”
胡老头撇了撇嘴说:“那就更简单了。俺邻居家有个案子,法院拖了八年不办。那天,办案的法官突然主动来访,满脸笑容问长问短,还再三保证案子马上解决。这不明摆着上面来了人,怕他们上访嘛!”
局长佩服得五体投地,连忙一路小跑赶回去,把情况向邢县长汇报。县长听了,大动肝火,马上再次召开会议,做了四个小时的训话:“同志们,一个炸油条的都能从一些简单现象中,看出我们的工作动向,这说明了什么?说明我们存在太多的形式主义。这种恶习不改,怎么能提升政府形象?从今天开始,哪个部门再因为这种原因泄密,让那老头‘未卜先知’,我可就不客气!”
次日一早,邢县长又来到胡老头儿这儿吃油条,想验证一下开会的效果。没想到胡老头居然又在发布最新消息:“今天,上面要来大领导了,来的还不止一个!”
邢县长这一惊,真是非同小可。下午,市长要陪同省领导来检查工作,自己昨晚才接到通知,这老头咋又提前知道了?
邢县长强压怒火,问胡老头:“你说要来大领导,到底有多大呢?”
胡老头儿头也不抬地回答:“反正比县长还大!”
邢县长又问:“你说要来的不止一个,能说个准数吗,到底来几个?”
胡老头儿仰起头想了想,确定地回答:“四个!”
邢县长目瞪口呆,上级领导还真是要来四个!他心里怦怦直跳,又问:“胡……胡师傅,这些事儿你是怎么知道的?而且知道的这么准确。”
胡老头儿淡淡一笑:“这还不容易?我早上出摊儿,见县府宾馆的保安都戴上了白手套,一个个如临大敌,肯定是上面来人了。再看看停车场,书记、县长的车都停在了角落里,肯定是来了比他们大的官儿。再仔细看看,书记、县长停的车位是5号、6号,说明上面来了四个领导。你信不信?当官儿的和咱老百姓不一样,上厕所都要讲究个级别、排个先后顺序呢!”
邢县长听罢,张着塞满油条的大嘴,一动不动,好像僵化了似的…
(本故事来自于网络)
启示:
与其说高手来自于民间,还不如说生活是我们数据分析的基本素材,善于观察、善于整理关联信息才是我们做数据分析人员应该掌握的基本技能。可是啊,很多人忽略了我们身边的生活常识,不去思考,人云亦云,就像网上的这个全国离婚率排行榜数据,很多人首先不是思考数据的准确性,而是感叹世风日下。

想想吧,在你的生活圈子中,每3对夫妻就有1对离婚的吗?如果答案为“是”,我只能说,贵圈真乱!哈哈哈
2、林彪的数据挖掘本领
1948年辽沈战役开始之后,在东北野战军前线指挥所里面,每天深夜都要进行例常的“每日军情汇报”:由值班参谋读出下属各个纵队、师、团用电台报告的当日战况和缴获情况。
那几乎是重复着千篇一律的枯燥无味的数据:每支部队歼敌多少、俘虏多少;缴获的火炮、车辆多少、枪支、物资多少….
司令员林彪的要求很细,俘虏要分清军官和士兵,缴获的枪支,要统计出机枪、长枪、短枪;击毁和缴获尚能使用的汽车,也要分出大小和类别。
经过一天紧张的战斗指挥工作,人们都非常疲劳。整个作战室里面估计只有定下这个规矩的司令员林彪本人、还有那个读电报的倒霉参谋在用心留意。
1948年10月14日,东北野战军以迅雷不及掩耳之势,仅用了30小时就攻克了对手原以为可以长期坚守的锦州并全歼了守敌十余万之后,不顾疲劳,挥师北上与从沈阳出援的敌精锐廖耀湘基团二十余万在辽西相遇,一时间形成了混战。战局瞬息万变,谁胜谁负实难预料。
在大战紧急中,林彪无论有多忙,仍然坚持每晚必作的“功课”。一天深夜,值班参谋正在读着下面某师上报的其下属部队的战报。说他们下面的部队碰到了一个不大的遭遇战,歼敌部分、其余逃走。与其它之前所读的战报看上去并无明显异样,值班参谋就这样读着读着,林彪突然叫了一声“停!”他的眼里闪出了光芒,问:“刚才念的在胡家窝棚那个战斗的缴获,你们听到了吗?”
大家带着睡意的脸上出现了茫然,因为如此战斗每天都有几十起,不都是差不多一模一样的枯燥数字吗?林彪扫视一周,见无人回答,便接连问了三句:
“为什么那里缴获的短枪与长枪的比例比其它战斗略高”?
“为什么那里缴获和击毁的小车与大车的比例比其它战斗略高”?
“为什么在那里俘虏和击毙的军官与士兵的比例比其它战斗略高”?
人们还没有来得及思索,等不及的林彪司令员大步走向挂满军用地图的墙壁,指着地图上的那个点说:“我猜想,不,我断定!敌人的指挥所就在这里!”
随后林彪口授命令,追击从胡家窝棚逃走的那部分敌人,并坚决把他们打掉。各部队要采取分割包围的办法,把失去指挥中枢后会变得混乱的几十万敌军切成小块,逐一歼灭。司令员的命令随着无线电波发向了参战的各部队….
而此时的廖耀湘,正庆幸自己刚刚从偶然的一场遭遇战中安全脱身并与自己的另外一支部队汇合。他来不及休息就急于指令各部队尽快调整部署,为下一阶段作准备。可是好景不长,紧追而来的解放军迅速把他的新指挥部团团围住,拼命攻击,漫山遍野的解放军战士中,不断有人喊着:“矮胖子,白净脸;金丝眼镜湖南腔,不要放走廖耀湘!”
把对方指挥官的细节特征琢磨到如此细微,并变成如此威力巨大的顺口溜,穿着满身油渍伙夫服装的廖耀湘只好从俘虏群中站出来,无奈的说“我是廖耀湘”,沮丧的举手投降。
廖耀湘对自己静心隐蔽的精悍野战司令部那么快就被发现、打掉,觉得实在不可思议,认为那是一个偶然事件,输得不甘心。当他得知林彪是如何得出判断之后,这位出身黄埔军校并留学法国着名的圣西尔军校,参加过滇缅战役,在那里把日本鬼子揍得满地乱爬的新六军军长说,“我服了,败在他手下,不丢人。”
取得这场重要战役胜利的其中一个关键因素,居然出于获胜方的统帅夜半时分,对一份普通遭遇战之后的战报的数据分析,来源于他“从红军带兵时起,身上有个小本子,上面记载着每次战斗的缴获、歼敌数量”的优良军事素养。
(本故事来源于黄勇-丰沃华的博客)
启示:
林彪问的三个问题其实就是根据自己的数据库做的对比、细分、溯源。我们很多人把数据分析完全交给机器了,忘了我们自己的大脑也是一台紧密的数据分析机器。
数据的积累、数据的挖掘,分析、归纳、整理,是数据分析师所必须俱备的基本素养,没有它,你永远是匹夫之勇。
3、蛋挞与曼城队
2011年夏天,曼城队助理教练大卫·普拉特决定利用数据分析来解决球队在表现方面遇到的一个棘手难题。普拉特发现,尽管球队阵容中拥有多名高大强壮的球员,但他们的角球得分情况却不尽如人意。
在征求了俱乐部内部数据分析师的意见后,该队增加了对内旋角球(球转向守门员方向)的使用。战术转变产生了惊人的效果。在整个赛季中,曼城队依靠角球打入15个进球,成为英超角球得分效率最高的球队,其中2/3的进球采用的是内旋角球。
这一实践为数据驱动型决策提供了强有力的支撑。但是,还有一个附加因素需要考虑:主教练曼奇尼最初对数据的实际价值持怀疑态度。事实上,早在两年前,曼奇尼曾就球队角球的使用情况咨询过俱乐部的数据分析师。分析师回应,他依靠直觉偏爱采用的战术——外旋角球(球飞向远离守门员的方向)从数据统计上看并不理想。
曼奇尼选择相信自己的直觉而非数据分析的导向性建议。因为直觉告诉他,球旋向远离门将的方向减小了门将触球的概率,同时增加了进攻队员冲顶时争到头球的概率。但当曼奇尼发现两种变数存在某种联系的时候,直觉却模糊了他对两者关联程度的判断能力。换句话说,外旋角球和进球数可能存在着某种关联,但数据表明,内旋角球和进球数存在着更为直接的因果关系。
这一案例研究为我们改善商业决策带来哪些启示?一家美国零售商最近发现,两种不同变数之间存在着某种有趣的联系。当天气变冷,肉桂葡式蛋挞的销量上升500%——并非所有的葡式蛋挞,只是肉桂这一个品种。面对这种零星数据,零售商要做出抉择。每当预测天气即将转冷时,应该储备多少肉桂葡式蛋挞?还有一家零售商发现,羊奶干酪打折似乎能促进红酒的销售。希望减小红酒库存的时候,是不是应考虑羊奶干酪打折这种方法?
这两个问题的答案取决于大数据分析的核心问题:弄清相关性与因果关系之间的区别。人类善于发现事物的相关性——这是进化的特征——但是却在发掘直接相关事物的关系时显得有些笨拙。将相关性误解为因果关系所做出的决策是危险的,可能会遭受惨败,因为你所期待看到的影响可能并不会发生。
最近的一项研究显示,某国的巧克力销量与诺贝尔奖的人均比例之间呈现明显的相关性。各国是不是都该鼓励公民增加巧克力的消费来提高获得诺贝尔奖的人数呢?
为有效利用大数据,相关性分析应仅作为一个出发点去考虑。如果两个变量存在关联,我们该如何应对?当然,政府在推行“巧克力替代教育”的政策之前,应当首先考虑一下其他因素。比方说,看看那些获得诺贝尔奖人数较多的国家相对教育水平和研究预算,与巧克力消费相比,这两个变量与获诺奖的因果关系显然更大。
同样,那些葡式蛋挞和羊奶干酪的零售商们在拥有十足把握以前,需要对他们的假设进行验证。比如说,在确定因果关系存在以前,考察一些商店肉桂葡式蛋挞的“库存积压”情况;或者采取打折销售羊奶干酪的方式,看看红酒销量是否真的增加。
事物之间可能存在着一些简单的因果关系,但公司需要清楚每种因果关系都可能产生意想不到的结果。肉桂葡式蛋挞销量的增加是否意味着其他产品销量的减少?红酒销量的增加是否也意味着啤酒销量的减少或者牛排销量的增加?影响现代供应链的因素很多,而且还在不断增加:天气、社交媒体、特价商品、食品安全新闻等,都会影响消费者的行为,以及零售商应该购置多大规模的存货。这基本上就是一个混沌系统,完全准确地预测将来要发生的事情是不可能的。但模型越完善,预测就越准确,预测越准确,行动结果就越理想。
数据分析就像一幅印象派油画。当你退后观察,并把各个部分视作一个整体时,这幅画的意境才开始浮现,近距离观察是无法理解其中内涵的。这可以帮助我们解释为什么曼城队的新角球战术不太可能会长久取得良好的结果。实施从外旋角球到内旋角球的简单战术转变:多开点内旋球,少开点外旋球,这一简单的战术转变,亦会忽略了每场比赛中每次出现破门机会时的某些独特变数。
(这部分来源:商业价值)
结尾:
很多人把数据分析看的很难,其实数据分析存在于我们生活工作的每个角落。给大家几条建议:
1、多观察、善积累、勤思考。
2、不懂业务就不要做数据分析。
3、分析工具不要贪多,精通1-2个工具就行了。
4、数据分析是良心工程(自己理解)

Ⅶ 数据分析方法

常见的分析方法有:分类分析,矩阵分析,漏斗分析,相关分析,逻辑树分析,趋势分析,行为轨迹分析,等等。 我用HR的工作来举例,说明上面这些分析要怎么做,才能得出洞见。

01) 分类分析
比如分成不同部门、不同岗位层级、不同年龄段,来分析人才流失率。比如发现某个部门流失率特别高,那么就可以去分析。

02) 矩阵分析
比如公司有价值观和能力的考核,那么可以把考核结果做出矩阵图,能力强价值匹配的员工、能力强价值不匹配的员工、能力弱价值匹配的员工、能力弱价值不匹配的员工各占多少比例,从而发现公司的人才健康度。

03) 漏斗分析
比如记录招聘数据,投递简历、通过初筛、通过一面、通过二面、通过终面、接下Offer、成功入职、通过试用期,这就是一个完整的招聘漏斗,从数据中,可以看到哪个环节还可以优化。

04) 相关分析
比如公司各个分店的人才流失率差异较大,那么可以把各个分店的员工流失率,跟分店的一些特性(地理位置、薪酬水平、福利水平、员工年龄、管理人员年龄等)要素进行相关性分析,找到最能够挽留员工的关键因素。

05) 逻辑树分析
比如近期发现员工的满意度有所降低,那么就进行拆解,满意度跟薪酬、福利、职业发展、工作氛围有关,然后薪酬分为基本薪资和奖金,这样层层拆解,找出满意度各个影响因素里面的变化因素,从而得出洞见。

06) 趋势分析
比如人才流失率过去12个月的变化趋势。

07)行为轨迹分析
比如跟踪一个销售人员的行为轨迹,从入职、到开始产生业绩、到业绩快速增长、到疲惫期、到逐渐稳定。

Ⅷ 如何做数据分析

数据分析行业应用,一般数据来源:智能手机 感知装置 物联网 社群媒体等 云计算存储.cda官网有很多行业案例,比如
风能发电业务场景
风力发电机有一个叶片,时间长了就要换,否则不安全,过去这个叶片一般10年换一次,因为没办法知道具体产品的使用情况,只能根据以往叶片老化的情况来估算。但这家公司在叶片上装了传感器,就能检测每个叶片的具体使用情况了,风大的地方,叶片老化快,可能8年就要换,风力均匀的地方,有些叶片可能用15年,这样就能节省资本更新的成本了。
而且,过去这家公司只生产设备,这些设备被卖到国外,具体安装到什么地方,他是不知道的,有了传感器,公司就能知道这些发电机被安装到哪里,这些地方的风力是大是小,一年四季哪天有风哪天有雨,这些数据都可以获取。根据这些数据,就能知道哪些地区风力资源丰富,有重点地规划未来市场。传统的行业利用大数据,就能更好地实现市场预判和销售提升,分分钟实现逆袭。

阅读全文

与数据分析方法案例相关的资料

热点内容
梦妆眼霜使用方法 浏览:672
教案里面过程与方法目标怎么写 浏览:981
猪肉炒制的正确方法 浏览:240
超小变压器的测量方法 浏览:401
木门测量方法和注意事项 浏览:924
姜力怎么使用方法 浏览:438
恒冠15l钓箱天窗安装方法 浏览:903
台式机电脑截图方法 浏览:457
dj水果机如何破解方法 浏览:160
里美鸡蛋面膜使用方法 浏览:778
怎么变双眼皮天然方法 浏览:394
霉菌性鼻窦炎的最好治疗方法 浏览:903
油锯链条连接的方法 浏览:328
魅族魅蓝5返回键在哪里设置方法 浏览:271
感应电笔使用方法 浏览:666
说明方法的准确性是什么 浏览:975
常用宝石镶嵌方法 浏览:564
数据连接在哪里设置方法 浏览:263
研究理性的历史和现状的方法 浏览:470
难度凤凰的折纸方法视频 浏览:294