Ⅰ 短路计算的具体步骤是什么
短路 一般计算短路电流,计算短路电流有两种方法:欧姆法和标幺值法。
一、欧姆法:首先计算阻抗(z) 根再根据据i=u/√3*z。z=√(r²+x²)计算。 r为总电阻,x为总阻抗。
包括线路中的元件、变压器等。 至于元件 电阻和阻抗怎么计算,还是查资料比较容易理解。
Ⅱ 供配电系统设计中怎么计算短路电流
一、供电网络中发生短路时,很大的短路电流会使电器设备过热或受电动力作用而遭到损坏,同时使网络内的电压大大降低,因而破坏了网络内用电设备的正常工作.为了消除或减轻短路的后果,就需要计算短路电流,以正确地选择电器设备、设计继电保护和选用限制短路电流的元件。
二.计算条件
1.假设系统有无限大的容量.用户处短路后,系统母线电压能维持不变.即计算阻抗比系统阻抗要大得多。
具体规定: 对于3~35KV级电网中短路电流的计算,可以认为110KV及以上的系统的容量为无限大.只要计算35KV及以下网络元件的阻抗。
2.在计算高压电器中的短路电流时,只需考虑发电机、变压器、电抗器的电抗,而忽略其电阻;对于架空线和电缆,只有当其电阻大于电抗1/3时才需计入电阻,一般也只计电抗而忽略电阻。
3. 短路电流计算公式或计算图表,都以三相短路为计算条件.因为单相短路或二相短路时的短路电流都小于三相短路电流.能够分断三相短路电流的电器,一定能够分断单相短路电流或二相短路电流。
三.简化计算法
即使设定了一些假设条件,要正确计算短路电流还是十分困难,对于一般用户也没有必要.一些设计手册提供了简化计算的图表.省去了计算的麻烦.用起来比较方便.但要是手边一时没有设计手册怎么办?下面介绍一种 “口诀式”的计算方法,只要记牢7句口诀,就可掌握短路电流计算方法.
在介绍简化计算法之前必须先了解一些基本概念.
1.主要参数
Sd三相短路容量 (MVA)简称短路容量校核开关分断容量
Id三相短路电流周期分量有效值(KA)简称短路电流校核开关分断电流
和热稳定
IC三相短路第一周期全电流有效值(KA) 简称冲击电流有效值校核动稳定
ic三相短路第一周期全电流峰值(KA) 简称冲击电流峰值校核动稳定
x电抗(Ω)
其中系统短路容量Sd和计算点电抗x 是关键.
2.标么值
计算时选定一个基准容量(Sjz)和基准电压(Ujz).将短路计算中各个参数都转化为和该参数的基准量的比值(相对于基准量的比值),称为标么值(这是短路电流计算最特别的地方,目的是要简化计算).
(1)基准
基准容量 Sjz =100 MVA
基准电压 UJZ规定为8级. 230, 115, 37, 10.5, 6.3, 3.15 ,0.4, 0.23 KV
有了以上两项,各级电压的基准电流即可计算出,例: UJZ (KV)3710.56.30.4
因为 S=1.73*U*I 所以 IJZ (KA)1.565.59.16144
(2)标么值计算
容量标么值 S* =S/SJZ.例如:当10KV母线上短路容量为200 MVA时,其标么值容量
S* = 200/100=2.
电压标么值 U*= U/UJZ ; 电流标么值 I* =I/IJZ
3无限大容量系统三相短路电流计算公式
短路电流标么值: I*d = 1/x* (总电抗标么值的倒数).
短路电流有效值: Id= IJZ* I*d=IJZ/ x*(KA)
冲击电流有效值: IC = Id *√1+2 (KC-1)2 (KA)其中KC冲击系数,取1.8
所以 IC =1.52Id
冲击电流峰值: ic =1.41* Id*KC=2.55 Id (KA)
当1000KVA及以下变压器二次侧短路时,冲击系数KC ,取1.3
这时:冲击电流有效值IC =1.09*Id(KA)
冲击电流峰值: ic =1.84 Id(KA)
掌握了以上知识,就能进行短路电流计算了.公式不多,又简单.但问题在于短路点的总电抗如何得到?例如:区域变电所变压器的电抗、输电线路的电抗、企业变电所变压器的电抗,等等.
一种方法是查有关设计手册,从中可以找到常用变压器、输电线路及电抗器的电抗标么值.求得总电抗后,再用以上公式计算短路电流; 设计手册中还有一些图表,可以直接查出短路电流.
下面介绍一种 “口诀式”的计算方法,只要记牢7句口诀,就可掌握短路电流计算方法.
4.简化算法
【1】系统电抗的计算
系统电抗,百兆为一.容量增减,电抗反比.100除系统容量
例:基准容量 100MVA.当系统容量为100MVA时,系统的电抗为XS*=100/100=1
当系统容量为200MVA时,系统的电抗为XS*=100/200=0.5
当系统容量为无穷大时,系统的电抗为XS*=100/∞=0
系统容量单位:MVA
系统容量应由当地供电部门提供.当不能得到时,可将供电电源出线开关的开断容量
作为系统容量.如已知供电部门出线开关为W-VAC 12KV 2000A 额定分断电流为40KA.则可认为系统容量S=1.73*40*10000V=692MVA, 系统的电抗为XS*=100/692=0.144.
【2】变压器电抗的计算
110KV, 10.5除变压器容量;35KV, 7除变压器容量;10KV{6KV}, 4.5除变压器容量.
例:一台35KV 3200KVA变压器的电抗X*=7/3.2=2.1875
一台10KV 1600KVA变压器的电抗X*=4.5/1.6=2.813
变压器容量单位:MVA
这里的系数10.5,7,4.5 实际上就是变压器短路电抗的%数.不同电压等级有不同的值.
【3】电抗器电抗的计算
电抗器的额定电抗除额定容量再打九折.
例:有一电抗器 U=6KV I=0.3KA 额定电抗 X=4% .
额定容量 S=1.73*6*0.3=3.12 MVA. 电抗器电抗X*={4/3.12}*0.9=1.15
电抗器容量单位:MVA
【4】架空线路及电缆电抗的计算
架空线:6KV,等于公里数;10KV,取1/3;35KV,取 3%0
电缆:按架空线再乘0.2.
例:10KV 6KM架空线.架空线路电抗X*=6/3=2
10KV 0.2KM电缆.电缆电抗X*={0.2/3}*0.2=0.013.
这里作了简化,实际上架空线路及电缆的电抗和其截面有关,截面越大电抗越小.
【5】短路容量的计算
电抗加定,去除100.
例:已知短路点前各元件电抗标么值之和为 X*∑=2, 则短路点的短路容量
Sd=100/2=50 MVA.
短路容量单位:MVA
【6】短路电流的计算
6KV,9.2除电抗;10KV,5.5除电抗; 35KV,1.6除电抗; 110KV,0.5除电抗.
0.4KV,150除电抗
例:已知一短路点前各元件电抗标么值之和为 X*∑=2, 短路点电压等级为6KV,
则短路点的短路电流 Id=9.2/2=4.6KA.
短路电流单位:KA
【7】短路冲击电流的计算
1000KVA及以下变压器二次侧短路时:冲击电流有效值Ic=Id, 冲击电流峰值ic=1.8Id
1000KVA以上变压器二次侧短路时:冲击电流有效值Ic=1.5Id, 冲击电流峰值ic=2.5Id
例:已知短路点{1600KVA变压器二次侧}的短路电流 Id=4.6KA,
则该点冲击电流有效值Ic=1.5Id,=1.5*4.6=7.36KA,冲击电流峰值ic=2.5Id=2.5*406=11.5KA.
可见短路电流计算的关键是算出短路点前的总电抗{标么值}.但一定要包括系统电抗。
Ⅲ 短路电流怎么计算
短路电流的计算
若6kV电压等级,则短路电流(单位kA,以下同)等于9.2除总电抗X*∑(短路点前的,以下同); 若10kV电压等级,则等于5.5除总电抗X*∑; 若35kV电压等级,则等于1.6除总电抗X*∑; 若110kV电压等级,则等于0.5除总电抗X*∑; 若0.4kV电压等级,则等于150除总电抗X*∑。
计算依据的公式是: Id=Ijz/ X*∑ (6)
式中Ijz: 表示基准容量为100MVA时基准电流(kA),6kV取9.2kA,10kV取5.5kA,35kV取1.6kA,110kV取0.5kA,0.4kV则取150kA。
短路电流计算是用于修正由于电路问题产生的过电流。主要发生在三相短路、两相短路等电路连接方式中。短路电流计算可以避免由过电流造成的供电破坏,以及电机的过大负荷等问题。
短路电流将引起下列严重后果:短路电流往往会有电弧产生,它不仅能烧坏故障元件本身,也可能烧坏周围设备和伤害周围人员。
Ⅳ 变压器低压侧短路电流计算值为多少
低压侧的额定电流:100 / (0.4 * √3) = 144.34 A;低压侧的短路电流:144.34 / 0.0191 = 755.7 A。400KVA是一次侧的容量。
发生短路常见原因之一是电池的正极与负极被低电阻的导线连接在一起。这时,较大的电流使得电源在短时间内提供大量的能量。强大电流使热量迅速的产生并大量积累,进而导致电池的爆炸或释放氢气和电解质。
较大电流通过的导线也可能过热,造成绝缘层损坏,引起火灾。电动机叶片被卡住,也可能会导致短路。在电气设备中,短路通常是由于意外或绝缘层脱落。短路还可能会导致电弧的产生。电弧是一种气体放电现象,电流通过某些绝缘介质(例如空气)所产生的瞬间火花。它对会对输电系统、配电系统以及电子设备造成损害。
(4)计算低压网络短路电流用什么方法扩展阅读:
计算条件
1、假设系统有无限大的容量。用户处短路后,系统母线电压能维持不变.即计算阻抗比系统阻抗要大得多。具体规定:对于3~35KV级电网中短路电流的计算,可以认为110KV及以上的系统的容量为无限大。只要计算35KV及以下网络元件的阻抗。
2、在计算高压电器中的短路电流时,只需考虑发电机、变压器、电抗器的电抗,而忽略其电阻;对于架空线和电缆,只有当其电阻大于电抗1/3时才需计入电阻,一般也只计电抗而忽略电阻。
3、短路电流计算公式或计算图表,都以三相短路为计算条件。因为单相短路或二相短路时的短路电流都小于三相短路电流。能够分断三相短路电流的电器,一定能够分断单相短路电流或二相短路电流。
Ⅳ 短路电流如何计算
供电网络中发生短路时,很大的短路电流会使电器设备过热或受电动力作用而遭到损坏,同时使网络内的电压大大降低,因而破坏了网络内用电设备的正常工作。为了消除或减轻短路的后果,就需要计算短路电流,以正确地选择电器设备、设计继电保护和选用限制短路电流的元件。
二.计算条件
1.假设系统有无限大的容量.用户处短路后,系统母线电压能维持不变.即计算阻抗比系统阻抗要大得多。
具体规定: 对于3~35KV级电网中短路电流的计算,可以认为110KV及以上的系统的容量为无限。只要计算35KV及以下网络元件的阻抗。
2.在计算高压电器中的短路电流时,只需考虑发电机、变压器、电抗器的电抗,而忽略其电阻;对于架空线和电缆,只有当其电阻大于电抗1/3时才需计入电阻,一般也只计电抗而忽略电阻。
3. 短路电流计算公式或计算图表,都以三相短路为计算条件。因为单相短路或二相短路时的短路电流都小于三相短路电流。能够分断三相短路电流的电器,一定能够分断单相短路电流或二相短路电流。
三.简化计算法
即使设定了一些假设条件,要正确计算短路电流还是十分困难,对于一般用户也没有必要。一些设计手册提供了简化计算的图表.省去了计算的麻烦.用起来比较方便.但要是手边一时没有设计手册怎么办?下面介绍一种“口诀式”的计算方法,只要记牢7句口诀,就可掌握短路电流计算方法。
在介绍简化计算法之前必须先了解一些基本概念。
1.主要参数
Sd三相短路容量 (MVA)简称短路容量校核开关分断容量
Id三相短路电流周期分量有效值(KA)简称短路电流校核开关分断电流和热稳定
IC三相短路第一周期全电流有效值(KA) 简称冲击电流有效值校核动稳定
ic三相短路第一周期全电流峰值(KA) 简称冲击电流峰值校核动稳定
x电抗(W)
其中系统短路容量Sd和计算点电抗x 是关键.
2.标么值
计算时选定一个基准容量(Sjz)和基准电压(Ujz).将短路计算中各个参数都转化为和该参数的基准量的比值(相对于基准量的比值),称为标么值(这是短路电流计算最特别的地方,目的是要简化计算).
(1)基准
基准容量 Sjz=100 MVA
基准电压 UJZ规定为8级. 230, 115, 37, 10.5, 6.3, 3.15 ,0.4, 0.23 KV
有了以上两项,各级电压的基准电流即可计算出,例: UJZ (KV)3710.56.30.4
因为S=1.73*U*I
所以 IJZ
(KA)1.565.59.16144
(2)标么值计算
容量标么值 S*=S/SJZ.例如:当10KV母线上短路容量为200 MVA时,其标么值容量
S* =200/100=2.
电压标么值 U*=
U/UJZ ; 电流标么值 I*
=I/IJZ
3无限大容量系统三相短路电流计算公式
短路电流标么值: I*d= 1/x* (总电抗标么值的倒数).
短路电流有效值: Id=IJZ* I*d=IJZ/ x*(KA)
冲击电流有效值: IC
= Id *√1 2 (KC-1)2
(KA)其中KC冲击系数,取1.8
所以IC =1.52Id
冲击电流峰值: ic=1.41* Id*KC=2.55 Id (KA)
当1000KVA及以下变压器二次侧短路时,冲击系数KC ,取1.3
这时:冲击电流有效值IC =1.09*Id(KA)
冲击电流峰值: ic=1.84 Id(KA)
掌握了以上知识,就能进行短路电流计算了。公式不多,又简单.但问题在于短路点的总电抗如何得到?例如:区域变电所变压器的电抗、输电线路的电抗、企业变电所变压器的电抗,等等。
一种方法是查有关设计手册,从中可以找到常用变压器、输电线路及电抗器的电抗标么值.求得总电抗后,再用公式计算短路电流; 设计手册中还有一些图表,可以直接查出短路电流。
下面介绍一种“口诀式”的计算方法,只要记牢7句口诀,就可掌握短路电流计算方法。
4.简化算法
【1】系统电抗的计算
系统电抗,百兆为一。容量增减,电抗反比。100除系统容量
例:基准容量100MVA。当系统容量为100MVA时,系统的电抗为XS*=100/100=1
当系统容量为200MVA时,系统的电抗为XS*=100/200=0.5
当系统容量为无穷大时,系统的电抗为XS*=100/∞=0
系统容量单位:MVA
系统容量应由当地供电部门提供。当不能得到时,可将供电电源出线开关的开断容量
作为系统容量。如已知供电部门出线开关为W-VAC 12KV 2000A 额定分断电流为40KA。则可认为系统容量S=1.73*40*10000V=692MVA,系统的电抗为XS*=100/692=0.144。
【2】变压器电抗的计算
110KV, 10.5除变压器容量;35KV, 7除变压器容量;10KV{6KV}, 4.5除变压器容量。
例:一台35KV3200KVA变压器的电抗X*=7/3.2=2.1875
一台10KV1600KVA变压器的电抗X*=4.5/1.6=2.813
变压器容量单位:MVA
这里的系数10.5,7,4.5实际上就是变压器短路电抗的%数。不同电压等级有不同的值。
【3】电抗器电抗的计算
电抗器的额定电抗除额定容量再打九折。
例:有一电抗器U=6KV I=0.3KA 额定电抗 X=4% 。
额定容量S=1.73*6*0.3=3.12 MVA. 电抗器电抗X*={4/3.12}*0.9=1.15
电抗器容量单位:MVA
【4】架空线路及电缆电抗的计算
架空线:6KV,等于公里数;10KV,取1/3;35KV,取 3%0
电缆:按架空线再乘0.2。
例:10KV 6KM架空线。架空线路电抗X*=6/3=2
10KV 0.2KM电缆。电缆电抗X*={0.2/3}*0.2=0.013。
这里作了简化,实际上架空线路及电缆的电抗和其截面有关,截面越大电抗越小。
【5】短路容量的计算
电抗加定,去除100。
例:已知短路点前各元件电抗标么值之和为 X*∑=2, 则短路点的短路容量
Sd=100/2=50MVA。
短路容量单位:MVA
【6】短路电流的计算
6KV,9.2除电抗;10KV,5.5除电抗; 35KV,1.6除电抗; 110KV,0.5除电抗。
0.4KV,150除电抗
例:已知一短路点前各元件电抗标么值之和为 X*∑=2, 短路点电压等级为6KV,
则短路点的短路电流Id=9.2/2=4.6KA。
短路电流单位:KA
【7】短路冲击电流的计算
1000KVA及以下变压器二次侧短路时:冲击电流有效值Ic=Id, 冲击电流峰值ic=1.8Id
1000KVA以上变压器二次侧短路时:冲击电流有效值Ic=1.5Id, 冲击电流峰值ic=2.5Id
例:已知短路点{1600KVA变压器二次侧}的短路电流 Id=4.6KA,
则该点冲击电流有效值Ic=1.5Id,=1.5*4.6=7.36KA,冲击电流峰值ic=2.5Id=2.5*406=11.5KA。
可见短路电流计算的关键是算出短路点前的总电抗{标么值}.但一定要包括系统电抗。
本文来自: 河南全新液态起动设备有限公司 www.hnqxyt.com专业软起动软启动水电阻液态软起液态
短路电流的计算是为了正确选择和校验电气设备,使其满足电流的动、热稳定性的要求。对于低压开关设备和熔断器等,还应按短路电流校验其分断能力。
计算短路电流时,首先要选择好短路点,短路点通常选择在被保护线路的始、末端。始端短路点用于计算最大三相短路电流,用于校验设备和电缆的动、热稳定性;末端用于计算最小二相短路电流,用于校验继电保护整定值的可靠性。
短路电流的计算方法有解释法和图表法,主要以解释法为主。
一、短路电流的计算公式
1、三相短路电流计算:
IK(3)=UN2/{√3·[(∑R)2+(∑X)2]1/2}
式中:IK(3) 三相短路电流,安;
UN2 变压器二次侧额定电压,对于127、380、660伏电网,分别取133、400、690伏;
∑R、∑X 短路回路内一相的电阻、电抗的总和,欧。
2、二相短路电流计算:
IK(2)=UN2/{2·[(∑R)2+(∑X)2]1/2}
式中:IK(2) 二相短路电流,安;
3、三相短路电流与二相短路电流值的换算
IK(3)=2 IK(2)/√3=1.15 IK(2)
或 IK(2)=0.866 IK(3)
二、阻抗计算
1、系统电抗
XS=UN22/SK
式中:XS 折合至变压器二次侧的系统电抗,欧/相;
UN2 变压器二次侧的额定电压,KV;
SK 电源一次侧母线上的短路容量,MVA。
XS 、SK 指中央变电所母线前的电源电抗和母线短路容量。如中央变的短路容量数据不详,可用防爆配电箱的额定断流容量代替计算。
额定断流容量与系统电抗值 (欧)
断流容量MVA 额定电压 V 25 30 40 50
400 0.0064 0.0053 0.004 0.0032
690 0.019 0.0159 0.0119 0.0095
2、变压器阻抗(可查参考文献3附录六表19-3)
变压器每相电阻、电抗按下式计算:
RB=ΔP/3IN22=ΔP·UN22/SN2
XB=10UX%·UN22/ SN=10(U K2-UR2)1/2·UN22/
SN
式中:RB、 XB 分别为变压器每相电阻和电抗值,欧;
UX 变压器绕组电抗压降百分值,%;UX =(U K2-UR2)1/2
U K 变压器绕组阻抗压降百分值,%;
UR 变压器绕组电阻压降百分值,%;UR=[△P/(10·SN)]%
ΔP 变压器短路损耗,瓦;
UN2、IN2 变压器二次侧额定电压(KV)和电流(A);
SN 变压器额定容量,KVA。
线路阻抗可以查表。
这是我以前学习短路电流计算从网上找的资料。
Ⅵ 变压器低压侧的短路电流如何计算
变压器低压侧短路电流有一个简单的计算办法:
如果变压器容量是S,低压侧的电压是U2,变压器高压侧对低压侧的短路阻抗是Uk%,低压侧的短路电流是 Id2。以下关系是成立:
Id2 = S / U2 / Uk% 注意单位:S=> KVA;U2=> KV;Id2=> A。
Ⅶ 短路电流的计算方法有哪些
1、短路电流的计算 若6kV电压等级,则短路电流(单位kA,以下同)等于9.2除总电抗X*∑(短路点前的,以下同); 若10kV电压等级,则等于5.5除总电抗X*∑; 若35kV电压等级,则等于1.6除总电抗X*∑; 若110kV电压等级,则等于0.5除总电抗X*∑; 若0.4kV电压等
Ⅷ 短路电流的一般计算方法有哪几种啊
在电气设计中,为了选择开关的开断容量,以及对所选元件进行动热稳定的校验等。都必须计算短路电流,因此,在电气设计中,短路电流的计算就必不可少。
知识拓展:
短路电流是电力系统在运行中 ,相与相之间或相与地(或中性线)之间发生非正常连接(即短路)时流过的电流。其值可远远大于额定电流,并取决于短路点距电源的电气距离。
短路是指在正常电路中电势不同的两点不正确地直接碰接或被阻抗(或电阻)非常小的导体接通时的情况。短路时电流强度很大,往往会损坏电气设备或引起火灾。
电力系统在运行中,相与相之间或相与地(或中性线)之间发生非正常连接(即短路)时而流过非常大的电流。其电流值远大于额定电流,并取决于短路点距电源的电气距离。
例如,在发电机端发生短路时,流过发电机的短路电流最大瞬时值可达额定电流的10~15倍。大容量电力系统中,短路电流可达数万安。这会对电力系统的正常运行造成严重影响和后果。
Ⅸ 电缆的短路电流怎么计算
电线电缆的常用计算公式护套厚度:挤前外径×0035+1符合电力电缆,单芯电缆护套的标称厚度应不小于14mm,多芯电缆的标称厚度应不小于18m所以一般以每1
mm2铜芯线可以允许通过8低碳生活A~10A的电流计算。在相同的截面积条件下,铜芯线的负载电流值与铝芯线相比为1双电缆系统电流耦合效应数值计算在理论研究中,都可以采用一个模型进行计算,即屏蔽层电流对芯线的感应耦合。本文采用的是Vance频域电缆模型,建立12
编织屏蔽电缆的转移阻抗
采用Vance的转移阻抗计算公式,屏蔽层信号对芯线的耦合可以利用转移阻抗Zr表示,其电缆结构设计与物料用量计算计算公式如下:
G=G0+G~
G~,
=ω*Ctg
G0直流损耗G~交流损耗ω电流频率C工作电容tg介质损耗角正切2二次传输参数
二次传输参数是用以表征传输线的特性的参数,它包括特性阻抗ZC,衰减
电线电缆常用计算公式大全PP绳055;棉纱线048
二、导体之外材料计算公式
1护套厚度:挤前外径×0035+1符合电力电缆,单芯电缆护体积电阻系数
塑料在电场的作用下有泄漏电流通过,泄漏电流通过塑料时的阻力称为体积电阻。电流通过每1cm3塑料的电
电工电缆功率耗电量计算公式大对于纯电阻电路,如电阻丝、灯炮等,可以用电流的平方乘以电阻电压的平方除以电阻的公式计算,这是由欧姆定律推导如为重叠,则是1K;如为间隙,则是1+K
ρ为材料比重;L为电缆长度;λ绞入系数。
电缆线径计算方法
电线电缆的规
电压压降计算公式是什么?电缆计算程序工程好助手
计算公式一:按计算电流计算
空气中:计算电流
电缆样本空气载流量×校正系数×样本空气温度
环境空气温度
土壤中:计算电流
电缆样本土壤载流量×校正系数×样本土壤温度
环境土壤温度免费主机空间
计算公式二:按自
计算公式03
×
70
=
17012
33
管路特性方程
根据阻力损失系数公式:
RT
=
式中:
ldx
=
=
=
350
ldp
=
=
1
、一号井Ⅰ路,最大负荷电流取
18
倍电缆的安全载流量。Ilm=18
×
340A
=612A
过电流保护整定计算
引用
采区低压电网短路电流计算电缆的动、热稳定性;末端用于计算最小二相短路电流,用于校验继电保护整定值的可靠性。
短路电流的计算方法有解释法和图表法,主要以解释法为主。
一、短路电流的计算公式
1
、三相短路电流计算:
IK=UN2
√
3
·
[2+
∑
X电缆电线结构设计与用料计算斜包在线材中主要起屏蔽作用,有时作为同轴电缆的外导体。屏蔽目的是将外界干挠消除,对于同轴电缆,由于有屏蔽层而使计算公式如下
:
G=G0+G~
G~,
=
ω
*Ctg
G0
直流损耗
G~
交流损耗ω
电流频率
C
工
Ⅹ 短路电流计算相关问题
二 短路的物理过程及计算方法
当突然发生短路时,系统总是由工作状态经过一个暂态过程进入短路稳定状态。暂态过程中的短路电流比其稳态短路电流大的多,虽历时很短,但对电器设备的危害性远比稳态短路电流严重得多。有限电源容量系统的暂态过程要比无限大电源容量系统的暂态过程复杂的多,在计算建筑配电工程三相短路电流时,都按无限大电源容量系统来考虑。短路全电流ik由两部分组成(ik=iz+if):一部分短路电流随时间按正弦规律变化,称为周期分量iz;另一部分因回路中存在电感而引起的自感电流,称为非周期分量if。
短路冲击电流(短路电流峰值或短路全电流瞬时最大值)
ich=(1+e-0.01/Ta) I″=KchI″
Kch=1+e-0.01/Ta—短路电流冲击系数,取决于回路时间常数Ta=L/R的大小,一般在1.3~18范围内变化。当高压回路发生短路时,因R<X/3故Ta取平均值为0.05s,此时Kch=1.8,ich=2.55I″ 短路冲击电流周期分量有效值Ich=1.52I″。当低压电网中发生三相短路时,一般可概地取Kch =1.3 此时 ich=1.84I″ Ich=1.09I″。
I″-t=0时短路电流周期分量有效值,也称超瞬变短路电流有效值I″= I0.2 =Id
I0.2——短路后0.2s的短路电流周期分量有效值
Id 或I∞——稳态短路电流有效值
在高压供电系统中常采用标么值(相对值)法和兆伏安(MVA)法来计算短路电流;在低压供电系统中,常采用有名值法(绝对值法或欧姆法)来计算低压回路短路电流。
三 计算实例
现通过实例介绍一下计算三相短路电流的各种方法,然后进行比较。插图所示为金庄煤矿供电系统接线图,已知电力部门鲍沟35KV变电所10KV母线最大短路容量为144MVA,其余参数已分别标在图上。
兆伏安法即短路容量法,也叫短路功率法,是因在短路计算中以元件的短路容量来代替元件的阻抗而得名。兆伏安法实质上是欧姆法的变形,欧姆法的计算公式:Id=Ub/Z,即短路电流Id大小完全取决于阻抗Z。而短路容量为Sd=Ub2/Z,在无限大电源容量系统中Ub为常数,因此Sd∝1/Z,可见以元件的短路容量来替代其阻抗,与阻抗一样可表述元件在短路中的作用。
用兆伏安法求出d1、 d2 、d4点的短路电流,计算过程如下:
1 计算各元件的短路容量
1) 电力系统:S1=144MVA
2) 输电线路:S2=Ub12/x0×L
=10.52/0.341×2.5
=129MVA
3) 下井电缆:S3=Ub12/x0×L
=10.52/0.08×0.7
=1969MVA
4) 地面低压变压器:S8=100Se/Ud%
=100×0.8/4.5
=17.8MVA
S9=100Se/Ud%=100×0.63/4.5=14MVA
两台变压器分段运行,短路容量按最大一台计算为178MVA。
2简化电路,计算各短路点三相短路容量及三相短路电流
1)地面变电所10KV母线短路容量及短路电流为:1/Sd1=1/144+1/129,Sd1=68MVA
Id1=Sd1/√3×Ub1
=68/√3×10.5=3.74KA
2)井下中央变电所10KV母线短路容量及母线短路电流为:
1/Sd2=1/144+1/129+1/1969,
Sd2=65.8MVA
Id2=Sd2/√3×Ub1=65.8/√3×10.5
=3.62KA
3)地面变电所04KV低压母线短路容量及短路电流为:1/Sd4=1/144+1/129+1/17.8,Sd4=14 MVA
Id4= Sd4/√3×Ub2=14/√3×0.4=20.2KA
标么值法也叫相对值法,某一物理量的相对值为该物理量的实际值与某一选定的同单位的基准值之比。基准值有四个,即基准容量(常取 100MVA),基准电压Ub=105UN,基准电流Ib=Sb/Ub,基准电抗Xb=Ub/Ib=Ub2/Sb。
下面再用标么值法计算d1、 d2 、d4点的短路电流,具体计算步骤如下:
1.选取基准容量为100MVA,当基准电压为Ub1=10.5KV,基准电流Ib1=100/√3×10.5=5.5KAUb2=0.4KV,基准电流Ib2=100/√3× 0.4=143.3KA
2.计算各元件的电抗标么值(有些元件的电抗标么值可用公式算出,也可查表求出):
电力系统:X1*=Sb/Sn=100/144=0.694
输电线路:X2*=0.309×2.5=0.773
下井电缆:X3*=0.0726×0.7=0.0508
地面低压变压器:
X8*= Ud% Sb/100Se
= 4.5×100×106/(100×800×103)
=5.63
X9*= Ud% Sb/100Se
= 4.5×100×106/(100×630×103)
=7.14
3.计算各短路点的总电抗标么值:
Xd1*=0.694+0.773= 1.467
Xd2*=0.694+0.773+0.0508= 1.52
Xd4*=0.694+0.773+0.0508+5.63
= 7.15
4.d1、 d2 、d4点三相短路电流及短路容量:
Id1= Ib1/Xd1*=5.5/1.467=3.75KA
Sd1=Ub1Id1=×10.5×3.75=65.2MVA
Id2=5.5/1.52=3.6KA
Sd2=×10.5×3.6=65.5MVA
Id4= Ib2/Xd2*=143.3/1.52=20.2KA
Sd4=Ub2 Id2=×0.4×20.2=14MVA
另外也可先求出总电抗标么值后,求出各支路的计算电抗,再求出电流标么值,最后计算各点三相短路电流及短路容量
1)求各支路的计算电抗值分别为
X′d1= Xd1*×144/100=1.467×1.44=2.11
X′d2= Xd2*×144/100=1.52×1.44=2.2
X′d4= Xd4*×144/100=7.15×1.44=10.3
2)根据计算电抗值求出电流标么值
I″ d1=U′/ X′d1=1/ 2.11=0.474
I″d2=U′/ X′d2=1/ 2.2=0.455
I″d4=U′/ X′d4=1/ 10.3=0.097
3) d1、 d2 、d4点三相短路电流及短路容量:
Id1=I″d1 ×I1 =0.474×144/1.732×10.5
=3.75KA
Sd1= I″d1×S1=0.474×144=65.2MVA
同样可求Id2=3.6KA Sd2= 65.5MVA
Id4=20.2KA Sd4=14MVA
欧姆法又叫有名单位制法,它是由于短路计算中的阻抗都采用有名单位“欧姆”而得名。用欧姆法计算短路电路的总阻抗必须把所有元件阻抗换算成欧姆值,凡通过变压器互连的网络应各电压元件的欧姆值统一算到短路点所处电压的欧姆值。下面用欧姆法求出d1、d2、d4点的短路电流,计算过程如下:
(一)求出d1、d2点的短路电流
1 计算各元件的电抗及总电抗
1) 电力系统的电抗:
X1= Ub12/S1= 10.52/144=0.765Ω
2) 鲍沟变电所至矿变电所架空线路的电抗:
X2= x0×L=0.341×2.5=0.853Ω
3)下井电缆的电抗为:
X3= x0×L=0.08×0.7=0.056Ω
d1短路点的总电抗
Xd1=X1+X2=0.765+0.853=1.618Ω
d2短路点的总电抗
Xd2= X1+X2+X3
=0.765+0.853+0.056=1.674Ω
2.计算各短路点三相短路电流及短路容量
Id1= Ub1/√3×Xd1
=10.5/√3×1.618=3.74KA
Sd1=UbId1=×10.5×3.74=68MVA
Id2=Ub1/√3Xd2=10.5/√3×1.674
=3.62KA
Sd2= Ub Id2=×10.5×3.62=65.8MV
(二)求出d4点的短路电流
1.计算各元件的电抗及总电抗
1) 电力系统的电抗:
X1=Ub22/S1=0.42/144=0.0011Ω=1.1mΩ
2) 鲍沟变电所至矿变电所架空线路的电抗:
X2= x0×L (Ub2 /Ub1)2
=0.341×2.5(0.4 /10.5)2
=0.00124Ω=1.24mΩ
3)下井电缆的电抗为:
X3= 0.08×0.7(0.4 /10.5)2
=0.0000812Ω=0.0812mΩ
4)地面低压变压器的电抗为:
X8= Ud%/100×Ub2/ Se
=4.5/100×4002/800000
=0.009=9mΩ
X9=4.5%×4002/630000
=0.0114Ω=11.4mΩ
D4短路点的总电抗
Xd4= X1+X2+X3+X8
=1.11+1.24+0.0812 +9
= 11.43 mΩ
2.计算各短路点三相短路电流及短路容量
Id4=Ub2/√3×Xd4
=400/√3×11.43=20.2KA
Sd4=Ub2 Id4=×0.4×20.2
=14MVA
四 计算方法的比较及说明
三种方法计算结果是相同的,兆伏安法优越性最明显,特作说明如下:
(一) 兆伏安法计算短路电流,具有运算简单,不要记忆很多公式,不易出错等优点,在计算不对称短路电流及大型电动机起动压降时更能体现出其简便准确的优点。兆伏安法计算过程较为简单:先求出电源元件的短路容量和阻抗元件短路时的通过能力,然后进行网络(串联、并联及三角形变星形)简化计算并求出短路点的短路容量,最后求出三相短路电流。
标么值法计算过程较为繁琐,计算步骤如下:
(1)按照供电系统图绘制出等效电路图,要求在图上标出各元件的参数。
(2)选定基准容量和基准电压,并按公式求出基准电流和基准电抗。
(3)求出供电系统各元件的电抗标么值。
(4)求出由电源至短路点的总阻抗X*Ξ
(5)按公式I* =1/ X*Ξ求出短路电流标么值,对无限大电源容量系统,短路电流周期分量保持不变,即I*″ = I*0.2= I* ∞
(6)求出短路电流、短路冲击电流和短路容量
欧姆法计算过程也较为简单:先求出各元件的阻抗值,然后根据公式计算出三相短路电流及短路容量。但用欧姆法要注意以下几点:
1.电力系统的阻抗值,可由当地电业部门供给,但一般电力系统的电阻很小,可略去不计。电力系统的电抗值可由系统变电所高压馈电母线上的最大短路容量来求出。在高压电路中,电抗远比电阻大,所以一般只考虑电抗,不计电阻。而在低压网络中一般不允许忽略电阻的影响,只有当短路电路的RΞ≤XΞ/3,才允许不计电阻值。低压网络的短路阻抗一般很小,通常以mΩ计。
2.低压元件如不太长的电缆和母线、线圈型电流互感器的一次线圈、自动空气开关的过电流脱扣线圈及开关的触头等的阻抗,对低压短路电流的大小都有影响,但为了简化计算(使短路电流值偏于安全,容许不考虑占回路总阻抗不超过10%的元件),在一般短路计算中均可略去不计。
3.在利用标么值法或欧法计算短路电路的阻抗时,假如电路内含有变压器, 则电路内的各元件的阻抗都应该统一换算到短路计算点的平均额定电压上去。
(二)在计算短路电流时,电路中各种参数的变化是很复杂的,影响的因素也很多,为简化计算,在不影响工程计算精确度的情况下,常忽略一些因素的影响。
1.认为变压器为理想变压器,不考虑励磁电流的影响;系统各元件的分布电容忽略不计。
2.以供电电源为基准的电抗标么值大于3,可认为电源容量为无限大的系统,短路电流的周期分量在短路全过程中保持不变。
3.短路前系统应是正常运行情况下的接线方式,不考虑在切换过程中短时出现的接线方式。
4.设定短路回路各元件的感抗为一常数,计算中只考虑电抗,不考虑有效电阻。只有当网络中总电阻大于总电抗1/3时,才计及有效电阻。
5.假定短路发生在短路电流为最大值的瞬间;所有电源的电动势相位角相同,电源都在额定负荷下运行。
(三)当电网短路时,异步电动机有时可能向短路点反馈电流,因为短路时,电网电压下降,若电动机离短路点较远时,其电势可能小于外加电压,电动机继续从电网吸收功率,仅是电动机转速下降而已。当电动机电势大于外加电压,此时电动机和发电机一样,向短路点馈送电流。但由于反馈电流将电动机迅速制动,所以反馈衰减很快。当异步电动机的容量较小时,对短路冲击电流影响较小,一般不予考虑。只有在靠近短路点处有大于1MW以上的电动机,或接于一处总容量大于1MW的几台电动机,在计算短路冲击电流时,才把它们当作附加电源来考虑。
当电动机端头处发生三相短路时,电动机的反馈冲击电流ich=KchE*″/X*″In
Kch—电动机反馈电流冲击系数,对高压电机取1.4~1.6,对低压电动机可取1。
E*″—异步电动机次暂态电势标么值,取0.9
X*″—异步电动机次暂态电抗标么值,一般约为0.17,若知电动机起动电流,则X*″=In/IQ
In —异步电动机额定电流In=PN/UNcosφ。
当d1点发生短路时,电动机的冲击电流为
In1=(0.4+0.33)/(√3×10.5×0.8)
=0.051
ich1=√2×1.6×(0.9/0.17 )×0.051
=0.6KA
当d2点发生短路时,电动机的冲击电流为
In2=2×0.9/(√3×10.5×0.8)=0.12KA
ich2=√2×1.6×(0.9/0.17 ) ×0.12
=1.4KA
短路故障点d1 d2处的短路冲击电流分别为
ichd1=2.55Id1 +ich1 =2.55×3.75+0.6
=10.2KA
ichd2=2.55Id2 +ich2 =2.55×3.6+1.4
=10.6KA
参考文献
1.《煤矿电工手册·矿井供电(上)》顾永辉 范廷瓒等编着,煤炭工业出版社,1999年2月
2.《工业与民用配电设计手册》中国航空工业规划设计研究等编,水利电力出版社,1994年12月。