导航:首页 > 研究方法 > x射线衍射分析方法

x射线衍射分析方法

发布时间:2022-01-13 14:00:05

Ⅰ X射线衍射分析原理与应用的目录

第1章
概述
1.1
材料分析表征方法简述
1.2
x射线衍射分析技术的发展及现状
1.3
x射线应用技术简介第2章
x射线的产生及性质
2.1
x射线的性质
2.2
x射线的产生
2.3
x射线谱
2.4
x射线与物质的相互作用第3章
x射线衍射原理
3.1
晶体学基础
3.2
x射线衍射原理
3.3
x射线衍射方程
第4章
x射线衍射方法
4.1
粉晶体射仪法
4.2
其他x射线衍射仪第5章
x射线衍射数据
5.1
衍射方向
5.2
衍射强度
5.3
衍射数据的确定和表示
5.4
衍射线分离第6章
x射线物相定性分析
6.1
概念与原理
6.2
标准衍射数据资料简介
6.3
物相分析方法及步骤第7章
x射线物相定量分析
7.1
物相定量分析原理
7.2
物相定量分析方法
第8章
衍射系统消光概念及应用
8.1
衍射系统的光规律
8.2
消光规律应用
第9章
x射线衍射分析方法的应用
9.1
x射线物相鉴定
9.2
物相定量分析
9.3
粉末晶体结构分析
9.4
晶粒度及晶格应变的测定第10章
x射线衍射结构分析的新方法——rietveld法
10.1
rietveld方法的基本原理
10.2
rietveld分析的实验方案
10.3
rietveld方法的应用

Ⅱ x射线衍射法

原理:X射线衍射法是一种研究晶体结构的分析方法,而不是直接研究试样内含有元素的种类及含量的方法。当X射线照射晶态结构时,将受到晶体点阵排列的不同原子或分子所衍射。X射线照射两个晶面距为d的晶面时,受到晶面的反射,两束反射X光程差2dsinθ使入射波长的整数倍时,即2dsinθ=nλ(n为整数),两束光的相位一致,发生相长干涉,这种干涉现象称为衍射,晶体对X射线的这种折射规则称为布拉格规则。θ称为衍射角(入射或衍射X射线与晶面间夹角)。n相当于相干波之间的位相差,n=1,2…时各称0级、1级、2级……衍射线。反射级次不清楚时,均以n=1求d。晶面间距一般为物质的特有参数,对一个物质若能测定数个d及与其相对应的衍射线的相对强度,则能对物质进行鉴定。

如何运用x射线衍射分析方法计算物质的结晶度

您好通过水热处理合成了稀土氟化物(LaF3、PrF3、NdF3、SmF3)纳米粒子和稀土氢氧化物(Pr(OH)3)纳米棒,并对产物进行了透射电镜(TEM)、X射线衍射(XRD)和热重-差热分析(TG-DTA)表征。讨论了水热反应温度、溶液pH值和氟与稀土匀镧元素的摩尔比对LaF3纳米粒子粒径的影响。结果表明,稀土氟化物纳米粒子具有球形或类球形的形貌,平均粒径为35~39nm。水热合成的氢氧化错为典型的纳米棒形貌,具有均匀的直径,平均直径为24nm,平均长度为130nm。水热合成的稀土化合物纳米材料具有较高的结晶度和纯度。

Ⅳ 这个X射线衍射图怎么分析啊

XRD一般是用来进行物相检测的,除此外也可以测试织构,残余应力等。而物相检测主要包括峰形,峰位和峰强。其中峰位是最重要的,直接可以确定你材料中所包含的是什么物相。你需要查找一下XRD的pdf卡片或相关文献。从图中能看出的是木棉和面是两个很类似的结构组成。但是从更细节的来看,棉比木棉更复杂。(在15度附近,木棉只有一个峰,而棉在此处劈裂为了两个峰。)

Ⅳ X射线衍射结构分析法具体内容是什么

X射线衍射分析是利用晶体形成的X射线衍射,对物质进行内部原子在空间分布状况的结构分析方法。将具有一定波长的X射线照射到结晶性物质上时,X射线因在结晶内遇到规则排列的原子或离子而发生散射,散射的X射线在某些方向上相位得到加强,从而显示与结晶结构相对应的特有的衍射现象。衍射X射线满足布拉格(W.L.Bragg)方程:2dsinθ=nλ式中:λ是X射线的波长;θ是衍射角;d是结晶面间隔;n是整数。波长λ可用已知的X射线衍射角测定,进而求得面间隔,即结晶内原子或离子的规则排列状态。将求出的衍射X射线强度和面间隔与已知的表对照,即可确定试样结晶的物质结构,此即定性分析。从衍射X射线强度的比较,可进行定量分析。本法的特点在于可以获得元素存在的化合物状态、原子间相互结合的方式,从而可进行价态分析,可用于对环境固体污染物的物相鉴定,如大气颗粒物中的风砂和土壤成分、工业排放的金属及其化合物(粉尘)、汽车排气中卤化铅的组成、水体沉积物或悬浮物中金属存在的状态等等。

Ⅵ X-射线衍射分析法测试什么

一、
X射线衍射原理及应用介绍
特征X射线及其衍射 X射线是一种波长很短(约为20~0.06 nm)的电磁波,能穿透一定厚度的物质,并能使荧光物质发光、照相乳胶感光、气体电离。在用电子束轰击金属“靶”产生的X射线中,包含与靶中各种元素对应的具有特定波长的X射线,称为特征(或标识)X射线。考虑到X射线的波长和晶体内部原子间的距离(10^(-8)cm)相近,1912年德国物理学家劳厄(M.von Laue)提出一个重要的科学预见:晶体可以作为X射线的空间衍射光栅,即当一束 X射线通过晶体时将会发生衍射;衍射波叠加的结果使射线的强度在某些方向上增强、而在其它方向上减弱;分析在照相底片上获得的衍射花样,便可确定晶体结构。这一预见随后为实验所验证。1913年英国物理学家布拉格父子(W.H.Bragg,W.L.Bragg)在劳厄发现的基础上,不仅成功地测定了NaCl、KCl等的晶体结构,并提出了作为晶体衍射基础的着名公式——布拉格定律:
2d sinθ=nλ,式中,λ为X射线的波长,衍射的级数n为任何正整数。
当X射线以掠角θ(入射角的余角,又称为布拉格角)入射到某一具有d点阵平面间距的原子面上时,在满足布拉格方程时,会在反射方向上获得一组因叠加而加强的衍射线。
X-射线衍射分析法应用:
1、当X射线波长λ已知时(选用固定波长的特征X射线),采用细粉末或细粒多晶体的线状样品,可从一堆任意取向的晶体中,从每一θ角符合布拉格条件的反射面得到反射。测出θ后,利用布拉格公式即可确定点阵平面间距d、晶胞大小和晶胞类型;
2、利用X射线结构分析中的粉末法或德拜-谢乐(Debye—Scherrer)法的理论基础,测定衍射线的强度,就可进一步确定晶胞内原子的排布。
3、而在测定单晶取向的劳厄法中所用单晶样品保持固定不变动(即θ不变),以辐射线束的波长λ作为变量来保证晶体中一切晶面都满足布拉格条件,故选用连续X射线束。再把结构已知晶体(称为分析晶体)用来作测定,则在获得其衍射线方向θ后,便可计算X射线的波长λ,从而判定产生特征X射线的元素。这便是X射线谱术,可用于分析金属和合金的成分。
4、X射线衍射在金属学中的应用
X射线衍射现象发现后,很快被用于研究金属和合金的晶体结构,出现了许多具有重大意义的结果。如韦斯特格伦(A.Westgren)(1922年)证明α、β和δ铁都是体心立方结构,β-Fe并不是一种新相;而铁中的α—→γ相转变实质上是由体心立方晶体转变为面心立方晶体,从而最终否定了β-Fe硬化理论。随后,在用X射线测定众多金属和合金的晶体结构的同时,在相图测定以及在固态相变和范性形变研究等领域中均取得了丰硕的成果。如对超点阵结构的发现,推动了对合金中有序无序转变的研究;对马氏体相变晶体学的测定,确定了马氏体和奥氏体的取向关系;对铝铜合金脱溶的研究等等。目前 X射线衍射(包括X射线散射)已经成为研究晶体物质和某些非晶态物质微观结构的有效方法。
在金属中的主要应用有以下方面:
(1)物相分析 是X射线衍射在金属中用得最多的方面,又分为定性分析和定量分析。定性分析是把对待测材料测得的点阵平面间距及衍射强度与标准物相的衍射数据进行比较,以确定材料中存在的物相;定量分析则根据衍射花样的强度,确定待测材料中各相的比例含量。
(2)精密测定点阵参数 常用于相图的固态溶解度曲线的绘制。溶解度的变化往往引起点阵常数的变化;当达到溶解限后,溶质的继续增加引起新相的析出,不再引起点阵常数的变化。这个转折点即为溶解限。另外点阵常数的精密测定可获得单位晶胞原子数,从而可确定固溶体类型;还可以计算出密度、膨胀系数等有用的物理常数。
(3)取向分析 包括测定单晶取向和多晶的结构(如择优取向)。测定硅钢片的取向就是一例。另外,为研究金属的范性形变过程,如孪生、滑移、滑移面的转动等,也与取向的测定有关。
(4)晶粒(嵌镶块)大小和微观应力的测定 由衍射花样的形状和强度可计算晶粒和微应力的大小。在形变和热处理过程中这两者有明显变化,它直接影响材料的性能。
(5)宏观应力的测定 宏观残留应力的方向和大小,直接影响机器零件的使用寿命。利用测定点阵平面在不同方向上的间距的改变,可计算出残留应力的大小和方向。
(6)对晶体结构不完整性的研究 包括对层错、位错、原子静态或动态地偏离平衡位置,短程有序,原子偏聚等方面的研究(见晶体缺陷)。
(7)合金相变 包括脱溶、有序无序转变、母相新相的晶体学关系,等等。
(8)结构分析 对新发现的合金相进行测定,确定点阵类型、点阵参数、对称性、原子位置等晶体学数据。
(9)液态金属和非晶态金属 研究非晶态金属和液态金属结构,如测定近程序参量、配位数等。
(10)特殊状态下的分析 在高温、低温和瞬时的动态分析。
此外,小角度散射用于研究电子浓度不均匀区的形状和大小,X射线形貌术用于研究近完整晶体中的缺陷如位错线等,也得到了重视。
X射线分析的新发展
金属X射线分析由于设备和技术的普及已逐步变成金属研究和材料测试的常规方法。早期多用照相法,这种方法费时较长,强度测量的精确度低。50年代初问世的计数器衍射仪法具有快速、强度测量准确,并可配备计算机控制等优点,已经得到广泛的应用。但使用单色器的照相法在微量样品和探索未知新相的分析中仍有自己的特色。从70年代以来,随着高强度X射线源(包括超高强度的旋转阳极X射线发生器、电子同步加速辐射,高压脉冲X射线源)和高灵敏度探测器的出现以及电子计算机分析的应用,使金属 X射线学获得新的推动力。这些新技术的结合,不仅大大加快分析速度,提高精度,而且可以进行瞬时的动态观察以及对更为微弱或精细效应的研究。
5、X射线物相分析
X射线照射晶体物相产生一套特定的粉未衍射图谱或数据D-I值。其中D-I与晶胞形状和大小有关,相对强度I/I0,与质点的种类和位置有关。
与人的手指纹相似,每种晶体物相都有自己独特的XPD谱。不同物相物质即使混在一起,它们各自的特征衍射信息也会独立出现,互不干扰。据此可以把任意纯净的或混合的晶体样品进行定性或定量分析。
(1) X射线物相定性分析
粉未X射线物相定性分析无须知晓物质晶格常数和晶体结构,只须把实测数据与(粉未衍射标准联合会)发行的PDF卡片上的标准值核对,就可进行鉴定。
当然这是对那些被测试研究收集到卡片集中的晶相物质而言的,卡片记载的解析结果都可引用。
《粉末衍射卡片集》是目前收集最丰富的多晶体衍射数据集,包括无机化合物,有机化合物,矿物质,金属和合金等。1969年美国材料测试协会与英、法、加等多国相关协会联合组成粉末衍射标准联合会,收集整理、编辑出版PDF卡片,每年达到无机相各一组,每组1500-2000张不等.1967年前后,多晶粉未衍射谱的电子计示示机检索程序和数据库相继推出.日本理学公司衍射射仪即安装6个检索程序(1)含947个相的程序;(2)含2716个相的常用相程序;(3)含3549个相的矿物程序;(4)含6000个相的金属和合金程序;(5)含31799个相的无机相程序(6)含11378个相的有机相程序.每张片尾记录一个物相。
(2)多相物质定性分析
测XRD谱,得d值及相对强度后查索引,得卡片号码后查到卡片,在±1%误差范围内若解全部数据符合,则可判断该物质就是卡片所载物相,其晶体结构及有关性能也由卡片而知。这是单一物相定性分析。
多相混合物质的XRD谱是各物相XRD谱的迭加,某一相的谱线位置和强度不因其它物相的存在而改变,除非两相间物质吸收系数差异较大会互相影响到衍射强度。固熔体的XRD谱则以主晶相的XRD为主。
已知物相组分的多相混合物,或者先尝试假设各物相组分,它们的XRD谱解析相对要容易得多。分别查出这些单一物相的已知标准衍射数据,d值和强度,将它们综合到一起,就可以得到核实其有无。如钢铁中的δ相(马氏体或铁素体)γ相(奥氏体)和碳化物多相。
完全未知的多相混合物,应设法从复相数据中先查核确定一相,再对余下的数据进行查对。每查出一相就减少一定难度,直至全部解决。当然对于完全未知多相样品可以了解其来源、用途、物性等推测其组分;通过测试其原子吸收光谱、原子发射光谱,IR、化学分析、X射线荧光分析等测定其物相的化学成分,推测可能存在的物相。查索到时,知道组分名称的用字顺索引查,使用d值索引前,要先将全部衍射强度归一化,然后分别用一强线、二强线各种组合、三强线各种组合…联合查找直至查出第一主相。标记其d值,I/I1值。把多余的d值,I/I1值再重新归一化,包括与第一主相d值相同的多余强度值。继续查找确定第二主相,直至全部物相逐一被查找出来并核对正确无误。遇到没被PDF卡收录的物相时,需按未知物相程序解析指认。
物相定性分析中追求数据吻合程度时,(1)d值比I/I1值更重要,更优先。因为d测试精度高,重现性好;而强度受纯度(影响分辨率)、结晶度(影响峰形)样品细微度(同Q值时吸收不同),辐射源波长(同d值,角因子不同)、样品制备方法(有无择优取向等)、测试方法(照相法或衍射仪法)等因素影响,不易固定。(2)低角度衍射线比高角度线重要。对不同晶体而言低角度线不易重迭,而高角度线易重迭或被干扰。(3)强线比弱线重要。尤其要重视强度较大的大d值线。

(3) X射线物相定量分析
基本原理和分析
在X射线物相定性分析基础上的定量分析是根据样品中某一物相的衍射线积分强度正变化于其含量。不能严格正比例的原因是样品也产生吸收。对经过吸收校正后的的衍射线强度进行计算可确定物相的含量。这种物相定量分析是其它方法,如元素分析、成分组分分析等所不能替代的。
6、结晶度的XRD测定
7、高分子结晶体的X射线衍射研究

二、 X射线衍射分析能解决的问题:
X射线波长与晶体中的原子间距属于同一数量级,应用X射线在晶态和非晶态物质中的衍射和散射效应,所获得的衍射角2θ和衍射强度I构成的衍射谱(衍射花样)记录了试样物质的结构特征。对于晶体将显示各晶面族的X衍射峰的位置、按布拉格公式计算出的晶面间距d值、峰强、峰宽、峰的位移和峰形变化等信息。充分利用这些信息并演化增加各种附件、计算机软件、各种测量方法,就可作以下分析工作:
1、物质识别剖析、物相结构鉴定衍射花样是物质的“指纹”。 迄今为止全世界科学家已认识并编制的七万多种纯物质标准衍射“指纹”(编制成国际衍射数据中心ICDD卡),存在仪器计算机中或出版成册,通过和实验图谱分析比较,就可识别物质或物相。还可了解其结构和物性参数、制备条件、参考文献等。
X射线衍射分析给出的结果直接是物质的名称、状态和化学式,是元素之间的结合形式或所含元素的存在形式(单质、固溶体、化合物)。化合物中,负离子半径大,决定着结构骨架。因此,对于化学分析难以检测又常参与结合的O、H、C、N、Cl、S、F等元素或官能团构成的物质的判定,这种方法有独到之处。通常的固态物质可挠过元素分析直接剖析得到结果。对于化学式相同结构性质不同的各种同素异构体的分析是其它方法无法比拟的。X射线衍射属无损检测,作完能回收,也是一大优点。
2、混合物的定量分析 X衍射方法对试样的纯度没有什么要求,混合物中各种物相的衍射峰在同一张图上都能呈现出来。其含量检出线约在1 2%。通常在图谱解析中完成后,可由计算机拟合出各物相组分的半定量结果。深入的定量研究需视具体情况而定,分内标、外标、基体清洗法等方法,针对物质类型进行选用。有的已建立了行业标准,如钢中的残余奥氏体、粘土矿物定量分析方法等。
3、结晶状态的描述表征和晶体结构参数的测定随生成条件和制备工艺的不同,固态物质或材料有可能形成无定形非晶、半结晶、纳米晶和微米晶、取向多晶直到大块单晶。利用计算机数据处理程序,对于非晶可用XRD原子径向分布函数法测定其短程结构;半结晶可测定其结晶度;纳米晶因衍射峰宽化可用谢乐公式计算出纳米晶粒平均尺寸;微米级或更大尺寸的晶粒研成微米级粉末后进行实验可作更多的工作,如未知晶系和晶格参数的确定、固溶度、晶格畸变及应力分析等;对于取向多晶、准单晶直到大块单晶可用RO XRD法鉴别,评价准单晶的质量,测量晶体取向及单晶的三维取向,指导切割加工。
4、揭示实验规律,解释材料器件特性,研究反应机理,探讨制备工艺X衍射是研究物质结构的基本手段,其应用渗透到与物质认识和分析有关的各个领域。针对所研究的问题,排除干扰,精化实验,通过对比,寻找差别,从结构上揭示影响性质的敏感参量的规律是研究者和衍射工作者共同追求的目标。 钢中碳元素的存在状态是影响钢性能的重要因素。铁素体、奥氏体、渗碳体相分析,各种热处理工艺下,钢号的名义碳量在其相结构中的分配关系,铁素体内的含碳量测定等对于解释材料的性能和相变机理,确定热处理工艺以及发挥材料的最大效能具有重要的意义。 电子材料、功能材料和各种新材料及器件的开发研制,需要衍射分析配合到始终。连续改变配方和制备工艺总结出的实验规律对确定制备工艺具有重要的指导意义。例如我们发现镍基软磁材料的居里点和配方中各种不同原子半径合金元素的填入造成其晶格常数的变化具有一定的线性关系,从而可指导开发出一系列温控器件。 人的感官鉴别有限,化学鉴别手段繁杂或不确定性,使得化学合成和材料制备越来越依赖于仪器分析。从原料的“确认”,到反应物的分析,反应的中间过程及机理研究,有无杂相或优先生长的竞争相,如何抑制,如何精化工艺,以及质量的控制和最终产物的表征都离不开X衍射分析。矿物学、岩石学、土壤学是应用X衍射分析最早的学科。矿物的难溶性和所含元素的多样性,硅酸盐矿物的复杂性使得单纯依靠化学元素分析不能完全解决问题。但从结构分析角度却能比较清楚地鉴别分类,理出头绪。石油钻井各断层粘土矿物伊利石 蒙脱石等的连续转变规律对于了解地下岩层构造起了重要的指示作用。针对层状结构的土壤分析对农业普查提供了基础资料。非金属材料的开发对陶瓷、建材、电力、化工等行业起着重要的作用。由于X衍射对文物鉴定的便利和非破坏性,使得这种方法越来越受到考古和文物保护工作者的青睐。青铜器和铁器长期锈蚀的标本为研究腐蚀机理提供了借鉴。石油管材、化工及热电厂管道的锈蚀及防护需要X衍射分析。此外,商品检验、环境保护、公安破案、药物生产等都需要衍射分析手段支持。在我们的实践中,遇到了各种揭迷解惑的问题。曾发现打着某种化学式的化工商品竞是没有反应的原料混合物,而元素分析结果相同。不耐高温的仿造物冒充石棉垫造成了汽车发动机的损坏。将冰洲石误为冰晶石采购几卡车运回准备投料生产。事先把多孔的蛇纹石和香料花粉包在一起,尔后分离,造出发现“香料石”矿骗局。如此等等。这些事例说明倡导普及X衍射分析手段是多么重要。X衍射仪加上小角散射、极图织构、应力分析及高低温附件,还可作更多的工作。单晶四圆衍射仪还可以进行未知结构分析等。

三、如果使用的是单晶样品,其应用:
晶体结构的测定对学科的发展、物体性能的解释、新产品的生产和研究等方面都有很大的作用,其应用面很宽,不能尽述,略谈几点如下:
(一).晶体结构的成功测定,在晶体学学科的发展上起了决定的作用。因为他将晶体具有周期性结构这一推测得到了证实,使晶体的许多特性得到了解释:如晶体能自发长成多面体外形(自范性),如立方体的食盐、六角形的水晶等,又如晶体各种物理性质(光性,导热性等)的各向异性和对称性等等。晶体学的发展有了坚实的基础。
(二).矿物学中曾有不少矿物的元素构成很接近,但他们的性质相差很远(如石墨和金刚石都是碳,还如一些硅酸盐),而有的矿物其物理或化学性质相近,但其元素组成又很不相同(如云母类矿物等),使人困惑。晶体结构的测定使性能的异同从结构上得到了合理的解释。如石墨因是层状结构,层间结合力差,故较软,而金刚石为共价键形成的骨架结构,故结合力强,无薄弱环节, 成为最硬的材料。
(三).人类和疾病作斗争,总离不开药物。原始的药物是天然产物,动植物或矿物。以后随着科学的发展,开展了从天然产物中提取有效成分的方法,而有效成分晶体结构的测定进一步将从天然产物中提取的方法改变为人工合成,使有可能大量制造,提高了产量、降低了成本、造福于人类。这种基于结构,设计出合成路线,工业制造的方法在染料,香料等许多工业部门都是广泛使用的。 (四)近年,基于病毒结构、人体内各种大分子结构的测定及人体感染疾病途径的了解,搞清了某些疾病感染及发展的结构匹配需要。人类已经根据这些结构知识设计结构上匹配的、合适的药物,来事先保护病毒和人体的结合点,或阻断病毒的自身繁衍,从而避免感染或控制其繁衍,而不使疾病发展, 这就是所谓的基于结构的、合理的药物设计。

【上述没有详细编辑,如有重叠希望谅解】

Ⅶ X射线衍射分析的基本原理

如果让一束连续X射线照到一薄片晶体上,而在晶体后面放一黑纸包着的照相底片来探测X射线,则将底片显影、定影以后,可以看到除了连续的背景和透射光束造成的斑点以外,还可以发现有其他许多斑点存在。这些斑点的存在表明有部分X射线遇到晶体后,改变了其前进的方向,与原来的入射方向不一致了,这些X射线实际上是晶体中各个原子对X射线的相干散射干涉叠加而成的,我们称之为衍射线。

图11.1中各点代表的是晶体中的原子,1、2、3是一组平行的面网,面网间距为d。设入射X射线沿着与面网成θ角的方向射入,首先看图11.1a中晶面1上的情况,当散射线方向满足光学镜面反射条件(即散射线、入射线与原子面法线共面,且在法线两侧,散射线与原子面的夹角等于入射线与原子面的夹角)时,各原子的散射波将具有相同的位相,因而干涉加强。

图11.1 布拉格方程的推导

由于X射线具有相当强的穿透能力,可以穿透成千上万个原子面,因此必须考虑各个平行的原子面间的反射波的相互干涉问题。图11.1b中的PA和QA′是入射到相邻两个原子面上的入射线,它们的反射线分别为AP′和A′Q′,它们之间的光程差为

δ=QA′Q′-PAP′=SA′+A′T

因为

SA′=A′T=dsinθ

所以

δ=2dsinθ

只有当此光程差为波长λ的整数倍时,相邻镜面的反射波才能干涉加强形成衍射线,所以产生衍射的条件是

2dsinθ=nλ

其中的n为整数,称为衍射级数。这就是着名的布拉格公式,是X射线晶体学中最基本的公式,其中的θ角称为布拉格角或半衍射角。若能产生衍射,则入射线与晶面的交角必须满足布拉格公式。

在日常工作中,为了方便,往往将晶面族(hkl)的n级衍射作为设想的晶面族(nh,nk,nl)的一级衍射来考虑。所以布拉格公式可改写为

2dnh,nk,nlsinθ=λ

指数nh、nk、nl称为衍射指数,用(HKL)表示,与晶面指数的不同之处是可以有公约数。实际上,为了书写方便,往往把上式中的衍射指数省略,布拉格公式就简化为

2dsinθ=λ

因此,在用单色X射线研究晶体时,如果波长已知,衍射角可以用实验方法确定,面网间距d即可求出。

由上面的布拉格公式可知,衍射线的方向只与X射线的波长、晶胞的形状和大小,以及入射线与晶体的相对方位等有关。反之,若测得衍射线的方向,就有可能得到有关晶胞参数、晶体方位等信息。

而衍射线束的强度主要与晶体结构(包括晶胞中原子的种类、数目及排列方式)、晶体的完整性以及参与衍射的晶体的体积等有关。因此,根据衍射线束强度的测量和分析,可以得到与晶体结构及点阵畸变等有关的信息。

X射线衍射仪用测角仪和计数管来测量和记录衍射的方向和强度,自动收集和处理衍射数据,并根据所提供的数据进行物相鉴定、定量相分析、晶胞参数的精确测定、晶粒大小和结晶度计算等。

Ⅷ x射线衍射法的原理

原理:将具有一定波长的X射线照射到结晶性物质上时,X射线因在结晶内遇到规则排列的原子或离子而发生散射,散射的X射线在某些方向上相位得到加强,从而显示与结晶结构相对应的特有的衍射现象。

波长λ可用已知的X射线衍射角测定,进而求得面间隔,即结晶内原子或离子的规则排列状态。将求出的衍射X射线强度和面间隔与已知的表对照,即可确定试样结晶的物质结构,此即定性分析。从衍射X射线强度的比较,可进行定量分析。


(8)x射线衍射分析方法扩展阅读

x射线衍射法的社会背景:

自1912年劳厄等发现硫酸铜晶体的衍射现象的100年间,X射线衍射这一重要探测手段在人们认识自然、探索自然方面,特别在凝聚态物理、材料科学、生命医学、化学化工、地学、矿物学、环境科学、考古学、历史学等众多领域发挥了积极作用,新的领域不断开拓、新的方法层出不穷。

特别是同步辐射光源和自由电子激光的兴起,X射线衍射研究方法仍在不断拓展,如超快X射线衍射、软X射线显微术、X射线吸收结构、共振非弹性X射线衍射、同步辐射X射线层析显微技术等。这些新型X射线衍射探测技术必将给各个学科领域注入新的活力。

Ⅸ x射线衍射图谱怎么分析

X射线粉末衍射图谱和数据,怎样分析?
例如,一个XRD谱图数据如下:
2-Theta d(Å) BG Height Height% Area Area% FWHM XS(Å)
13.583 6.5135 8 110 33.0 26.8 38.2 0.207 639
19.136 4.6342 4 24 7.2 5.4 7.7 0.191 689
20.160 4.4010 5 39 11.7 9.9 14.1 0.216 514
20.741 4.2791 4 142 42.6 34.4 49.0 0.206 560
23.099 3.8472 4 65 19.5 17.7 25.3 0.232 441
23.558 3.7733 5 115 34.5 26.7 38.0 0.197 586
26.641 3.3432 7 79 23.7 21.5 30.7 0.232 431
27.238 3.2714 6 333 100.0 70.1 100.0 0.179 678
31.159 2.8680 5 143 42.9 36.0 51.4 0.214 474
-------------------------------------
关于“怎样根据X射线衍射图测算其相数”的回答如下:

SCAN:3.0/85.0/0.02/0.15(sec),Cu(40kV,30mA),I(cps)=339,
扫描:从3.0度/到85.0度/步长0.02度/用时0.15(sec),X射线Cu(40kV,30mA),I(cps)=339,最强峰强I1=339(每秒计数counts per sec)

PEAK:21-pts/Parabolic 峰数:21个/抛物线型
Filter,Threshold=3.0,Cutoff=0.1%,BG=3/1.0,Peak-top=summit 滤波,阈值=3.0,截止限=0.1%,峰顶=峰顶点
NOTE:intensity=CPS,2t(0)=0.0(deg),wavelength to compute d-spacing=1.54056Å(CU/K-alpha1) 注:强度=每秒计数,2t(0)=0.0(deg度),用于计算晶格间距d的波长=1.54056Å(CU/K-alpha1铜靶/K-alpha 1线)

布拉格定律公式:
2d sin θ = nλ,式中,λ为X射线的波长,λ=1.54056Å,衍射的级数n为任何正整数,这里一般取一级衍射峰,n=1。
当X射线以掠射角θ(入射角的余角,又称为布拉格角)入射到你的晶体或部分晶体样品的某一具有d点阵平面间距的原子面上时,就能满足布拉格方程,从而测得了这组X射线粉末衍射图(数据资料)。
你计算时,注意:
第一列数据,是2θ 角,要除以2才是用到公式中的θ 。
第二列数据,的d,单位是Å,
第三列数据,BG,可能是背景的缩写;
第四列数据,峰高,闪烁计数器的计数值;
第五列数据,相对峰高(%),是把最强峰作为归一标准的相对强度值;
第六列数据,峰面积;
第七列数据,相对峰面积(%);
第八列数据,FWHM-Full width at half maximum (脉冲)峰半高宽;一般用于计算的峰强度使用高度就可以了,这是把峰都看成是常规峰。但这一项 FWHM 如果存在特异峰信息,在解析时会带来特殊的意义。
第九列数据,XS(Å),XS是晶粒度(Å)。

我的还有的一些回答和此有关,可以参考:

如何分析X射线粉末衍射图谱和数据?:http://..com/question/126659189.html?fr=qrl&cid=984&index=3&fr2=query;
运用XRD分析结果进行晶相鉴定:http://..com/question/123478742;
x射线衍射的原理及其可以解决的问题(应用):http://..com/question/122264851;

一、谱图横坐标2θ,从而知道掠射角θ(入射角的余角,又称为布拉格角)。然后就可以求得谱线对应的晶面-晶面间距d值;最后可获得晶体的长宽高晶胞几何尺寸。
http://..com/question/156881338.html
http://..com/question/122433124.html
http://..com/question/126659189.html

二、谱图的谱线强度(纵标);如果是照片、感光底片的话,那就是光斑的亮度。
影响衍射强度各因子的物理意义及其计算方法
衍射线的强度能反映晶体内微观结构信息,因此进行衍射强度分析的过程也是完成晶体结构判断的过程;衍射强度分析是衍射分析基本理论的重要组成部分。

三、所有横标、纵标信息、强度信息、谱线分布、谱线组合、全体搭配信息,通俗地讲就是衍射花样,是XRD的重要信息,从中可能、也可以导向对谱图进行解析、归属谱线到晶面、推导出晶体的晶系、晶胞参数、晶型等等!

四、从解析XRD谱中,可以计算得到一系列d值。以一系列d值和相对强度作为依据,去查找PDF卡片索引,可能找到别人作为标准多晶物质的XRD卡片,那么,如果认定你的样品就是PDF卡片上的那个多晶物质,卡片上的大多数数据如:晶系、空间群、晶胞数据(a0,b0,c0;α,β,γ)、密度D(x)、晶胞体积V、每个XRD谱衍射峰归属到晶体晶面的衍射指标化指数,...,等等,都可以被用来用以表征你的多晶物质。

Ⅹ X射线衍射分析的应用实例

1、金属样品如块状、板状、圆拄状要求磨成一个平面,面积不小于10X10毫米,如果面积太小可以用几块粘贴一起。
2、对于片状、圆拄状样品会存在严重的择优取向,衍射强度异常。因此要求测试时合 理选择响应的方向平面。
3、对于测量金属样品的微观应力(晶格畸变),测量残余奥氏体,要求样品不能简单粗磨,要求制备成金相样品,并进行普通抛光或电解抛光,消除表面应变层。
4、粉末样品要求磨成320目的粒度,约40微米。粒度粗大衍射强度低,峰形不好,分辨率低。要了解样品的物理化学性质,如是否易燃,易潮解,易腐蚀、有毒、易挥发。
5、粉末样品要求在3克左右,如果太少也需5毫克。
6、样品可以是金属、非金属、有机、无机材料粉末。 物相分析
晶体的X射线衍射图像实质上是晶体微观结构的一种精细复杂的变换,每种晶体的结构与其X射线衍射图之间都有着一一对应的关系,其特征X射线衍射图谱不会因为它种物质混聚在一起而产生变化,这就是X射线衍射物相分析方法的依据。制备各种标准单相物质的衍射花样并使之规范化,将待分析物质的衍射花样与之对照,从而确定物质的组成相,就成为物相定性分析的基本方法。鉴定出各个相后,根据各相花样的强度正比于改组分存在的量(需要做吸收校正者除外),就可对各种组分进行定量分析。目前常用衍射仪法得到衍射图谱,用“粉末衍射标准联合会(JCPDS)”负责编辑出版的“粉末衍射卡片(PDF卡片)”进行物相分析。
目前,物相分析存在的问题主要有:⑴ 待测物图样中的最强线条可能并非某单一相的最强线,而是两个或两个以上相的某些次强或三强线叠加的结果。这时若以该线作为某相的最强线将找不到任何对应的卡片。⑵ 在众多卡片中找出满足条件的卡片,十分复杂而繁锁。虽然可以利用计算机辅助检索,但仍难以令人满意。⑶ 定量分析过程中,配制试样、绘制定标曲线或者K值测定及计算,都是复杂而艰巨的工作。为此,有人提出了可能的解决办法,认为 从相反的角度出发,根据标准数据(PDF卡片)利用计算机对定性分析的初步结果进行多相拟合显示,绘出衍射角与衍射强度的模拟衍射曲线。通过调整每一物相所占的比例,与衍射仪扫描所得的衍射图谱相比较,就可以更准确地得到定性和定量分析的结果,从而免去了一些定性分析和整个定量分析的实验和计算过程。
点阵常数的精确测定
点阵常数是晶体物质的基本结构参数,测定点阵常数在研究固态相变、确定固溶体类型、测定固溶体溶解度曲线、测定热膨胀系数等方面都得到了应用。点阵常数的测定是通过X射线衍射线的位置(θ )的测定而获得的,通过测定衍射花样中每一条衍射线的位置均可得出一个点阵常数值。
点阵常数测定中的精确度涉及两个独立的问题,即波长的精度和布拉格角的测量精度。波长的问题主要是X射线谱学家的责任,衍射工作者的任务是要在波长分布与衍射线分布之间建立一一对应的关系。知道每根反射线的密勒指数后就可以根据不同的晶系用相应的公式计算点阵常数。晶面间距测量的精度随θ 角的增加而增加, θ越大得到的点阵常数值越精确,因而点阵常数测定时应选用高角度衍射线。误差一般采用图解外推法和最小二乘法来消除,点阵常数测定的精确度极限处在1×10-5附近。
应力的测定
X射线测定应力以衍射花样特征的变化作为应变的量度。宏观应力均匀分布在物体中较大范围内,产生的均匀应变表现为该范围内方向相同的各晶粒中同名晶面间距变化相同,导致衍射线向某方向位移,这就是X射线测量宏观应力的基础;微观应力在各晶粒间甚至一个晶粒内各部分间彼此不同,产生的不均匀应变表现为某些区域晶面间距增加、某些区域晶面间距减少,结果使衍射线向不同方向位移,使其衍射线漫散宽化,这是X射线测量微观应力的基础。超微观应力在应变区内使原子偏离平衡位置,导致衍射线强度减弱,故可以通过X射线强度的变化测定超微观应力。测定应力一般用衍射仪法。
X射线测定应力具有非破坏性,可测小范围局部应力,可测表层应力,可区别应力类型、测量时无需使材料处于无应力状态等优点,但其测量精确度受组织结构的影响较大,X射线也难以测定动态瞬时应力。
晶粒尺寸和点阵畸变的测定
若多晶材料的晶粒无畸变、足够大,理论上其粉末衍射花样的谱线应特别锋利,但在实际实验中,这种谱线无法看到。这是因为仪器因素和物理因素等的综合影响,使纯衍射谱线增宽了。纯谱线的形状和宽度由试样的平均晶粒尺寸、尺寸分布以及晶体点阵中的主要缺陷决定,故对线形作适当分析,原则上可以得到上述影响因素的性质和尺度等方面的信息。
在晶粒尺寸和点阵畸变测定过程中,需要做的工作有两个:⑴ 从实验线形中得出纯衍射线形,最普遍的方法是傅里叶变换法和重复连续卷积法。⑵ 从衍射花样适当的谱线中得出晶粒尺寸和缺陷的信息。这个步骤主要是找出各种使谱线变宽的因素,并且分离这些因素对宽度的影响,从而计算出所需要的结果。主要方法有傅里叶法、线形方差法和积分宽度法。
单晶取向和多晶织构测定
单晶取向的测定就是找出晶体样品中晶体学取向与样品外坐标系的位向关系。虽然可以用光学方法等物理方法确定单晶取向,但X衍射法不仅可以精确地单晶定向,同时还能得到晶体内部微观结构的信息。一般用劳埃法单晶定向,其根据是底片上劳埃斑点转换的极射赤面投影与样品外坐标轴的极射赤面投影之间的位置关系。透射劳埃法只适用于厚度小且吸收系数小的样品;背射劳埃法就无需特别制备样品,样品厚度大小等也不受限制,因而多用此方法 。
多晶材料中晶粒取向沿一定方位偏聚的现象称为织构,常见的织构有丝织构和板织构两种类型。为反映织构的概貌和确定织构指数,有三种方法描述织构:极图、反极图和三维取向函数,这三种方法适用于不同的情况。对于丝织构,要知道其极图形式,只要求出求其丝轴指数即可,照相法和衍射仪法是可用的方法。板织构的极点分布比较复杂,需要两个指数来表示,且多用衍射仪进行测定。

阅读全文

与x射线衍射分析方法相关的资料

热点内容
呼吸水的正确方法图片 浏览:83
电脑黑模式调整方法 浏览:312
富人研究的方法和思路 浏览:239
坛子泡红萝卜的制作方法和步骤 浏览:370
苹果手自定义在哪里设置方法 浏览:352
工厂入库出库最简单的方法 浏览:136
常见的极限实验方法有哪些 浏览:921
遛娃车安装方法 浏览:584
病毒一般研究方法 浏览:667
语言服务业的问题和解决方法 浏览:192
律师挂职锻炼方法 浏览:605
故事问题及解决方法 浏览:696
nspro手柄连接电脑方法 浏览:293
常用排序的计算方法 浏览:813
书法自学方法和技巧 浏览:634
茅台鸡年王子生肖酒真假鉴别方法 浏览:959
管板连接仰焊运条方法 浏览:473
125x88用三种方法简便算法怎么算 浏览:43
dota2更新慢解决方法 浏览:317
怎样教育男孩子才是正确的方法 浏览:757