A. 流体流动阻力的测定
实验名称:流体流动阻力的测定
一、实验目的及任务:
1. 掌握测定流体流动阻力实验的一般方法。
2. 测定直管的摩擦阻力系数及突然扩大管的局部阻力系数。
3. 验证湍流区内摩擦阻力系数为雷诺数和相对粗糙度的函数。
4. 将所得光滑管的方程与Blasius方程相比较。
二、实验原理:
流体输送的管路由直管和阀门、弯头、流量计等部件组成。由于粘性和涡流作用,流体在输送过程中会有机械能损失。这些能量损失包括流体流经直管时的直管阻力和流经管道部件时的局部阻力,统称为流体流动阻力。
1. 根据机械能衡算方程,测量不可压缩流体直管或局部的阻力
如果管道无变径,没有外加能量,无论水平或倾斜放置,上式可简化为:
Δp为截面1到2之间直管段的虚拟压强差,即单位体积流体的总势能差,通过压差传感器直接测量得到。
2. 流体流动阻力与流体性质、流道的几何尺寸以及流动状态有关,可表示为:
由量纲分析可以得到四个无量纲数群:
欧拉数,雷诺数,相对粗糙度和长径比
从而有
取,可得摩擦系数与阻力损失之间的关系:
从而得到实验中摩擦系数的计算式
当流体在管径为d的圆形管中流动时,选取两个截面,用压差传感器测出两个截面的静压差,即可求出流体的流动阻力。根据伯努利方程摩擦系数与静压差的关系,可以求出摩擦系数。改变流速可测得不同Re下的λ,可以求出某一相对粗糙度下的λ-Re关系。
B. 急!!!!关于化工原理流体力学的综合实验的问题
1. 直管阻力产生原因为流体黏性引起的内摩擦力,即流动阻力使得部分机械能转化为流体的内能,导致机械能不守恒;而局部阻力主要是由于流道截面和流动方向的突变引起的边界层分离和回流漩涡造成的。
测定方法主要如下:
直管阻力:利用压力计测定所测流体在所测水平等径管内流动的压差,一定要水平等径!!
再根据 压差=流体密度*阻力损失 就可求得直管阻力
局部阻力:一样的方法
2. 泵的工作点确定很简单:将离心泵的特性曲线(泵扬程-泵体积流量)和管路的特性曲线(管路所需压头-管路体积流量)联立求解,交点就是泵的工作点。
3. 水平和垂直管在相同条件下所测的阻力损失是一样的。由伯努利方程很好推算的。但是实际测量出来的数值可能有些许偏差,主要是要完全让水平和垂直管内的流体的流速,流型和速度场完全分布一致的话,很难达到,所以造成一些偏差。但是理论上两者的测量值是一致的。
希望可以帮到你哈。。。
(*^__^*)
C. 流体流动时产生局部阻力的原因是什么,局部阻力损失是如何测的
您好,很高兴为您解答:
弯管、流道突然扩大或缩小、阀门、三通等,当流体流过这些管道的局部区域时,流速大小和方向被迫急剧地发生改变,因而出现流体质点的撞击,产生旋涡、二次流以及流动的分离及再附壁现象。此时由于粘性的作用,流体质点间发生剧烈的摩擦和动量交换,从而阻碍着流体的运动。这种在局部障碍物处产生的损失称为
局部损失,其
阻力称为局部阻力。计算要通过专业计算公式来算。
祝你生活愉快,学习进步!
如果你对这个答案有什么疑问,请追问
如果满意记得采纳哦,谢谢~~~
D. 非圆形管内的流动阻力如何测定
当流体在管径为d的圆形管中流动时,选取两个截面,用压差传感器测出两个截面的静压差,即可求出流体的流动阻力。根据伯努利方程摩擦系数与静压差的关系,可以求出摩擦系数。改变流速可测得不同Re下的λ,可以求出某一相对粗糙度下的λ-Re关系。
流体输送的管路由直管和阀门、弯头、流量计等部件组成。由于粘性和涡流作用,流体在输送过程中会有机械能损失。这些能量损失包括流体流经直管时的直管阻力和流经管道部件时的局部阻力,统称为流体流动阻力。
流动阻力
流体流动阻力:流体在管路系统中的流动可以分为在均匀直管中的流动,产生以表面摩擦为主的沿程阻力;在各种管件象阀门、弯管、设备进出口等中的流 动,由于流道变向、截面积变化、流道分叉汇合等 产生以逆压差或涡流为主的局部阻力。
流动边界的物体对流动流体的作用力。它与流体流动的方向相反,由动量传递而产生。流动阻力是粘性流体中动量传递研究的基本问题之一。流动阻力的反作用力,即流体对物体的作用力,称为曳力(drag)。
E. 管道阻力如何计算
分为局部阻力和沿程阻力。
局部阻力是由管道附件(弯头,三通,阀等)形成的,它和局阻系数,动压成正比。局阻系数可以根据附件种类,开度大小通过查手册得出,动压和流速的平方成正比。
沿程阻力是比摩阻乘以管道长度,比摩阻由管道的管径,内壁粗糙度,流体流速确定。
具体数值计算请查阅工程手册
参阅http://blog.combust.cn/blog/user1/10/archives/2005/2921.shtml
F. 3.流体流经管道时直管阻力和局部阻力如何计算1.流量测量仪器有多种,符合流体力学原理的流量测
摘要 流体在管路中流动时的阻力可分为摩擦阻力hf和局部阻力hj两种。摩擦阻力是流体流经一定管径的直管时,由于流体的内摩擦产生的阻力,又称为沿程阻力,以hf表示。局部阻力主要是由于流体流经管路中的管件、阀门以及管道截面的突然扩大或缩小等局部部位所引起的阻力,又称形体阻力,以hj表示。流体在管道内流动时的总阻力为Σh=hf+hj。
G. 直管阻力和局部阻力读出来的直接是压强差吗
正U形压差计用来测量层流管的阻力,他也可用倒U形压差计测量;倒U型压差计用来测量孔板压差,直管阻力和局部阻力,各测压点均与面板后两个汇集管相连,常用化工管路主要由两部分组成:一种是直管,另一种是弯头、三通、阀门等管阀件。无论是直管或管阀件都对流动流体造成一定的阻力,消耗一定的机械能。直管造成的机械能损失称为直管阻力损失(也称沿程阻力损失);管阀件造成的机械能损失称为局部阻力损失。对阻力损失这种划分是因为两种阻力损失起因于不同的外部条件,也便于工程计算及研究,但这并不意味着两者有质的不同。这两种阻力损失的本质都是流动流体存在黏性和内摩擦力。
不能将水平管改为垂直或者倾斜放置,否则会影响流阻数据的真实性。如果竖直或倾斜放置时,实际测量的压差与直管阻力水平压差损失不同。
对于层流流动,可以严格地从理论推导出来。
对于紊流流动,工程上通过以下两种途径确定:一种是以紊流的半经验理论为基础,结合实验结果,整理成阻力系数的半经验公式;另一种是直接根据实验结果,综合成阻力系数的经验公式。前者具有更为普遍的意义。
(7)直管局部分别采用什么方法测阻力扩展阅读:
根据流体的速度、流束的定型尺寸以及工作状态下的流体粘度确定雷诺系数,判断流动状态(层流、紊流),再根据不同个的公式计算阻力。u为原来的4倍,由上式,流动阻力变为原来的16倍; 完全湍流区,即处于阻力平方区,则管路阻力只与流速有关,V不变,d减小一倍,则u变为原来的4倍,阻力与流速的平方成正比。
流动阻力的测定时,测量值与测压孔的大小无关,与测压管的粗细和长短无关,压力传播到传感器的感应面是压力波的形式,感受的是压强因此跟测压孔的大小和测压管的粗细无关,水中声波的速度为1440ms,因此一般几米的测压管测量值的延迟是可以忽略的,如果关心摩擦阻力的话。
管阻力又称为沿程阻力,是流体沿直管流动时因内摩擦而产生的能量损失。流体在管路中流动的阻力分为直管阻力和局部阻力。
流体在直管中流动时,因流体与管壁之间以及各层流体之间的内摩擦力而产生的阻力 ,称为直管阻力或沿程阻力
H. 风管阻力软件中局部阻力系数怎么确定
风管内空气流动的阻力有两种,一种是由于空气本身的粘滞性及其与管壁间的摩擦而产生的沿程能量损失,称为摩擦阻力或沿程阻力;另一种是空气流经风管中的管件及设备时,由于流速的大小和方向变化以及产生涡流造成比较集中的能量损失,称为局部阻力。
一、 摩擦阻力
根据流体力学原理,空气在横断面形状不变的管道内流动时的摩擦阻力按下式计算:
ΔPm=λν2ρl/8Rs
对于圆形风管,摩擦阻力计算公式可改写为:
ΔPm=λν2ρl/2D
圆形风管单位长度的摩擦阻力(比摩阻)为:
Rs=λν2ρ/2D
以上各式中
λ――――摩擦阻力系数
ν――――风管内空气的平均流速,m/s;
ρ――――空气的密度,Kg/m3;
l ――――风管长度,m
Rs――――风管的水力半径,m;
Rs=f/P f――――管道中充满流体部分的横断面积,m2;
P――――湿周,在通风、空调系统中既为风管的周长,m;
D――――圆形风管直径,m。
矩形风管的摩擦阻力计算
我们日常用的风阻线图是根据圆形风管得出的,为利用该图进行矩形风管计算,需先把矩形风管断面尺寸折算成相当的圆形风管直径,即折算成当量直径。再由此求得矩形风管的单位长度摩擦阻力。当量直径有流速当量直径和流量当量直径两种;
流速当量直径:Dv=2ab/(a+b)
流量当量直径:DL=1.3(ab)0.625/(a+b)0.25
在利用风阻线图计算是,应注意其对应关系:采用流速当量直径时,必须用矩形 中的空气流速去查出阻力;采用流量当量直径时,必须用矩形风管中的空气流量去查出阻力。
二、 局部阻力
当空气流动断面变化的管件(如各种变径管、风管进出口、阀门)、流向变化的管件(弯头)流量变化的管件(如三通、四通、风管的侧面送、排风口)都会产生局部阻力。
局部阻力按下式计算:
Z=ξν2ρ/2
ξ――――局部阻力系数。 局部阻力在通风、空调系统中占有较大的比例,在设计时应加以注意,为了减小局部阻力,通常采用以下措施:
1. 弯头 布置管道时,应尽量取直线,减少弯头。圆形风管弯头的曲率半径一般应大于(1~2)倍管径;矩形风管弯头断面的长宽比愈大,阻力愈小;矩形直角弯头,应在其中设导流片。
2. 三通 三通内流速不同的两股气流汇合时的碰撞,以及气流速度改变时形成的涡流是造成局部 阻力的原因。为了减小三通的局部阻力,应注意支管和干管的连接,减小其夹角;还应尽量使支管和干管内的流速保持相等。
在管道设计时应注意以下几点:
1. 渐扩管和渐缩管中心角最好是在8~15o。
2. 三通的直管阻力与支管阻力要分别计算。
3. 尽量降低出风口的流速。
以下为常见管段的比摩阻 规 格(mm*mm) 流速(m/s) 当量直径(流速) (mm) 比摩阻 (Pa/m)
1600*400 15 640 3.4
1400*300 13 495 4.5
1200*300 12 480 4.8
1000*300 10 460 2.5
800*300 9 436 2
600*300 8 400 1.8
500*300 6 375 1.2
400*300 5 342 0.8
300*300 4 200 1.3
600*250 6 350 1.3
400*250 4 307 0.6
常见弯头的局部阻力:
分流三通:9~24 Pa
矩形送出三通:6~16Pa
渐缩管:6~12Pa
乙字弯:50~198Pa
例:有一表面光滑的砖砌风管(粗糙度K=3mm),断面尺寸为500*400mm,流量L=1m3/s(3600m3/h),求单位长度摩擦阻力。
解:矩形风管内空气流速:v=1/(0.5*0.4)=5m/s
矩形风管的流速当量直径:Dv=2ab/(a+b)=2*500*400/(500+400)=444mm
根据v=5m/s、Dv=444mm由附录6(通风管单位长度摩擦阻力线算图)查得Rmo=0.62Pa/m
粗糙度修正系数 Kr=(Kv)^0.25=(3*5)^0.25=1.96
则该风管单位长度摩擦阻力 Rm=1.96*0.62=1.22Pa/m
问:静水压和动水压的定义具体是什么?它们是如何量化计算的(特别是动水压)?
答:静水压是指管道内水处于静止状态时的压力,而动压力是指某处水流在外泄时该处的压力。动压力=静压力-该处的总水头损失。
问:技术措施里说对于比例式减压阀,其阀后的动水压宜按静水压的80%~90%计,那动水压岂不是很大?
答:在伯努力方程里边,某一位置,相对于某一基准的z称为位置压头, u2/2g是动压头,p/2g是静压头。全压=动压+静压。计算按公式算,动水压增大是因为静水压的转化,正常。水头损失是通过这个位置的压力损失/能量损失,也可以计算,他表示的是通过前后位置(断面)的损失,应该等于两个位置(断面)的位置压头+动压头+静压头之差值。当然,位置压头,动压头,静压头一可以实测。 总压=动压头+静压头+位置压头。
——法布瑞克技术
I. 直管阻力产生的原因是什么如何测定及计算
原因是因为管壁的不光滑。
计算比较复杂:根据流体的速度、流束的定型尺寸以及工作状态下的流体粘度确定雷诺系数,判断流动状态(层流、紊流),再根据不同个的公式计算阻力。
测量比较简单:同直径的管道,用压力表测量管道内不同位置的静压力即可。