导航:首页 > 研究方法 > 遥感影像分类方法的研究现状

遥感影像分类方法的研究现状

发布时间:2022-09-19 18:48:21

⑴ 遥感影像信息的提取技术方法研究进展

遥感的对地观测系统是一个信息流交换的过程:电磁波与地表物体相互作用形成地表信息交流。而遥感影像信息提取技术就是最大限度地从遥感图像上的光谱信息反演出目标地物本身的属性特征信息。进而可对地球表层资源与环境进行探测、分析,并揭示其要素的空间分布特征与时空变化规律。遥感影像信息的提取技术是建立在对地物规律有充分的了解的基础之上的,其综合物理手段、数学方法和地物状态识别等认识,通过对影像的处理与分析,获得能反映区域内地物的分布规律和变化过程的有效信息的技术方法。

遥感地物识别主要依赖于地物的光谱和空间特征的差异。多光谱由于光谱分辨率低,地物的光谱特征表现不充分,地物识别主要依赖地物的空间特征,包括灰度、颜色、纹理、形态和空间关系。信息处理和信息提取主要是应用图像增强、图像变换和图像分析方法,增强图像的色调、颜色以及纹理的差异,达到最大限度地区分地物的目的。随着成像光谱仪研制成功以及其产业化的发展,遥感地物信息提取也随之进入了一个崭新的时代。成像光谱对地物的识别主要是依赖于地物的光谱特征,是直接利用岩石矿物的光谱特征进行地物识别,定量分析地物信息。下面从多光谱和高光谱遥感信息处理两方面来加以论述。

1.多光谱方法研究进展

多光谱的信息提取主要集中于:色调信息提取,纹理信息提取,信息融合。

(1)色调信息提取

对于色调信息提取,主要是采用一些增强处理,扩大图像中地物间的灰度差别,以突出目标信息或改善图像效果,提高解译标志的判别能力,如反差扩展、彩色增强、运算增强、变换增强等,这些传统的图像处理方法在一定程度上满足了应用的需要。近年来发展了一系列的以主成分变换为主的信息提取技术,在岩矿信息提取中发挥了重要的作用。如张满郎(1996)提出修正的直接主成分分析提取铁氧化物信息。OF 变换(Maxium Noise Fraction Transformation)(Kruse,1996,Creen,et al.,1988),NAPC(Noise-adjust Principal Components Transform)(Lee,et al.,1990)、分块主成分变换(Jia,et al.,1999)、基于主成分的对应分析(Carr,et al.,1999),以及基于主成分分析的空间自相关特征提取(Warner,et al.,1997)、子空K投影(Harsanyl,et al.,1997)和高维数据二阶特征分析(Lee,et al.,1993;Haertel,et al.,1999)等,也是基于主成分分析进行信息特征选择与特征提取。同时,根据模式识别的原理,提出并设计出监督分类与非监督分类方法:以及利用决策树进行分类识别(Wrbka,et al.,1999;Friedl,et al.,1999;Hansen et al.,1996),这些技术与方法是建立在图像灰度特征之上,利用数理统计的知识进行地物分类与信息提取。

(2)纹理信息提取

遥感影像的边缘和纹理信息对线环构造的识别具有一定作用,但却似乎无助于岩性的识别。边缘信息提取通常采用滤波算子或锐化的方法进行(Gross,et al.,1998;Varbel,2000)。纹理信息提取通常采用共生矩阵、傅立叶功率谱和纹理谱等方法。

(3)信息融合

多源数据融合研究也非常普及与深入,其技术方法涉及不同的数理知识(Jimen,et al.,1999;Pohl,1998;Robinson,et al.,2000;Price,1999;Gross et al.,1998),比如小波信息融合。应用面涉及非遥感数据(王润生,1992;朱亮璞,1994),如遥感数据与地化数据、物探数据的叠置与融合。这些方法一方面开阔了遥感的应用视野,另一方面也扩展了遥感的应用能力。

总的来说,多光谱遥感岩矿信息提取主要是基于图像灰度特征,即基于岩矿的反射率强度差异,采用一些数学变换方法,增强或突出目标信息,使之易于目视解译。在数据处理中,由于波段有限,未能有效地导入岩矿类别的光谱知识,其结果精度更多地取决于研究人员的经验。

2.高光谱方法研究进展

成像光谱技术是多光谱技术发展的飞跃,它是在对目标对象的空间特征成像的同时,对每个空间象元经过色散或分光形成几十个乃至几百个窄波段以进行连续的光谱覆盖。形成的遥感数据可以用“图像立方体(三维)”来形象描述,其中两维表示空间,另一维表征光谱。这样,在光谱和空间信息综合的三维空间内,可以任意地获得地物“连续”的光谱以及其诊断性特征光谱,从而能够基于地物光谱知识直接识别目标地物,并可进一步地获取定量化的地物信息。在地质应用中,矿物识别和信息处理技术可分为:①基于单个诊断性吸收的特征参数;②基于完全波形特征以及③基于光谱知识模型三大类型。

岩石矿物单个诊断性吸收特征可以用吸收波段位置(λ)、吸收深度(H)、吸收宽度(w),吸收面积(A)、吸收对称性(d)、吸收的数目(n)和排序参数作一完整地表征。根据端元矿物的单个诊断性吸收波形,从成像光谱数据中提取并增强这些参数信息,可直接用于识别岩矿类型。如IHS编码与吸收波段图(Kruse,1988)是利用连续法去除后的光谱图像,定义出波段吸收中心位置图像,波段深度图像以及波段半极值宽度图像,并分别赋予HS I 空间的明度(H)、强度(l)和饱和度(S),然后逆变换到RGB色度空间。从而根据色调差异进行矿物直接识别。在描述岩矿单个诊断性吸收特征参数中,吸收深度是一非常重要的特征指标而受到重视。如相对吸收深度图(RBD image,Relative absorption Band-depthimage)(Crowley,et al.,1989)采用比值运算来增强识别端元的吸收深度,即根据要识别端元的单个诊断性吸收峰的两侧肩部反射率之和,除以其谷中心邻近两侧对应波长的反射率之和的商图像,来表征端元矿物诊断性吸收峰的相对吸收深度。不同端元矿物的RBD图像,除象元本身比值大小代表了端元矿物存在的可能性外,通过进一步地诸如PC变换分析进行特征增强与选择来识别端元矿物。由于吸收峰的非对称性,采用RBD方法难以准确描述其特征。连续插值波段算法(CIBR,continuum interpolated band algorithm)(De Jong,1998)和光谱吸收指数图像(SAI,spectral absorption index image)(王晋年等,1996)与相对吸收深度图方法类似,但引入了对称度因子,使其对吸收特征的描述更为合理。CIBR是利用诊断性光谱吸收谷中心的辐射值,除以左右肩部的辐射值与吸收特征对称度因子之积的和,产生相应的商图像,用以增强不同矿物的诊断性吸收深度,进行矿物识别。SAI方法与CIBR类似,也是对单个吸收波形肩部的特征增加了对称度因子。上述方法类似于常规比值或彩色增强处理。与常规增强处理最大不同之处在于有机地融入端元矿物的光谱特征这一先验知识,针对性、目的性更明确。由于大气辐射对遥感数据中波谱特征的影响、光谱混合形成的光谱漂移和变异对单个波形的影响,使识别结果含有较大的干扰。

成像光谱最大的优势在于利用有限细分的光谱波段,去再现象元对应物的波谱曲线。这样,利用整个光谱曲线进行矿物匹配识别,可以在一定程度上改善单个波形的不确定性影响(如光谱漂移、变异等),提高识别的精度。基于整个波形的识别技术方法是在参考光谱与象元光谱组成的二维空间中,合理地选择测度函数度量标准光谱或实测光谱与图像光谱的相似程度。例如,光谱匹配(SM,Spectral matching)(Baugh,et al.,1998)利用岩矿光谱矢量的欧氏距离测度函数,即求图像象元光谱与参考光谱在光谱空间中的差异大小。距离愈小,表示图像端元光谱或待识别的端元光谱与来自实验室或野外实测的参考光谱之间拟合程度愈高。类似地,相似指数(SI,similarity index algorithm)(Fenstermaker,et al.,1994)是基于欧氏距离侧度,根据已知地物类型的图像象元平均光谱与未知图像象元光谱的波段差值平方和的均值大小来识别地物。以上两种方法比基于单个吸收波形参数识别技术可靠。但往往由于光谱数据分辨率的影响,其光谱的差异不明显,同时又因欧氏距离测度固有的缺陷而难以对地物进行准确分类与识别。光谱角识别方法(SAM,spectral angle mapper)(Ben-Dor,et al.,1994;Crosta,et al.,1998;Drake,et al.,1998:Yuhas,et al.,1992)是在由岩矿光谱组成的多维光谱矢量空间,利用一个岩矿光谱矢量的角度测度函数求解岩矿参考光谱端元矢量(r)与图像象元光谱矢量(t)的相似程度。参考端元光谱既可来自实验室、野外测量,也可来自已知类别的图像象元光谱。根据两者相似程度大小,识别与提取矿化蚀变信息。该方法的难点在于如何合理地选择阈值进行信息分割。不过,从已有应用的角度看,该方法简单易行、比较可靠。交叉相关匹配(Fer-rier,et al.,1999;Varder Meer,et al.,1997)是使用一个相关因子(r.)作为相似性指数,通过逐象元交叉相关匹配进行矿物识别。当参考光谱与检验光谱完全匹配时,其位置m=0;参考光谱向长波方向移动时,其m<0。反之,m>0。在RGB空间,分别赋予斜度(skewness),t检验值与相关因子以R,G,B;若在“0”匹配位置,其斜度、t检验值与相关因子(r.)均接近于“1”而显示为白色,从而识别出端元矿物。对于矿物的智能识别,往往也采用完全谱形。例如,Tetracord矿物识别软件是基于UNIX平台,利用光谱数据库中的光谱与图像光谱拟合从而自动进行识别矿物;王润生等(1999)根据矿物的完全波形,利用神经网络进行矿物自动识别。以上方法在具有大量已知地物光谱时适应性强。对图像地物识别更有用。但明显不足是由于实际地物光谱变异、获取数据受观测角以及颗粒大小的影响而造成光谱变化,对于整体光谱特征差别不太大的地物,准确匹配比较困难,造成岩矿识别与分析上的混淆和误差。

基于光谱模型的识别的技术方法是建立在一定的光学、光谱学、结晶学和数学理论之上的信号处理技术方法。它不仅能够克服上述方法存在的缺陷,而且在识别地物类型的同时精确地量化地表物质的组成和其他的物理特性。例如,建立在Hapke光谱双向反射理论基础之上的线性混合光谱分解模型(SMA/SUM)(Adams,et al.,1986;Mustard,et al.,1987;Roberts,et al.,1997;Sabol,et al.,1992;Settle,et al.,1993;Shipman,et al.;1987:Shimabukuro,et al.,1991;Smith,et al.,1985),可以根据不同地物或者不同象元光谱反射率响应的差异,构造光谱线性分解模型。一个象元内并非存在单一类型地物,而更多地由不同类型地物组成。因此,在大多数情况下,象元光谱并非为纯地物光谱的线性混合,而更多地表现为非线性。对于单散射,可作为线性模型分解,多散射则认为非线性混合。由于平均单散射反照率丰度主要依赖于成分含量不同而可以认为是线性混合(Mustard,et al.,1987)。这样,通过单散射反照率(SSA)转换,即可以利用算子W=(3r+6)r/(1 +2r)2,将非线性“线性化”,再进行光谱分解。Tompkins(1996)提出修正的光谱混合分析(MSMA)模型。该模型利用虚拟端元,采用一个阻尼最小二乘算法,根据一定的先验知识,有效地并最终可以选择亚像端元进行光谱分解,提高了SMA实用性。与SMA相比,MSMA最大的不同表现在:①端元以及其丰度均作为未知变量;②对数据组中所有象元同时求解。对于能量约束最小模型(CEM,constrained en-ergy minimization technique)(Farrand,et al.,1997;Farrand,et al.,1996;Resmini,et al.,1997)是在成像光谱图像序列中,运用一个目标区域(或ROI区域,region of insteresting)与象元光谱(ri)相关的权系数wk来描述象元向量的数字值y,从而进行特征选择与分解进行地物识别与信息提取。与混合光谱分解模型一样,该分解结果在一定程度上,不仅代表了识别象元的类型信息,而且有机地表示了其丰度比值。与混合光谱分解模型不同的是,该方法更多地依赖于目标区域的统计特征,但结果更精确。总之,这些方法更多地依赖光谱学知识与数理方法,在实际应用中由于难以确定特征参数或难以准确地描述光谱模型而限制了该类技术方法的应用。不过,由于该类方法在识别地物的同时量化物质组成,因此就其发展趋势而言,随着一系列技术的成熟与光谱学、结晶学等知识的深入发展,识别精度的改善与量化能力的提高,其应用将会越来越广泛。

国内也相继开展了一些成像光谱进行矿物直接识别应用试验,但由于国产传感器的性能尚不够完善,数据信噪比较低。但在定性岩矿识别方面取得了一定的收获。如甘甫平等(2000)利用基于波形特征组合的主成分分析有效地对河北张家口后沟金矿区进行了岩性划分;刘庆生(1999)利用对应分析提取出内蒙古某矿区的含金蚀变。在直接定量矿化识别、识别模型和识别谱系等方面都落后于美国等发达国家,相比还存在一定差距。

总之,岩矿光谱学机理研究、遥感信息提取基础与遥感信息提取方法技术研究,三者之间相辅相成,具有一定的对应关系。

遥感地物光谱应用基础与遥感影像信息提取技术研究随着遥感光谱成像技术的发展而发展,两者研究方向与趋势都主要集中在光谱特征知识与地物物理化学属性的关联以及光谱物理模型两大方面。对地物物化属性与光谱特征的相关性和对光谱物理模型的深入分析与研究可从不同的角度为遥感直接识别矿物、提取地物的分布规律、属性、物化性质以及进行地物深层次信息挖掘等提供理论基础支撑,推动遥感应用技术的发展。遥感地学应用的实用化与产业化是遥感地物光谱应用基础与遥感地物影响信息提取技术研究相互促进的结果。

地物光谱学机理研究、遥感信息提取基础与遥感信息提取方法技术研究的发展将导致三者的结合,并最终综合于遥感应用模型和技术集成中,以便充分利用各自的优势,提高遥感应用能力并增强对地质应用的理解,以及模拟、评估和预测地学发展的规律。

⑵ 遥感图像分类方法研究现状

http://www.cnki.com.cn/Article/CJFDTotal-YGXX200605023.htm

⑶ 遥感影像监督分类有什么好的方法

根据已知训练区提供的样本,通过计算选择特征参数,建立判别函数以对各待分类影像进行的图像分类
监督分类 (supervised classification)又称训练场地法,是以建立统计识别函数为理论基础,依据典型样本训练方法进行分类的技术。即根据已知训练区提供的样本,通过选择特征参数,求出特征参数作为决策规则,建立判别函数以对各待分类影像进行的图像分类,是模式识别的一种方法。要求训练区域具有典型性和代表性。判别准则若满足分类精度要求,则此准则成立;反之,需重新建立分类的决策规则,直至满足分类精度要求为止。常用算法有:判别分析、最大似然分析、特征分析、序贯分析和图形识别等。
过程:

1、选择训练区(代表性,完整性,多个样区)

2、提取统计信息(进行多元统计分析,训练样本的有效评价,样本纯化)

3、选择合适的监督分类算法(平行算法,最小距离法,最大似然法(至今应用最广),波谱角分类法)

4、计算机自动分类

5、分类精度评价(非位置精度,位置精度--混淆矩阵)

优点:

1、 可充分利用分类地区的先验知识,预先确定分类的类别;

2、 可控制训练样本的选择,并可通过反复检验训练样本,以提高分类精度,避免分类中的严重错误

3、 避免了非监督分类中对光谱集群组的重新归类。

缺点:

1、人为主观因素较强;

2、训练样本的选取和评估需花费较多的人力时间;

3、只能识别训练样本中所定义的类别,从而影响分类结果。

⑷ 遥感图像分类法

图像分类是与图像信息提取和增强不同的遥感图像处理中另一重要的方面,与图像增强后仍需人为解译不同,它企图用计算机做出定量的决定来代替人为视觉判译步骤。因此,分类处理后输出的是一幅专题图像。在此图像中,原来图像中的每一个象元依据不同的统计决定准则被划归为不同的地表覆盖类,由于是一种统计决定,必然伴随着某种错误的概率。因此,在逻辑上的合理要求是,对每一个象元所做的决定,应是使整个被分类面积即对大量单个象元的分类的某个错误判据为最小。

以下是几种常用的遥感图像分类方法:

1.最大似然分类(maximum likelihood classification)

最大似然分类是一种基于贝叶斯判别准则的非线性监督分类方法,需要知道已知的或确定的训练样区典型标准的先验概率P(wi)和条件概率密度函数P(wi,x)。P(wi)通常根据各种先验知识给出或假定它们相等:P(wix)则是首先确定其分布形式,然后利用训练样本估计其参数。一般假设为正态分布,或通过数学方法化为正态分布。其判别函数集为:

Di(x)=P(wix),i=1,2,…,m (2-2)

如果Di(x)≥ Dj(x),则x属于wi类。其中,j≠i,j=1,2,…,m。m为类别数。

从上述最大似然分类的说明看,其关键就在于已知类别的定义,先验概率的确定,参与分类的变量的好坏和结果误差评价。直到现在,最大似然分类至少还有两个缺点:一是事先大量人力已知光谱类的选择和定义:二是需要长时间的计算机分类计算时间。实际上这也使得最大似然分类法遥感应用受到了限制,因此许多人专门研究改进算法以便解决和缩减图像分类的时间,提高分类的精度。Solst和Lillesand(1991)为了解决已知类别定义消耗大量人力的缺点,发展了半自动训练法进行已知光谱类的定义。Fabio Maselli等(1992)利用Skidmore和Tumer提出的非参数分类器计算出各已知类训练集的先验概率,然后将它们插入常规的最大似然分类过程中进行分类。该方法融合了非参数和参数分类过程的优点,提高了分类的精度。

通常情况下,地形会影响到训练集数据,这样训练集光谱数据就偏离了最大似然分类的假设条件正态分布,从而常规的最大似然分类法在地形起伏较大的地区效果并不太好。为了解决这一问题,C.Conese和G.Maracchi和F.Maselli(1993)提出了一种改进的最大似然分类算法,即去掉每一类数据集中与第一主成分相关的信息(地形信息)然后再进行分类。通过试验,这种方法是有效的,分类精度得到了提高。

K.Arai(1993)用光谱和空间信息进行分类改进了最大似然分类方法。该方法简单易行,大大提高了正确分类的概率。C.Conese和Fabio Maselli(1992)用误差矩阵提高最大似然分类面积估计的精度。Irina Kerl(1996)加最大似然分类精度的一种方法,即多概率比较法。他对同一遥感数据的原始波段、主成分和植被指数的22种组合进行了最大似然分类,发现没有一种波段组合的分类能给出图像中所有土地利用类型的精确分类,每一波段组合仅对图像中的一两类土地利用类型分类有效。因此他提出将能有效区分出所要决定的土地利用类型的几个波段组合的分类结果进行组合来进行图像分类,并称这种方法为多概率比较法,这种方法的基础就是图像数据不同波段组合的分类结果之间分类概率大小的比较。应用这种方法提高了分类的精度。

2.最小距离分类(minimum distance classification)

最小距离分类是一种线性判别监督分类方法,也需要对训练区模式样本进行统计分析,是大似然分类法中的一种极为重要的特殊情况。最小距离分类在算法上比较简单,首先需选出要区分类别的训练样区,并且从图像数据中求出各类训练样区各个波段的均值和标准差,然后再计算图像中其他各个象元的灰度值向量到各已知类训练样区均值向量之间的距离。如果距离小于指定的阈值(一般取标准差的倍数),且与某一类的距离最近,就将该象元划归为某类。因此称为最小距离分类。该方法的精度主要取决于已知类训练样区的多少和样本区的统计精度。另外,距离度量的方法不同,分类的结果也不相同,常见的有:

(1)明氏距离(minkowski distance)

中亚地区高光谱遥感地物蚀变信息识别与提取

式中Tij=-Tij

③经过①②步后,随机象元X被划归为正确的类。

另外,通过对参与计算变量的排序和部分一总和逻辑的考虑,可大大降低该算法计算的时间。与最小距离(欧氏距离)和最大似然分类器相比,整体平均分类器所用时间最少,分类精度与最小距离大致相同,对像农田面积和森林这样的名义类型的分类十分有效。

Haluk Cetin(1996)提出了一种分类方法:类间距离频率分布法(interclass distance frequency dis-tribution),这是多光谱数据非参数分类方法的一种。类间距离频率分布过程简单,是一种有力的可视化技术,它图形地显示多光谱数据和类分布。首先选择感兴趣的类,这些类的统计信息从典型的训练样区可获得。利用类的平均测量矢量计算多光谱数据中每个象元的距离,并存放在一个两维数据分布数组中。选择其他类的训练区,训练区数据的分布通过距离计算可获得。通过可视化地检查结果,建立分类查询表(look-up table),然后利用分类查询表进行多光谱图像数据的分类,具体细节请参见原文。

H.N.Srikanta Prakash等(1996)改进了遥感数据凝聚聚类分析,这是一种基于相互近邻概念,用来进行多光谱数据分类的非参数、层次、凝聚聚类分析算法。该方法定义了围绕象元的感兴趣区域(area of interest around each pixel),然后在它内部寻找分类时初始合并操作需要的k最近邻,将象元的特征值、波段值和象元的相对位置值一起考虑,提出了改进的距离量度,这样,大大减少了计算的时间和内存的需求,降低了分类的误差概率。

Steven E.Franklin和Bradley A.Wilson(1992)设计了3阶段分类器进行遥感图像的分类,它由一个基于四叉树的分割算子、一个高斯最小距离均值测试和一个包括辅助地理网数据和光谱曲线测量的最终测试构成。与最大似然分类技术相比,3阶段分类器的总体分类精度得到了提高,减少计算时间,另外仅需最少的训练样区数据(它们在复杂地形区很难获得)。

⑸ 地物特征遥感信息提取和分类方法研究的意义与目的

遥感影像提供了目标区域的极为丰富的、复杂的大量数据,其反映了农、林、水、土、矿产、能源、海洋等各种地表信息。但是由于每个象元同时包含有不同地物在水平和垂直方向上交叉重叠的波谱特征,而且这些特征也仅代表地物的局部性质,使影像与地物之间存在某些对应关系,即所谓遥感影像的多解性。影像处理的最终目的是确定影像上的某些目标与地物之间的对应关系。从而达到认识地物状态的目的。

现阶段遥感影像的提取任务是应用数学方法确定影像与某些地物的对应关系并匹配到人眼的观察范围之内。

遥感影像信息的提取技术在地质领域的应用主要表现在对岩矿信息以及岩性识别信息的提取上,主要的研究对象是地球表面地质体(例如岩石)的分布规律、物化属性等信息的提取,目的是通过研究它们的电磁波辐射特性有效地识别地质体的物理、化学性质与运动状态,探测地质作用发生的过程与演化机制,为开展地质构造研究、矿产资源勘查、区域地质填图、环境和自然灾害监测等工作服务。与一般地质勘查方法相比,遥感具有宏观、快速、准确等技术优势,因此常作为地质勘查工作的先期手段,用于大面积的遥感地质调查和专题制图工作。

岩石是地壳主要的物质组成,是开展地球科学研究的基础,是各种地质现象和矿产资源赋存的载体,因而岩石学是地球科学研究中最重要的基础学科。遥感作为现代科学中一种新兴的对地探测技术,理所当然地把岩性信息提取和岩石分类研究作为遥感地质学最重要的内容,成为当今遥感地质研究的前沿和焦点。随着遥感信息获取技术的不断进步,高光谱分辨率(纳米级)和高精度空间分辨率(米级)遥感数据,为岩性遥感和岩性填图带来了大量的新型信息和新的发展机遇,使遥感地质工作在更高水平上开拓和深化。

遥感技术的理论基础是物理学的电磁波理论,电磁波与岩石和地层表面物质发生作用,产生岩石和地质体的特征光谱,不同物质成分的岩石和地质体,形成不同的特征光谱。它们在可见光、近红外和热红外形成各自连续的光谱分布,光学遥感就是依据这些不同光谱分布表现出来的特征(能量、谱形等)来探测目标的。不同物质成分构成的岩石和矿物同样具有不同的光谱能量和谱形特征,了解、认识了这些光谱特征,就能够利用遥感信息提取技术识别它们。因此,基于光谱特征的岩性遥感信息提取与岩石分类方法研究具有重要的理论和现实意义。

在遥感应用中,岩矿信息往往因其组合共生与风化分布的复杂性、地壳覆盖物(比如土壤)和植被的干扰、混合象元以及大气辐射的影响而使特征表现较弱、信息有一定的不确定性和模糊性。随着遥感传感器性能的提高,尤其是成像光谱仪的出现,改善了信息识别与提取的技术环境。使遥感从对地物的鉴别(discrimination)发展到对地物直接识别(identification)的阶段。

在遥感地质应用中,对岩矿光谱和空间分布精细特征的探测是空间与光谱高分辨率遥感的优势所在。矿物中离子与晶格位置的差异、元素的变化,岩石中矿物成分的不同以及成生的背景环境的影响等造成岩石矿物谱形特征各异。因此,岩矿光谱特征,尤其是其诊断性特征是岩矿信息识别与提取的基础,也是遥感技术革新与开发的基石。以光谱特征及其差异为基础,利用相应的遥感信息处理技术可直接识别岩矿类型,划分变质相带,圈定矿化蚀变中心及矿化蚀变带;根据提取的矿物(尤其是蚀变矿物)及其相对丰度分布进行共生组合与成矿关系分析,圈定成矿靶区,进行资源潜力评价。

因此,本研究立足于实验室标准矿物光谱与地质应用的关联分析,探讨遥感岩矿(含微量元素)信息的识别、提取与量化的光谱特征;进而基于光谱特征知识和现代数理方法,利用ETM,MAIS,AVIRIS和PHI数据,研究和发展不同尺度下遥感岩矿信息提取的技术;探索与研建遥感岩矿信息提取优化组合模型与技术集成。

经过近30年发展,遥感技术在数据获取技术方面得到突飞猛进的发展,图像信息提取及分类技术都取得了长足的进步,应用领域不断扩展,研究程度不断加深。作为一门边缘学科,遥感地质学必须不断地应用新型遥感数据、引入先进的图像处理和信息提取技术并开展新的信息分析方法研究。遥感信息一次性记录了地质历史过程的综合景观,通过遥感信息反演地质过程中某一段成矿作用所遗留下来的痕迹(构造、岩性和蚀变信息)比较困难,因为,这些信息具有信息弱、隐蔽性强、地表贫化的特点,这也造成利用遥感信息反演成矿信息时的多解性和不确定性。本文针对地质成矿信息的特点,改进和发展了三种遥感岩石岩性信息提取和分类识别的方法,在新疆哈密地区善鄯南山金矿区遥感试验场进行了应用研究,取得了良好的效果。

⑹ 遥感技术应用发展动态

当前,世界各国纷纷构建天地一体化的对地观测系统,以便实现全球、全天候、全天时的时空数据获取(李德仁,2000)。一系列新型卫星发射上天,是遥感进入21世纪以来取得的长足进展,它使遥感实现实时、动态、定量和定位观测成为可能,卫星应用技术已逐步向产业化方向发展。

(一)遥感数据类型

目前,遥感技术已形成多星种、多传感器、多分辨率共同发展的局面。遥感卫星包括资源卫星、环境卫星、海洋卫星、气象卫星等,所获取的遥感信息具有厘米到千米级的多种尺度,如QUCKBIRD0.61m、IKONOS1m、中华福卫2m、SPOT-5号2.5~5m、ALOS2.5m、IRS-1C5.8m、KOMPSAT6.6m、SPOT-1号、2号10m和20m、EO-1和Landsat-7号15m、CBERS-1号、2号19.5m、Landsat-4号、5号30m、Landsat-1号、2号、3号79m、MODIS250m、NOAA1.1km等多种分辨率。不同空间分辨率的遥感数据对生态环境研究形成了很好的互补,可以在不同空间尺度下开展多方面的应用研究,满足对于不同尺度、不同研究对象发生发展规律研究的需要。丰富的信息源使遥感技术在生态环境研究中扮演着越来越重要的角色,它所具有的高度空间概括能力,有助于对区域的完整了解,而以多光谱观测为主并辅以较高分辨率全色数据的高分辨率卫星,又极大地提升了对地物的识别和分类能力。

应根据研究内容或希望达到的目的有针对性地选择合适的信息源。目前对生态环境研究主要采用光学传感器遥感信息较多,如MODIS、Landsat的TM和ETM、SPOT等。近几年来高光谱卫星和雷达卫星也取得了很大发展,多光谱遥感正在向高光谱遥感、微波遥感向全极化和干涉雷达方向发展(郭华东等,2002)。卫星传感器的光谱分辨率已达到5~6nm。美国1999年发射的EOSTERRA卫星上的中等分辨率成像光谱仪MODIS具有36个波段,2000年发射的EO-1高光谱卫星上的HYPERION具有220个波段,空间分辨率达30m。欧空局的ENVISAT-1卫星上的ASAR传感器可以获取多极化和干涉测量数据。日本的ALOSPALSAR系统能在全球范围内获取极化和干涉雷达数据。利用高光谱、雷达卫星遥感数据进行定量反演是目前遥感的重要发展趋势,但定量遥感还处于起步阶段,主要由于遥感模型缺乏,模型参数提取困难,反演理论与方法的实用化不够,基于先验知识的参数估计所用的数据源不足等(李小文,2005、2006)。

(二)遥感图像处理与信息提取

随着遥感应用日益增长的需要和计算机技术的迅猛发展,图像处理系统作为遥感领域中必不可少的工具,已经形成了很大的市场。图像处理在理论、技术、软件设计以及硬件技术上也都得到了长足的发展。国际上最着名的遥感图像处理软件有ERDAS、PCI和ENVI。ERDASIMAGINE是目前世界上占最大市场份额的专业遥感图像处理软件,由美国ERDAS公司开发。软件大而全,具有光学遥感和微波遥感处理功能以及良好的RS/GIS集成功能,与ARCGIS(ESRIARC系列)融合较好,可以对shapefile、coverage文件直接编辑,具有简单的矢量编辑功能,代表了遥感图像处理系统未来的发展趋势。PCIGeomatics由加拿大PCI公司开发研制,在光学遥感图像镶嵌和色彩匹配处理方面具有独特的优势,可以实现随心所欲的色彩调整,对微波遥感图像具有强大处理功能。ENVI是美国RSI公司开发研制的一套功能齐全的遥感图像处理系统,对高光谱数据具有强大的处理能力,IDL语言为用户提供了良好的二次开发环境。与ERDAS和PCI不支持HDF相比,ENVI可以直接读取TM的HDF文件,其支持的栅格数据和矢量数据格式种类也多于其他软件,但ENVI对光谱图像的色彩匹配能力较弱。随着高分辨率卫星的发展,仅使用图像光谱信息进行分类识别已远远不够,德国DefiniensImaging公司最近新推出了面向对象的遥感图像分类软件ECOGNATION,它不仅考虑地物的光谱特征,还统计地物形状、大小、纹理及相邻关系等,使分类结果更加精确。

生态环境研究中获取的遥感数据,一般都已经进行了初步的辐射纠正,而几何校正等预处理通常要由应用部门根据工作需要自行完成。各种商业软件对图像预处理都有完善的处理功能。

从遥感数据提取专题信息,目前主要有三种方式:目视解译、人机交互和计算机自动分类与提取。目视解译是最直观、最简便的图像信息提取方法。全数字人机交互是利用地理信息系统软件对图像进行解译,该方法的成熟与广泛应用主要是在近10年左右的时间内。上述两种方法都需要投入大量的人力、物力和财力,而且需要投入相对更多的时间,但取得的成果质量相对更高,更便于应用,因而目前仍然被广泛采用。计算机自动分类技术主要立足于遥感信息的定量分析和统计分析,但由于遥感信息传输中的各种干扰造成的偏差,以及不同时空条件下地物遥感信息的差异,会产生空间的不一致性和时间的不一致性,以及同物异谱和同谱异物的现象,自动分类精度较低,难以满足生态环境监测的要求,即使分类结果通过目视判读分析进行改值干预,仍会出现较多问题。现有的自动分类方法基本上都是在较小的区域或精度要求相对较低的区域内实现,很难在大区域而精度要求又较高的工作中实际应用(张增祥,2004)。

(三)遥感动态监测

卫星星座的形成以及传感器的大角度倾斜使空间分辨率时间分辨率显着提高,另一方面,遥感与地理信息系统的结合使遥感实现了真正意义上的实时动态监测。卫星的重访周期从1~50d不等,如SPOT-1号、2号、4号、5号组成SPOT卫星系列,其重访周期为1~26d,Landsat-5、7重访周期为8d,IKONOS为1.5~3d,QUICKBIRD为1~6d。不同卫星适宜的重访周期有利于对生态环境的动态监测和过程分析。只有完整、连续、规范化的大量的时间序列数据,才能够提供研究对象更多的信息,也才能够更全面和更深入地了解研究对象。

国际上利用遥感(RS)技术与地理信息系统(GIS)技术进行了大量卓有成效的资源环境调查、监测工作,如土地利用、土地覆盖、作物估产、植被监测、水土资源调查等。随着国际社会对全球气候变化研究的深入,人们认识到由人类活动所导致的土地利用和土地覆被变化是引起生态环境和气候变化的主要驱动力(王静、张继贤等,2002)。美国于1980~1986年开展了全球性的农业和资源空间遥感调查计划(AGRISTARS),现已建成了集成化的运行系统。近年来完成了美国1∶100万比例尺、1∶25万比例尺和全球范围的土地覆盖数据采集,并利用系统的资源信息对全球性生态环境进行客观评价。欧共体国家为减少各国资源与生态环境部门的重复投资建设,于1991年集中组织启动了“CORIN”计划,建立了一个土地与环境信息系统,通过资源利用及其变化信息对生态环境进行评价,及时反映生态环境变化,并向欧共体国家的资源与环境部门提供公共基础性信息服务。1992年,这些国家又联合起来开展了利用遥感技术监测欧共体国家耕地、农作物变化的大型计划(MARS),每两周向欧共体农业部提供报告,已形成运行能力。加拿大于20世纪90年代基本实现了利用遥感、地理信息系统对全国实现周期性的宏观资源调查、更新与制图,及时对全国生态环境进行评价与预警,并向有关资源与生态环境部门提供公共基础性信息服务,带来了巨大的经济、社会及环境效益。近年来,全球土地利用、土地覆盖研究已经成为国际地圈生物圈计划(IGBP)、人与环境计划(HDP)和世界气候研究计划(WCRP)三个国际组织的核心计划。随着遥感及其应用技术、地理信息系统信息处理及管理技术,特别是近年来全球定位系统(GPS)技术和“3S”一体化的发展,资源环境遥感研究工作正向着快速、精确、实用方向发展(刘纪远,1996)。

我国从20世纪80年代开始,在水资源、土地资源、草场资源、森林资源、环境评价、水土流失、土地退化等方面均应用了遥感动态监测技术(任志远等,2003;张增祥,2004)。从1999年开始,国土资源部采用SPOT、Landsat等卫星数据,辅以其他手段,成功监测了全国66个50万人口以上城市在近两三年间土地利用的变化情况,监测面积达71.4×104km2,为城市建设与发展及时提供了现势的基础资料,并对土地变更调查结果进行了复核,为土地执法检查提供了依据(国土资源部,2000)。总的来说,我国遥感动态监测有以下特点:一是采用的数据分辨率较低,且数据类型单一,监测结果大多是定性说明,离实际生产需求尚有一定距离;二是监测指标单一,绝大多数项目在实施中只选择了一种指标;三是动态监测数据的获取技术相对落后,在利用遥感技术进行专题数据获取或者比对中,自动提取技术应用很少,大多需要大量的人工干预来完成。

国内研建的遥感监测系统为数不多,运行化生态环境遥感监测系统少有,且尚处于初级的尝试阶段。环境遥感监测系统(REMSV1.0)是在国家863计划支持下开发的我国首个面向流域水污染及生态环境遥感监测的业务化环境遥感监测软件系统,用以进行省级环境遥感监测业务化运行示范。它针对我国流域水体污染及典型生态状况监测的实际需求,瞄准环境与灾害监测预报小卫星星座主要传感器(高光谱、红外、可见光)的应用,已在水网密布、流域水环境管理任务十分艰巨的江苏境内的淮河、长江、太湖流域实施了运行示范,取得了较好的效果(张琪等,2006)。系统基于业界主流集成开发工具VISUALC++6.0IDE和Windows系列平台,具有强大的海量高光谱数据处理分析能力、直接面向用户的专业应用模块、一体化的数据处理流程和良好的可交互性。国家海洋环境监测中心建设的海洋赤潮卫星遥感监测系统由卫星图像接收天线、图像接收机、图像处理终端和赤潮卫星遥感信息提取软件组成,系统能够进行NOAAAVHRR、SeaWiFS、MODIS、FY-1C、D和HY-1a卫星数据的读取和处理工作,通过内置的赤潮提取算法自动识别出赤潮发生分布区,并完成赤潮卫星监测通报制作。目前,用于赤潮遥感监测的卫星数据主要有两类:一类是气象卫星类,使用其海表温度数据,探测赤潮的环境温度,可见光波段用于辅助分析;另一类是水色卫星数据,主要使用其可见光数据,建立叶绿素模型,进而探测海洋表面浮游生物。海洋赤潮遥感信息提取软件(V1.0)采用IDL可视化开发语言和VC进行程序开发工作,软件具有数据的输入、预处理、信息提取和赤潮灾害信息产品制作的功能。

⑺ 基于遥感影像土地利用分类方法研究

土地利用分类是区分土地利用空间地域组成单元的过程。由于地块所处的自然地理位置不同,受自然条件和社会经济条件的影响,导致土地用途、利用方式、经营特点等各方面的差异。为实现土地资源科学化管理,从土地利用现状出发,根据土地利用的地域分异规律、土地用途、土地利用方式等,将一个国家和地区的土地利用情况,按照一定的层次等级体系划分为若干不同的土地利用类别。

6.1.1 国内外土地利用分类方法历史沿革

国外土地分类至今约有半个多世纪的历史,到 20 世纪 60 年代和 70 年代就出现了各种土地分类系统。国外土地分类多数以土地利用现状作为分类的依据,具体到各国又有差异。如,美国主要以土地功能作为分类的主要依据;英国和德国以土地覆盖(是否开发用于建设用地)作为分类依据;俄罗斯、乌克兰和日本以土地用途作为分类的主要依据;印度则以土地覆盖情况(自然属性)作为划分地类的依据。

国内的土地分类研究起步相对较晚,主要是在改革开放以后。国内土地分类依据与国外基本相同,也是以土地利用现状作为分类依据,如土地利用现状调查(简称土地详查)采用以土地用途、经营特点、利用方式和覆盖特征为分类依据,城镇地籍调查采用以土地用途为分类依据等。

为了满足土地用途管理的需要,国土资源部先后制定了《土地利用现状分类及含义》(1984),《城镇土地分类及含义》(1989),城乡统一的《全国土地分类》(2001)。《全国土地分类》包括《全国土地分类》(试行)和《全国土地分类》(过渡期间适用),第二次土地调查国家发布了《土地利用现状分类》(2007)国家标准等,为全国土地分类提供了标准和依据。

6.1.2 基于遥感影像土地利用分类原则

面向国土资源行业遥感数据的规模化、高效率应用,达到快速规模化获取土地利用信息,实现高精度、高效获取土地利用变化信息,迅速建立满足国家和省级土地资源业务管理需要的国家级、省级土地利用现势信息源需求,在研究分析前期实行的土地利用分类方法的基础上,提出了基于遥感影像的土地利用分类,在项目区予以应用并得到预期良好效果。

基于遥感影像的土地利用分类,是依据遥感影像的色彩、纹理等影像光谱特征、分布特征和地物光谱的可分性,结合土地的自然属性、覆盖特征以及土地用途等因素,从满足基于遥感影像快速获取土地利用信息的需要进行分类。

分类原则:

(1)具有可操作性。要求土地利用分类体系要简便易用、层次分明,要具有适宜遥感影像特点,通过遥感影像所反映色彩、纹理等影像光谱特征以及分布特征,在遥感影像上能够明显区分不同地类类型,适用于人机交互并基本满足计算机自动分类提取土地利用信息。

(2)具有统一性。要与国家土地利用分类体系框架保持一致。

(3)具有兼容性。既能向上归并到国家土地分类标准体系中的某一类型,还可根据管理和应用需要进行续分 , 可实现不同分类标准之间的相同地类进行地类代码转换,与以往的以及现在适用的土地分类进行有效衔接。

(4)具有通用性。即具有时间和空间上的通用性,不同的作业者用不同季节的影像应该能达到精度范围内的同样效果。

为了科学合理利用和管理土地资源,采用遥感影像数据获取土地利用信息,快速掌握土地利用变化情况,根据我省土地利用管理业务实际需要,建立更适合土地利用精确调查和我省遥感监测业务调整与扩展的基于遥感信息土地利用分类标准具有重要的现实意义。

6.1.3 严格管理土地需要快速、规模化获取土地利用变化信息

近年来,随着社会经济的发展,遥感技术也随之得到了快速发展,遥感技术在土地资源的管理中得到了广泛应用。但随着人、地矛盾的日益加大,如何科学、合理地利用土地资源,如何监督新增建设用地及其占用耕地情况和土地规划、土地利用计划执行情况,及时发现和查处土地违法、违规行为,检查土地严格管理和土地调控措施的落实与效果,利用遥感技术快速规模化获取土地利用变化情况成为当今土地资源管理的有效手段。

在土地资源管理中,近几年国家和省不断加大土地执法监察力度,每年都要对耕地和新增建设用地变化情况进行遥感动态监测,利用前、后时相遥感影像(DOM)进行比对,或利用已有土地利用数据库与后时相遥感影像进行比对,发现和提取土地利用变化信息,通过外业核查、后处理和数据汇总,快速获取和宏观分析土地利用、变化的总体情况,及时发现和查处土地违法、违规行为,为土地执法监察提供了有力的技术依据。

6.1.4 原有土地利用分类不适宜快速提取土地利用信息

1984~2007 年间,我国普遍采用的是《土地利用现状分类及含义》(1984)标准、《全国土地分类》(试行)标准和《全国土地分类》(过渡期间适用)标准,采用以上分类标准对于快速提取土地利用分类信息和动态遥感监测存在一些问题和缺陷。

首先,分类过细。《土地利用现状分类及含义》(1984)分为 8 个一级地类,46 个二级地类,河南省根据地方实际在全国土地分类基础上又续分了 12 个三级地类;《全国土地分类》(试行)分为 3 个一级地类,15 个二级地类,71 个三级地类;《全国土地分类》(过渡期间适用)分为 3 个一级地类,10 个二级地类、52 个三级地类。以上分类标准都具有类别繁多、过于细化的特点,无法满足国家和省快速提取和掌握土地利用变化信息的需求。

其次,部分地类在遥感影像上无法区分,如:耕地中水浇地与旱地,园地与林地,独立工矿与特殊用地等,影像纹理、色彩特征极为相近,难以区分。

再次,部分地类与遥感影像无法衔接,如商服用地、工矿仓储用地、公共建筑用地等信息,从遥感影像上无法直接获取。

6.1.5 区域土地利用类型的特殊性

黄河滩地,是指在黄河大堤之间河床滚动所淤积而成的滩地。横穿河南省中北部的黄河属河南省的特有特征,即地上悬河、河床宽度大、非洪水期过水面积小、大堤内近 90% 的滩涂分别由黄河两岸农民在耕作。但是由于黄河河床经常变动等原因,黄河滩地的面积和方位不断发生变化,可种植面积也不稳定。许多滩地至今仍权属不明,经常引发滩地耕种纠纷。另外在黄河滩地种植农作物具有一定的风险性,种植的作物一旦遇到河水上涨被水淹没会造成收成大减甚至颗粒无收。

公路林带,在河南省辖区内,高速公路、国道、省道、干线铁路等主要交通用地两侧均栽种了宽度 30~50 m 不等的速生树种,在地类统计时,国土资源管理部门是按耕地计算,而林业部门则按照林地计算,为准确获取林带数据有必要单独统计,以解决在统计上口径不一、数出多门的问题。

6.1.6 遥感影像上光谱信息,纹理、色彩等特征相近的土地类型

高分辨率卫星遥感影像光谱信息丰富、色彩鲜艳,接近于自然地物的真实色彩。通过遥感影像所反映的纹理、颜色等影像特征和分布特征,大部分土地利用类型在影像上能够明显区分。但是按照全国土地分类,有些地类在影像上呈现相近或相同特征,对于室内判读难以分辨。

(1)水浇地与旱地(图 6-1、图 6-2)。

图 6-1 水浇地(113)

图 6-2 旱地(114)

(2)园地与林地(图 6-3、图 6-4)。

图 6-3 果园(121)

图 6-4 有林地(131)

(3)独立工矿与特殊用地(图 6-5、图 6-6)。

图 6-5 独立工矿(204)

图 6-6 特殊用地(206)

土地利用分类体系还要充分考虑未来遥感技术发展,适用于遥感自动化提取信息的需要,影像特征相近的土地利用类型无法利用自动分类技术进行区分。

⑻ 遥感的分类及应用概况

多方面收集数据可以促进遥感技术的应用,主要包括:利用多平台进行遥感探测,即从不同高度的平台上对同一目标物进行数据采集;利用几个光谱波段进行同步数据采集的多光谱遥感;以及多时相遥感,即对同一目标物在多个时段进行数据的重复采集。

图2.7 多级平台遥感的概念

在多级平台遥感中,卫星数据可以与高空数据、低空数据以及地面观测数据一起进行分析(图2.7)。每个连续的数据源可以为较小的地理区域提供更详细的信息,而由任何小尺度上观测到的数据所提取出的信息通过外推可以应用到更大尺度的观测中。

多级平台遥感技术应用的一个常见实例就是研究森林病虫害的发展趋势、类型确定及其原因分析。从航天图像中,图像解译人员可以得到整个研究区的主要植被类型。利用这些信息,就可以确定感兴趣的特定植物类型的分布面积及其地理位置,然后通过精度更高的图像对有代表性的子区域进行更加细致的研究。在这第二级平台上形成的图像可以把病变的区域描绘出来。然后,在这些地区采集代表性的样品并进行野外调查与验证,证实病变是否存在及其具体原因。

通过地面观察而对所发生的问题进行详细分析之后,研究人员就可以利用遥感数据对更大的区域进行分析评估。通过分析覆盖广大区域的遥感数据,研究人员可以确定病虫害的严重程度及其发生的地理范围。因此,要判断究竟是什么问题时,只能通过详细的地面观测来确定;而同样重要的问题,诸如在哪里、有多少和多么严重,则需要经常通过遥感分析方法来获得最佳的解决方案。

总之,从多个角度对地表情况进行分析要比仅从单个角度分析可以获得更多的信息。与此类似,多光谱成像要比任何单波段成像所采集到的数据能提供更丰富的信息。例如,多光谱扫描仪就是一种可以利用多个光谱波段同步采集数据的传感器。当利用多个波段所记录的数据相互结合进行分析时,要比仅利用单一波段的图像或者把多个波段单独进行分析,能够获得更多的信息。因此,多光谱数据处理方法成为许多遥感应用的核心内容,包括对地球资源类型和条件的判别。

遥感图像的多时相分析就是在多个时段对同一地区进行重复探测,并利用不同时间发生的变化来判别地面条件。这种方法经常被用于监测土地利用的变化,例如城市边缘地区所发生的城市化进程。实际上,区域土地利用的调查往往需要多传感器、多光谱、多平台以及多时相的数据采集以满足不同的应用需求。

在应用遥感技术的过程中,不仅要将数据的获取与分析解译技术相结合,遥感技术与“常规”技术也一样需要进行必要的结合。必须意识到,遥感技术本身只是一种工具,必须与其他技术配合才能发挥其最佳作用,其本身的发展并不是最终的目的。例如,遥感数据被广泛应用在基于计算机的地理信息系统(GIS)中。只要它们能在地理上被引用,GIS环境允许综合、分析和交流实质上是无限的资源和各类型的生物物理学和社会经济学的数据。遥感技术可以被认为是这种应用系统的“眼睛”,能够提供来自航空或航天有利位置的、重复的、概要的,甚至是全球的地球资源景象。

遥感为人们提供了看到不可见的世界的能力。人们能够开始在“生态系统基础”上来观察环境的组成,以至于遥感数据能够超越当前所收集的大多数资源数据的文化边界。此外,遥感也超越了学科的界限,其应用范围如此广泛,以至于没有人能够完全掌握这一领域。毫无疑问,遥感技术将继续在自然资源管理中占据越来越重要的地位,其应用也将越来越广泛。传感器、空间平台、数据传输系统、GPS、数字图像处理系统和GIS等技术水平正在日益提高。同时,人们也目睹了各种遥感手段从纯粹的科学研究活动向商业应用服务转化的革命进程。最重要的是,人们逐渐意识到全球资源库各基本要素之间的相互依赖及其脆弱性,也意识到遥感技术在地球资源普查、监测和管理以及建立模型并帮助人们理解全球生态系统中的重要作用。

⑼ 各种遥感数据分类方法比较

常用的遥感数据的专题分类方法有多种,从分类判别决策方法的角度可以分为统计分类器、神经网络分类器、专家系统分类器等;从是否需要训练数据方面,又可以分为监督分类器和非监督分类器。

一、统计分类方法

统计分类方法分为非监督分类方法和监督分类方法。非监督分类方法不需要通过选取已知类别的像元进行分类器训练,而监督分类方法则需要选取一定数量的已知类别的像元对分类器进行训练,以估计分类器中的参数。非监督分类方法不需要任何先验知识,也不会因训练样本选取而引入认为误差,但非监督分类得到的自然类别常常和研究感兴趣的类别不匹配。相应地,监督分类一般需要预先定义分类类别,训练数据的选取可能会缺少代表性,但也可能在训练过程中发现严重的分类错误。

1.非监督分类器

非监督分类方法一般为聚类算法。最常用的聚类非监督分类方法是 K-均值(K-Means Algorithm)聚类方法(Duda and Hart,1973)和迭代自组织数据分析算法(ISODATA)。其算法描述可见于一般的统计模式识别文献中。

一般通过简单的聚类方法得到的分类结果精度较低,因此很少单独使用聚类方法进行遥感数据专题分类。但是,通过对遥感数据进行聚类分析,可以初步了解各类别的分布,获取最大似然监督分类中各类别的先验概率。聚类分析最终的类别的均值矢量和协方差矩阵可以用于最大似然分类过程(Schowengerdt,1997)。

2.监督分类器

监督分类器是遥感数据专题分类中最常用的一种分类器。和非监督分类器相比,监督分类器需要选取一定数量的训练数据对分类器进行训练,估计分类器中的关键参数,然后用训练后的分类器将像元划分到各类别。监督分类过程一般包括定义分类类别、选择训练数据、训练分类器和最终像元分类四个步骤(Richards,1997)。每一步都对最终分类的不确定性有显着影响。

监督分类器又分为参数分类器和非参数分类器两种。参数分类器要求待分类数据满足一定的概率分布,而非参数分类器对数据的概率分布没有要求。

遥感数据分类中常用的分类器有最大似然分类器、最小距离分类器、马氏距离分类器、K-最近邻分类器(K-Nearest neighborhood classifier,K-NN)以及平行六面体分类器(parallelepiped classifier)。最大似然、最小距离和马氏距离分类器在第三章已经详细介绍。这里简要介绍 K-NN 分类器和平行六面体分类器。

K-NN分类器是一种非参数分类器。该分类器的决策规则是:将像元划分到在特征空间中与其特征矢量最近的训练数据特征矢量所代表的类别(Schowengerdt,1997)。当分类器中 K=1时,称为1-NN分类器,这时以离待分类像元最近的训练数据的类别作为该像元的类别;当 K >1 时,以待分类像元的 K 个最近的训练数据中像元数量最多的类别作为该像元的类别,也可以计算待分类像元与其 K 个近邻像元特征矢量的欧氏距离的倒数作为权重,以权重值最大的训练数据的类别作为待分类像元的类别。Hardin,(1994)对 K-NN分类器进行了深入的讨论。

平行六面体分类方法是一个简单的非参数分类算法。该方法通过计算训练数据各波段直方图的上限和下限确定各类别像元亮度值的范围。对每一类别来说,其每个波段的上下限一起就形成了一个多维的盒子(box)或平行六面体(parallelepiped)。因此 M 个类别就有M 个平行六面体。当待分类像元的亮度值落在某一类别的平行六面体内时,该像元就被划分为该平行六面体代表的类别。平行六面体分类器可以用图5-1中两波段的遥感数据分类问题来表示。图中的椭圆表示从训练数据估计的各类别亮度值分布,矩形表示各类别的亮度值范围。像元的亮度落在哪个类别的亮度范围内,就被划分为哪个类别。

图5-1 平行六面体分类方法示意图

3.统计分类器的评价

各种统计分类器在遥感数据分类中的表现各不相同,这既与分类算法有关,又与数据的统计分布特征、训练样本的选取等因素有关。

非监督聚类算法对分类数据的统计特征没有要求,但由于非监督分类方法没有考虑任何先验知识,一般分类精度比较低。更多情况下,聚类分析被作为非监督分类前的一个探索性分析,用于了解分类数据中各类别的分布和统计特征,为监督分类中类别定义、训练数据的选取以及最终的分类过程提供先验知识。在实际应用中,一般用监督分类方法进行遥感数据分类。

最大似然分类方法是遥感数据分类中最常用的分类方法。最大似然分类属于参数分类方法。在有足够多的训练样本、一定的类别先验概率分布的知识,且数据接近正态分布的条件下,最大似然分类被认为是分类精度最高的分类方法。但是当训练数据较少时,均值和协方差参数估计的偏差会严重影响分类精度。Swain and Davis(1978)认为,在N维光谱空间的最大似然分类中,每一类别的训练数据样本至少应该达到10×N个,在可能的条件下,最好能达到100×N以上。而且,在许多情况下,遥感数据的统计分布不满足正态分布的假设,也难以确定各类别的先验概率。

最小距离分类器可以认为是在不考虑协方差矩阵时的最大似然分类方法。当训练样本较少时,对均值的估计精度一般要高于对协方差矩阵的估计。因此,在有限的训练样本条件下,可以只估计训练样本的均值而不计算协方差矩阵。这样最大似然算法就退化为最小距离算法。由于没有考虑数据的协方差,类别的概率分布是对称的,而且各类别的光谱特征分布的方差被认为是相等的。很显然,当有足够训练样本保证协方差矩阵的精确估计时,最大似然分类结果精度要高于最小距离精度。然而,在训练数据较少时,最小距离分类精度可能比最大似然分类精度高(Richards,1993)。而且最小距离算法对数据概率分布特征没有要求。

马氏距离分类器可以认为是在各类别的协方差矩阵相等时的最大似然分类。由于假定各类别的协方差矩阵相等,和最大似然方法相比,它丢失了各类别之间协方差矩阵的差异的信息,但和最小距离法相比较,它通过协方差矩阵保持了一定的方向灵敏性(Richards,1993)。因此,马氏距离分类器可以认为是介于最大似然和最小距离分类器之间的一种分类器。与最大似然分类一样,马氏距离分类器要求数据服从正态分布。

K-NN分类器的一个主要问题是需要很大的训练数据集以保证分类算法收敛(Devijver and Kittler,1982)。K-NN分类器的另一个问题是,训练样本选取的误差对分类结果有很大的影响(Cortijo and Blanca,1997)。同时,K-NN分类器的计算复杂性随着最近邻范围的扩大而增加。但由于 K-NN分类器考虑了像元邻域上的空间关系,和其他光谱分类器相比,分类结果中“椒盐现象”较少。

平行六面体分类方法的优点在于简单,运算速度快,且不依赖于任何概率分布要求。它的缺陷在于:首先,落在所有类别亮度值范围之外的像元只能被分类为未知类别;其次,落在各类别亮度范围重叠区域内的像元难以区分其类别(如图5-1所示)。

各种统计分类方法的特点可以总结为表5-1。

二、神经网络分类器

神经网络用于遥感数据分类的最大优势在于它平等地对待多源输入数据的能力,即使这些输入数据具有完全不同的统计分布,但是由于神经网络内部各层大量的神经元之间连接的权重是不透明的,因此用户难以控制(Austin,Harding and Kanellopoulos et al.,1997)。

神经网络遥感数据分类被认为是遥感数据分类的热点研究领域之一(Wilkinson,1996;Kimes,1998)。神经网络分类器也可分为监督分类器和非监督分类器两种。由于神经网络分类器对分类数据的统计分布没有任何要求,因此神经网络分类器属于非参数分类器。

遥感数据分类中最常用的神经网络是多层感知器模型(multi-layer percep-tron,MLP)。该模型的网络结构如图5-2所示。该网络包括三层:输入层、隐层和输出层。输入层主要作为输入数据和神经网络输入界面,其本身没有处理功能;隐层和输出层的处理能力包含在各个结点中。输入的结构一般为待分类数据的特征矢量,一般情况下,为训练像元的多光谱矢量,每个结点代表一个光谱波段。当然,输入结点也可以为像元的空间上下文信息(如纹理)等,或多时段的光谱矢量(Paola and Schowengerdt,1995)。

表5-1 各种统计分类器比较

图5-2 多层感知器神经网络结构

对于隐层和输出层的结点来说,其处理过程是一个激励函数(activation function)。假设激励函数为f(S),对隐层结点来说,有:

遥感信息的不确定性研究

其中,pi为隐层结点的输入;hj为隐层结点的输出;w为联接各层神经之间的权重。

对输出层来说,有如下关系:

遥感信息的不确定性研究

其中,hj为输出层的输入;ok为输出层的输出。

激励函数一般表达为:

遥感信息的不确定性研究

确定了网络结构后,就要对网络进行训练,使网络具有根据新的输入数据预测输出结果的能力。最常用的是后向传播训练算法(Back-Propagation)。这一算法将训练数据从输入层进入网络,随机产生各结点连接权重,按式(5-1)(5-2)和(5-3)中的公式进行计算,将网络输出与预期的结果(训练数据的类别)相比较并计算误差。这个误差被后向传播的网络并用于调整结点间的连接权重。调整连接权重的方法一般为delta规则(Rumelhart,et al.,1986):

遥感信息的不确定性研究

其中,η为学习率(learning rate);δk为误差变化率;α为动量参数。

将这样的数据的前向和误差后向传播过程不断迭代,直到网络误差减小到预设的水平,网络训练结束。这时就可以将待分类数据输入神经网络进行分类。

除了多层感知器神经网络模型,其他结构的网络模型也被用于遥感数据分类。例如,Kohonen自组织网络被广泛用于遥感数据的非监督聚类分析(Yoshida et al.,1994;Schaale et al.,1995);自适应共振理论(Adaptive Resonance Theory)网络(Silva,S and Caetano,M.1997)、模糊ART图(Fuzzy ART Maps)(Fischer,M.M and Gopal,S,1997)、径向基函数(骆剑承,1999)等也被用于遥感数据分类。

许多因素影响神经网络的遥感数据分类精度。Foody and Arora(1997)认为神经网络结构、遥感数据的维数以及训练数据的大小是影响神经网络分类的重要因素。

神经网络结构,特别是网络的层数和各层神经元的数量是神经网络设计最关键的问题。网络结构不但影响分类精度,而且对网络训练时间有直接影响(Kavzoglu and Mather,1999)。对用于遥感数据分类的神经网络来说,由于输入层和输出层的神经元数目分别由遥感数据的特征维数和总的类别数决定的,因此网络结构的设计主要解决隐层的数目和隐层的神经元数目。一般过于复杂的网络结构在刻画训练数据方面较好,但分类精度较低,即“过度拟合”现象(over-fit)。而过于简单的网络结构由于不能很好的学习训练数据中的模式,因此分类精度低。

网络结构一般是通过实验的方法来确定。Hirose等(1991)提出了一种方法。该方法从一个小的网络结构开始训练,每次网络训练陷入局部最优时,增加一个隐层神经元,然后再训练,如此反复,直到网络训练收敛。这种方法可能导致网络结构过于复杂。一种解决办法是每当认为网络收敛时,减去最近一次加入的神经元,直到网络不再收敛,那么最后一次收敛的网络被认为是最优结构。这种方法的缺点是非常耗时。“剪枝法”(pruning)是另一种确定神经网络结构的方法。和Hirose等(1991)的方法不同,“剪枝法”从一个很大的网络结构开始,然后逐步去掉认为多余的神经元(Sietsma and Dow,1988)。从一个大的网络开始的优点是,网络学习速度快,对初始条件和学习参数不敏感。“剪枝”过程不断重复,直到网络不再收敛时,最后一次收敛的网络被认为最优(Castellano,Fanelli and Pelillo,1997)。

神经网络训练需要训练数据样本的多少随不同的网络结构、类别的多少等因素变化。但是,基本要求是训练数据能够充分描述代表性的类别。Foody等(1995)认为训练数据的大小对遥感分类精度有显着影响,但和统计分类器相比,神经网络的训练数据可以比较少。

分类变量的数据维对分类精度的影响是遥感数据分类中的普遍问题。许多研究表明,一般类别之间的可分性和最终的分类精度会随着数据维数的增大而增高,达到某一点后,分类精度会随数据维的继续增大而降低(Shahshahani and Landgrebe,1994)。这就是有名的Hughes 现象。一般需要通过特征选择去掉信息相关性高的波段或通过主成分分析方法去掉冗余信息。分类数据的维数对神经网络分类的精度同样有明显影响(Battiti,1994),但Hughes 现象没有传统统计分类器中严重(Foody and Arora,1997)。

Kanellopoulos(1997)通过长期的实践认为一个有效的ANN模型应考虑以下几点:合适的神经网络结构、优化学习算法、输入数据的预处理、避免振荡、采用混合分类方法。其中混合模型包括多种ANN模型的混合、ANN与传统分类器的混合、ANN与知识处理器的混合等。

三、其他分类器

除了上述统计分类器和神经网络分类器,还有多种分类器被用于遥感图像分类。例如模糊分类器,它是针对地面类别变化连续而没有明显边界情况下的一种分类器。它通过模糊推理机制确定像元属于每一个类别的模糊隶属度。一般的模糊分类器有模糊C均值聚类法、监督模糊分类方法(Wang,1990)、混合像元模型(Foody and Cox,1994;Settle and Drake,1993)以及各种人工神经网络方法等(Kanellopoulos et al.,1992;Paola and Schowengerdt,1995)。由于模糊分类的结果是像元属于每个类别的模糊隶属度,因此也称其为“软分类器”,而将传统的分类方法称为“硬分类器”。

另一类是上下文分类器(contextual classifier),它是一种综合考虑图像光谱和空间特征的分类器。一般的光谱分类器只是考虑像元的光谱特征。但是,在遥感图像中,相邻的像元之间一般具有空间自相关性。空间自相关程度强的像元一般更可能属于同一个类别。同时考虑像元的光谱特征和空间特征可以提高图像分类精度,并可以减少分类结果中的“椒盐现象”。当类别之间的光谱空间具有重叠时,这种现象会更明显(Cortijo et al.,1995)。这种“椒盐现象”可以通过分类的后处理滤波消除,也可以通过在分类过程中加入代表像元邻域关系的信息解决。

在分类过程中可以通过不同方式加入上下文信息。一是在分类特征中加入图像纹理信息;另一种是图像分割技术,包括区域增长/合并常用算法(Ketting and Landgrebe,1976)、边缘检测方法、马尔可夫随机场方法。Rignot and Chellappa(1992)用马尔可夫随机场方法进行SAR图像分类,取得了很好的效果,Paul Smits(1997)提出了保持边缘细节的马尔可夫随机场方法,并用于SAR图像的分类;Crawford(1998)将层次分类方法和马尔可夫随机场方法结合进行SAR图像分类,得到了更高的精度;Cortijo(1997)用非参数光谱分类对遥感图像分类,然后用ICM算法对初始分类进行上下文校正。

⑽ 高光谱影像分类技术研究现状

遥感影像分类是对影像中包含的多个目标地物进行区分,并给出单个像元的对应特征类别。按照是否需要先验样本,分为监督分类和非监督分类。

1.2.1.1 高光谱影像监督分类方法

针对高光谱影像监督分类,可以把现有的分类算法分为光谱特征匹配分类、统计模型分类、同质地物提取分类、纹理信息辅助分类、面向对象分类、决策树分类、模糊聚类方法、专家系统分类、神经网络分类、支持向量机分类、流行学习分类、集成学习分类、基于云模型分类等方法。

(1)光谱特征匹配分类方法

根据已知光谱数据,采用匹配分析算法区分待测光谱的类别,从而实现影像分类。它可以是整波段光谱匹配,也可以是部分感兴趣波段光谱匹配。如Geotz(1990)提出了二值编码匹配算法,通过设定阈值,将像元光谱转换为编码序列,在一定程度上压缩了原始光谱,但也降低了光谱区分度。常见的二值编码算法有分段编码、多门限编码和特征波段编码等。Clark et al.(1998)提出了一种拟合算法,通过计算像元光谱与样本光谱的拟合度来确定像元隶属于样本的概率。Kruse et al.(1993a)通过计算待测光谱和参考光谱的矢量夹角来比较其相似程度,并认为两条光谱的角度越小,表明相近程度越大。另外包络线去除法影像分类也是一种光谱匹配方法,它是通过对单个像元光谱进行包络线生成,并通过包络线比值法、光谱微分技术和曲线拟合技术,突出光谱曲线的峰谷特性,进而提取出反映某个问题的敏感波段,之后利用敏感波段进行分类研究。白继伟等(2003)认为,包络线去除法分类技术可以很好地抑制噪声,提高分类准确率,特别适用于植被识别。Meeret al.(1997)设计了交叉相关光谱匹配技术(Cross Correlogram Spectral Mapping,CCSM),该算法通过计算测试光谱和参考光谱的相关系数、偏度系数和相关显着性标准来综合评价光谱的匹配程度。Kruse et al.(1990)利用半波长宽度、波长位置和吸收深度等特征参数进行光谱匹配。

(2)统计模型分类方法

McIver et al.(2002)认为最大似然分类是最常用的基于统计模型的分类方法,该方法假设各地物在影像上出现的概率服从多维正态分布(Swain et al.,1978)。杨国鹏等(2008)构建了核Fisher判别分析方法,通过分类实验,认为该方法优于SVM分类方法。

(3)基于同质地物提取的分类方法

一般的分类方法往往没有考虑待测像元与其周围相邻像元的关系,因为受影像空间分辨率的限制,单像元光谱所代表的地面信息一小部分来自于本地物像元,其他很大一部分来自于其周围相邻像元。Kettig et al.(1976)设计了基于同质地物提取与分类方法(Ex-traction and Classification of Homogeneous Objects,ECHO),该方法充分考虑了待测像元和临近像元的关系。

(4)纹理信息辅助下的分类方法

纹理信息是地物特性的有效表达,基于纹理信息可识别不同地物。Haralick et al.(1973)提出的灰度共生矩阵(Gray Level Co-occurrence Matrix,GLCM)是一种应用广泛的纹理分析技术,通过计算影像统计特性,来表达其灰度密度分布规律。基于变换的傅立叶分析将影像空间域信号变换到频率域(Augusteijn et al.,1995),利用能量谱、振幅谱和相位谱对影像进行纹理特性描述,用以分类。舒宁(2004)利用主成分变换,提取影像纹理特征,进行分类,他们认为PCA可以提高分类精度。

(5)面向对象的分类方法

区别于传统的基于像元的分类方法,面向对象分类方法的处理单元为图像对象,也称图斑对象。Benz et al.(2004)将图斑对象定义为空间形态和光谱特征相似的独立区域。影像分割技术是面向对象分类的实质,影像分割技术的发展在一定程度上决定了面向对象分类技术的发展。Kwon et al.(2007)设计了完全四叉树(Quad-tree Decomposition,QTD)高光谱影像分割方法。Shah et al.(2002)提出了改进的独立成分分析高光谱影像分割方法。Acito et al.(2003)提出了基于高斯混合模型(Gaussian Mixture Model,GMM)的统计分割方法。

(6)决策树分类方法

决策树分类法通过制定每一层树节点的判别规则,逐层进行比较分类。Hansen et al.(1996)认为决策树分类对分布特性不规则、不可参数化的训练数据有较好的分类效果。王圆圆等(2007)利用决策树对高光谱数据进行分类研究,认为经特征选择后,可使其分类精度提高。

(7)模糊聚类方法

模糊分类基于事物表现的不确定性,通过分析这种模糊性,概括和发现规律从而实现分类。遥感影像像元也存在某种模糊性,针对遥感影像的模糊分类最初由Wang(1990)和Carpenteret al.(1992)人提出。闫永忠等(2005)结合绝对指数,利用模糊聚类法对高光谱影像分类,分类精度较高。

(8)专家系统分类方法

专家系统是利用多种经验知识和判别规则,借助于计算机分析对比待测知识和专家知识的匹配程度来进行分类。国外,很多学者开发了高光谱影像专家分类系统,如Lyon etal.(1990)研制了Stanexpert专家系统,对矿物进行自动识别。利用分类规则,Kruse etal.(1993b)开发了功能强大的光谱识别系统。Kimes则开发了VEG系统用于植被光谱识别。

(9)神经网络分类方法

人工神经网络(Artificial Neural Network,ANN)利用数学和物理方法,从信息处理的角度,对人脑的思维过程进行模拟,并建立某种简化模型(韩力群,2006)。在高光谱遥感领域,ANN多用于物质生化组分的定量分析。Toivanen et al.(2003)利用SOFM神经网络从多光谱影像中提取边缘,并指出该方法可应用于大数据量影像边缘的提取;Moshou et al.(2006)根据5137个叶片的光谱数据,利用SOFM神经网络识别小麦早期黄锈病,准确率高达99%。谭琨等(2008)通过提取OMIS II高光谱影像数据的特征成分,组成60维分量数据,分类精度达到69.27%。宋江红等(2006)提出了基于独立成分分析和神经网络结合的高光谱数据分类。周前祥等(2005)等设计了一种非线性网络,根据高光谱数据的纹理和光谱特征进行分类。

(10)支持向量机分类方法

支持向量机由Vapnik(1995)提出,SVM应用在高光谱影像分类方面,国内学者做了很多研究,如,马毅等(2006)基于航空高光谱数据,提出了基于SVM的赤潮生物优势物种识别模型,认为该方法不受数据的高维限制。李祖传等(2011)提出了一种改进的随机场模型SVM-CRF,并对AVIRIS高光谱数据进行了分类实验,精度较高。李海涛等(2007)提出了基于最小噪声分离变换和SVM的高光谱影像分类方法,并采用OMIS1数据进行实验研究,总体分类精度高达94.85%。沈照庆等(2009)利用最近点算法(NPA),提出了无惩罚参数的SVM算法,通过对AVIRIS数据的分类实验,认为该方法提高了分类精度和速度。

(11)流行学习分类方法

流行学习(Manifold Learning,ML)是从高维采样数据中恢复低维流行结构,并求出相应的嵌入映射,实现数据维数约简。流行学习是模式识别的基本方法,有线性流行学习和非线性流行学习。其算法有等距映射、拉普拉斯映射、局部线性嵌入、局部切空间排列算法等。目前,国内很少有人研究其在高光谱影像分类方面的应用。Ma L et al.(2010a~c)认为流行学习比较适用于二分类问题,可以区分复杂地物,他们研究了基于k临近算法的流行学习方法、局部切空间排列的流行学习方法及广义监督分类的流行学习方法在高光谱影像异常检测和分类中的应用。杜培军等(2011)利用全局化等距映射(Iso-map)算法进行高光谱数据降维,效果良好。

(12)集成学习分类方法

集成学习在学习时采用多个学习器,并将输出结果按照自定义的规则进行综合,进而获得优于单个学习器的效果。集成学习方法可分为异态集成(如,叠加法和元学习法)和同态集成(朴素贝叶斯集成、决策树集成、人工神经网络集成、K-近邻集成等)。集成学习作为机器学习的前沿,目前,应用在遥感图像处理方面的研究甚少,而在高光谱影像分类方面更是凤毛麟角,但是该技术在本领域的研究前景非常广阔。

(13)基于云模型的分类方法

李万臣等(2011)提出了一种基于云模型的高光谱影像分类技术,通过生成地物样本的多维云模型,结合极大判别法则进行样本分类,分类精度较高。

1.2.1.2 高光谱影像非监督分类方法

针对高光谱影像非监督分类,现有的算法主要为K均值算法、ISODATA算法。

(1)K均值法

Tou和Gonzalez(1974)认为K均值算法是在待分类问题的类别数已知的情况下,从样本中确定聚类核心,样本其他元素按某种方式预先分到不同的类别中,然后进行聚类中心的调整,当中心稳定后结束聚类。

(2)ISODATA法

Ball和Hall(1965)提出了一种迭代自组织聚类方法(Iterative Self-organizing Data Analysis Techniques Algorithm,ISODATA)。该方法自主对地物类别进行“合并” 与“分裂”,从而得到较好的分类结果。

阅读全文

与遥感影像分类方法的研究现状相关的资料

热点内容
工业盐使用方法 浏览:140
锻炼基础腹肌方法视频教程 浏览:201
介入方法是什么意思 浏览:645
汽车阻尼器的安装方法 浏览:153
论文设计并运用相关研究方法 浏览:558
js封装的方法如何在页面内调用 浏览:539
定量和定性研究方法的种类 浏览:950
腰间盘如何锻炼方法 浏览:608
过河的简单方法 浏览:587
传播研究方法教材 浏览:281
骨科治疗腱鞘炎的方法 浏览:596
电脑突破网络限速的方法 浏览:158
溶液中锂离子浓度检测方法 浏览:162
红杉树树皮的食用方法 浏览:732
剔除离散值计算方法 浏览:622
seo有哪些重要的方法 浏览:739
阻止电瓶车上楼线路安装方法 浏览:31
古代陶瓷快速降温的方法 浏览:414
什么方法能快速开车 浏览:69
婴儿吐奶用什么方法解决 浏览:738