1. 列方程解应用题时常用的分析方法有()和()两种方法帮助寻找等量关系
列方程解应用题时常用的分析方法有(数量关系)和(公式)两种方法帮助寻找等量关系
2. 列方程解应用题时,常见设未知数的方法有几种
常用方法有两种:
①直接设元法:设所求的量为未知数;
②间接设元法:设与所求量有关的量为未知数.
3. 列方程解应用题的几点技巧
首先是审题,确定未知数。
审题,理解题意。就是全面分析已知数与已知数、已知数与未知数的关系。特别要把牵涉到的一些概念术语弄清,如同向、相向、增加到、增加了等,并确立未知数。即用x表示所求的数量或有关的未知量。在小学阶段同学们遇到的应用题并不十分复杂,一般只需要直接把要求的数量设为未知数,如:“学校图书馆里科技书的本数比文艺书的2倍多47本,科技书有495本,文艺书有多少本?”在这道题目中只有“文艺书的数量”不知道,所以只要设“文艺书的数量”为未知数x就可以了。
寻找等量关系,列出方程是关键。
“含有未知数的等式称为方程”,因而
“等式”是列方程必不可少的条件。所以寻找等量关系是解题的关键。如上题中“科技书得本数比文艺书的2倍多47本”这是理解本题题目意思的关键。仔细审题发现“文艺书本数的2倍加上47本就是科技书的本数”故本题的等量关系为:文艺书本数的2倍+47=科技书的本数。上题中的方程可以列为:“2x+47=495”
解方程,求出未知数得值。
解方程时应当注意把等号对齐。如:
2x+47=495
2x+47-47=495-47←应将“2x”看做一个整体。
2x=448
2x÷2=448÷2
x=224
检验也是列方程解应用题中必不可少的。
检验并写出答案.检验时,一是要将所求得的未知数的值代入原方程,检验方程的解是否正确;二是检查所求得的未知数的值是否符合题意,不符合题意的要舍去,保留符合题意的解.
1)将求得的方程的解代入原方程中检验。如果左右两边相等,说明方程解正确了。如上题的检验过程为:
检验:把x=224代入原方程。
左边=2×224+47右边=495
=495
因为左边=右边,所以x=224是方程2x+47=495的解。
2)文艺书本数的2倍+47=科技书的本数
将224代入以上等式,等式成立。故所求得的未知数的值符合题意。
总之,以上几点技巧都是列方程解应用题的关键环节的技巧,只要大家利用这些技巧加强练习,就一定能闯过列方程解应用题这道关。在千变万化的应用问题中,我们若能抓住以上几点,以不变应万变,则问题就可迎刃而解。
4. 列方程解应用题的几点技巧
摘要 首先是审题,确定未知数。
5. 列方程解应用题时,常见设未知数的方法有几种
常用方法有两种:
①直接设元法:设所求的量为未知数;
②间接设元法:设与所求量有关的量为未知数。
6. 小学列方程解应用题基本步骤
小学列方程解应用题基本步骤
基础教育一直是最受学校和家长关注的,最为基础教育重中之重的初等教育,更是得到更多的重视。数学网为大家准备了列方程解应用题的步骤和方法,希望能帮助大家做好小升初的复习备考,考入重点初中院校!
小升初数学列方程解应用题的步骤和方法
1 列方程解应用题的意义
* 用方程式去解答应用题求得应用题的未知量的方法。
2 列方程解答应用题的步骤
* 弄清题意,确定未知数并用x表示;
* 找出题中的数量之间的相等关系;
* 列方程,解方程;
* 检查或验算,写出答案。
3列方程解应用题的方法
* 综合法:先把应用题中已知数(量)和所设未知数(量)列成有关的代数式,再找出它们之间的`等量关系,进而列出方程。这是从部分到整体的一种 思维过程,其思考方向是从已知到未知。
* 分析法:先找出等量关系,再根据具体建立等量关系的需要,把应用题中已知数(量)和所设的未知数(量)列成有关的代数式进而列出方程。这是从整体到部分的一种思维过程,其思考方向是从未知到已知。
4列方程解应用题的范围
小学范围内常用方程解的应用题:
a一般应用题;
b和倍、差倍问题;
c几何形体的周长、面积、体积计算;
d 分数、百分数应用题;
e 比和比例应用题。
小升初考试是小学生进入初等重点初中院校的一次重要考试,希望大家都能够认真复习,同时也希望我们准备的列方程解应用题的步骤和方法能让大家在小升初的备考过程助大家一臂之力!
;7. 列方程解应用题怎样分析数量关系
一、列方程解应用题的基本步骤
1、审题,即分析题中已知什么,未知什么,明确各数量之间的关系; 2、设未知数,即通过认真审题,分析题中的数量关系,用字母表示题目中的未知数; 3、寻找相等关系,即借助图表分析题中的已知量与未知量之间的关系,列出等式两边的式子,注意使它们都表示一个相等或相同的量; 4、列方程; 5、解方程; 6、写出答案,写答案时,必须检查方程的解是否符合应用题的实际意义,进行取舍,并注意单位。 由此可见,在具体列方程解决实际问题时,审题是基础,列方程是关键,找相等关系是难点。找准题目中的相等关系,可以借助线段、表格、图形等方法进行分析。
二、归纳一些常见的数量关系
1、和、差、被、分问题:(1)多少关系:通过关键词语“多、少、和、差、不足、剩余„„”来体现。(2)倍数关系:通过关键词语“是几倍,增加几倍,增加到几倍,增加百分之几,增长率„„”来体现。 2、体积变形问题:图形的面积变了,周长没变;原料体积=成品体积。 3、劳力调配问题:这类问题要搞清楚人数的变化,常见题型有:(1)既有调入又有调出。(2)只有调入没有调出。(3)只有调出没有调入。 4、数字问题:(1)要搞清楚数的表示方法:一个三位数的百位数字为a,十位数字为b,个位数字为c(其中a,b,c均为整数,且1≤a≤9,0≤b≤9,0≤c≤9),则这个三位数表示为100a+10b+c。(2)数字问题中一些表示:偶数用2n表示,奇数用2n+1或2n-1表示(n为整数)。 5、工程问题:工作量=工作效率×工作时间。 6、行程问题:(1)、行程问题中的三个基本量及其关系:路程=速度×时间。(2)基本类型:相遇问题,追及问题等。 7、商品销售问题:商品利润=商品售价-商品进价=商品标价×折扣率-商品进价=商品进价×商品利润率,商品利润率=商品利润÷商品进价×100%,商品售价=商品标价×折扣率。
三、需要注意的几个问题 1、在审题和寻找等量关系时,可在草纸上进行,书面格式中主要写“设”“列”“解”“答”四个步骤。 2、所列方程必须满足:(1)方程两边表示的是同类量。(2)同类量的单位要统一。(3)方程两边的数值要相等。 3、对于求得的方程的解,必须检验它是否符合实际意义或题意,再作答,作答时不要漏掉单位。 四、列方程解实际问题易错点剖析
易错点一、审题不清,误解关键词、句而出错 例1、绿豆发芽了,总量增加到(了)5.5倍。想要得到286千克豆芽,需要绿豆多少千克?
易错点二、列方程时,方程两边同类量的单位不统一而出错 例2、一队学生去校外参加劳动,以每小时4km的速度步行前进走了半小时,学校有急事要通知队长,通讯员立即骑自行车以每小时1km的速度按原路追上去,通讯员需要多少分钟才能追上学生队伍? 易错点三、审题不清楚,相等关系找不准而出错 例3、第一车间人数比第二车间人数的4/5少30,如果从第二车间调10人到第一车间去,那么第一车间的人数就是第二车间人数(不是原人数)的3/4,求两车间的原人数。
易错点四、考虑不周,忽视分类讨论而出错 例4、在一条笔直的公路上有相距18km的A,B两个村庄,A村的一辆汽车的速度为54km/h,B村的一辆汽车的速度为36km/h,两车同时同向而行(慢车在前?快车在前?),经过几小时两车相距45km?