导航:首页 > 研究方法 > 工程数据分析方法培训教材

工程数据分析方法培训教材

发布时间:2022-09-10 06:32:21

① 数据分析师需要学哪些课程

通常认为“数据分析”是以下学科的组合:1.计算机科学2.统计3.领域专业知识

学习课程:

一:计算机科学

  1. 计算机科学与编程入门(使用Python)

  2. 计算机系统工程:本课程涵盖有关计算机软件和硬件系统工程,控制复杂性的技术的主题;使用客户端-服务器设计,虚拟内存和线程的强大模块化;网络;并行活动的原子性和协调性;恢复和可靠性;隐私,安全性和加密;和计算机系统对社会的影响。

  3. 计算结构:数字系统工程简介。从MOS晶体管开始,该课程开发了一系列构件-逻辑门,组合电路和顺序电路,有限状态机,计算机,最后是完整的系统(包括硬件和软件)。

  4. 算法简介:它涵盖了用于解决计算问题的常见算法,算法范例和数据结构。

  5. 人工智能:本课程向学生介绍人工智能的基本知识表示,问题解决方法和学习方法。

  6. 使用C / C ++ / Java进行面向对象的编程

二:数理统计

  1. 应用数学:面向计算机科学和工程的离散数学简介。

  2. 概率与统计简介(使用R编程):本课程对应用中的概率和统计进行了基础介绍。主题包括:随机变量,概率分布,贝叶斯推断,假设检验,置信区间和线性回归。

  3. 线性代数(使用R编程或其他数学工具):本课程涵盖矩阵理论和线性代数

  4. 统计/机器学习(使用R编程):介绍数据分析的核心算法,例如线性和非线性回归的类型,分类技术,例如逻辑回归,朴素贝叶斯,SVM,决策树(香草决策树,随机森林,增强),无监督学习方法(例如聚类,神经网络介绍)

  5. 高级机器学习(使用Python编程):专为对人工智能有浓厚兴趣的学生而设,侧重于图像/文本处理的神经网络。

三:领域专长

理想情况下,这些应该基于工作兴趣/领域,以便每个学生都选择一个专门领域(例如,Web开发,移动应用程序开发,数据分析,营销分析,供应链,财务,制造等)。

数据分析专业课程这里的核心主题应该是:

  1. 数据收集和清理:这应该包括使用开源工具(例如Python / R)从网上抓取数据,连接到数据库等。此外,数据清理和ETL概念(例如重复数据删除,合并,丢失的数据估计技术也无法创建)分析数据集。

  2. 数据可视化和报告:使用SAS / SAP或R / Python等工具创建BI仪表板,通过可视化和数据故事演示来展示见解并数据分析。

  3. 数据分析应用程序1/2:以业务为中心完成端到端数据分析项目。在最后几年中,应该重复两次该主题。它应该非常重要地包括连接到实际数据库和在生产中部署模型,而不仅仅是对静态数据集的临时数据分析。

  4. 高级数据计算:此处的学生应使用开源和专有工具(例如Hadoop / Spark,HANA或其他MPP数据库)创建具有大规模数据分析的项目

扩展阅读:

还将包括以下内容:

1. 网络工程基础。原因:毕业生应该了解计算机网络,以便能够与之合作,进行管理,并在需要时改善组织的网络和数据架构。主题包括:网络工程,数据库,数据仓库。

2. 研究方法论:能够使用定量和定性方法学从假说生成到产生业务建议的系统方式设计项目。

3. 非结构化数据分析:学生应该了解文本挖掘,自然语言处理,社交媒体挖掘,网络挖掘以及此类应用程序的基础知识。这些也可以采用选修课的形式。

有一点需要注意的是,优秀的数据分析师和商业智能并不以工具为重点。理想地讲授任何工具(R / SAS / SAP / Python /其他),作为数据分析理论概念的补充。例如,使用统计和概率进行R编程。适用于神经网络和其他机器学习任务的Python。具有数据可视化和数据报告概念的SAS VA或SAP Lumira。具有数据库概念的SQL等。这是一个缺少许多新的数据分析程序的领域,因此结果是产生的毕业生只是应用程序开发人员或用户,而不能解决现实世界中的问题。

② 数据分析师需要学那些东西

数据分析需要学习以下几点:

一、统计学。二、编程能力。三、数据库。四、数据仓库。五、数据分析方法。六、数据分析工具。

想要成为数据分析师应该重点学习以下两点:

1.python、SQL、R语言

这些都是最基础的工具,python都是最好的数据入门语言,而R语言倾向于统计分析、绘图等,SQL是数据库。既然是数据分析,平时更多的时间就是与数据分析打交道,数据采集、数据清洗、数据可视化等一系列数据分析工作都需要上面的工具来完成。

2.业务能力

数据分析师存在的意义就是通过数据分析来帮助企业实现业务增长,所以业务能力也是必须。企业的产品、用户、所处的市场环境以及企业的员工等都是必须要掌握的内容,通过这些内容建立帮助企业建立具体的业务指标、辅助企业进行运营决策等。

当然这些都是数据分析师最基本也是各位想转行的小伙伴需要重点学习的内容,以后想要有更好的发展,还需要学习更多的技能,例如企业管理,人工智能等。


关于数据分析师的学习可以到CDA数据分析认证中心看看。全球CDA持证者秉承着先进商业数据分析的新理念,遵循着《CDA职业道德和行为准则》新规范,发挥着自身数据专业能力,推动科技创新进步,助力经济持续发展。

③ 项目数据分析师培训课程内容是什么

面授
项目数据分析师培训课程涉及到统计学、经济学、市场营销学、财务管理学、计量经济学、预测学、金融学等多方面知识,需要学员具备全面性理论基础知识贮备。我们对各个学科中项目分析所要用到的知识点进行了深入分析,在讲义中详细说明,使学员可在相对准确的领域内迅速掌握知识并加以运用。做到能够让学员将课本上所学的东西真正变为可以利用的有效工具。
● 远程学习
时间为一年整,采取先进的同步教学方式,保证学习质量,具体特点如下:
a、面授期间(8天面授),更新课程五次,通过每周的更新课程,让学员不仅可以在面授前提前预习基础知识,而且可以通过远程学习中心提交作业、知识点自我测试、考试复习、习题解答、在线答疑、案例参与等综合项目更好的掌握知识。
b、面授结束后,学员还有11个月的远程学习时间,每月一次的课件更新,使学员不仅能顺利适应项目数据分析师的认证考试,而且可以掌握各种数据分析的拓展知识和技能,为分析师在未来能够胜任专业分析工作奠定深厚基础。
c、远程学习不仅有丰富的文字学习内容,而且大比例增加了音频、视频课件,使学员可以通过生动的课件完成阶段性学习。
d、远程学习中心为学员提供学习计划制定、班级交流、继续教育等功能,帮助学员自觉学习、实现更好的学习效果。

④ 谁知道项目数据分析师的课程内容都有哪些

目前的项目数据分析师课程,包含两大部分:量化投资、量化经营
面授课时候,有3本教材,分别为:《数据分析基础》、《量化投资》和《量化经营》
数据分析基础,讲解内容主要是数据分析的一些基本方法、理论和方法论;
量化投资,是以投资为主线,讲解投资过程中及前后,所涉及到的数据分析知识,包括现金流量表的编制、风险分析、敏感性分析、项目比选等等知识;
量化经营,以企业经营为主线,讲解企业在经营过程中,所要用到的数据分析知识,包括销售预测及分析,量化采购、客户细分及管理等等。
如有疑问,可私信给我!

⑤ 考数据分析师需要什么书

【项目数据分析师考试必看的书籍】


一、《CPDA注册项目数据分析师培训教程》

《谁说菜鸟不会数据分析(入门篇)(全彩)》能有效帮助职场新人提升职场竞争力,也能帮助市场营销、金融、财务、人力资源管理人员及产品经理解决实际问题,还能帮助从事咨询、研究、分析行业的人上,各级管理人士提高专业水平。

⑥ 用Python做数据分析有哪些好的教材或者教程

链接:https://pan..com/s/1FJZAznKSbwv-X52AM7uSfg

提取码:7234

炼数成金:Python数据分析。Python是一种面向对象、直译式计算机程序设计语言。也是一种功能强大而完善的通用型语言,已经具有十多年的发展历史,成熟且稳定。Python 具有脚本语言中最丰富和强大的类库,足以支持绝大多数日常应用。 Python语法简捷而清晰,具有丰富和强大的类库。它常被昵称为胶水语言,它能够很轻松的把用其他语言制作的各种模块(尤其是C/C++)轻松地联结在一起。

课程将从Python的基本使用方法开始,一步步讲解,从ETL到各种数据分析方法的使用,并结合实例,让学员能从中借鉴学习。

课程目录:

Python基础

Python的概览——Python的基本介绍、安装与基本语法、变量类型与运算符

了解Python流程控制——条件、循环语句与其他语句

常用函数——函数的定义与使用方法、主要内置函数的介绍

.....

⑦ 自学备考CDA数据分析师,需要准备哪些教材

如果只想单独考证,根据官网公布考试大纲有针对性复习,复习一段时间了做下模拟试题,自己学习肯定要付出更多精力和时间.
例如2级建模方向,官网推荐几本书籍,参考如下:
1.《数据挖掘导论》,蓝色的中文翻译版,书很厚,但是里面的内容挺有用的,大纲解析里没讲明白的地方大多都能在里面找到答案;
2.《机器学习》(西瓜书),阅读难度比《数据挖掘导论》高了一个等级,我是挑着看的;
3.《利用Python进行数据分析》,里面主要教你pandas、numpy等一些基础操作,如果已经会用的则可以略过;
4.《Python机器学习基础教程》,教你怎么用sklearn,你也可以看《机器学习实战》,不过后者我没看过,听说是用python2.7写的;

⑧ 数据分析培训有哪些课程

数据分析课程内容主要是从理论-实操-案例应用步步进阶,能让学员充分掌握概率论和统计理论基础,能够熟练运用Excel、SPSS、SAS等一门专业分析软件,有良好的商业理解能力,能够根据业务问题指标利用常用数据分析方法进行数据的处理与分析,并得出逻辑清晰的业务报告。如需数据分析培训推荐选择【达内教育】。

数据分析是指用适当的统计分析方法对收集来的大量数据进行分析,将它们加以汇总和理解并消化,以求最大化地开发数据的功能,发挥数据的作用。数据分析是为了提取有用信息和形成结论而对数据加以详细研究和概括总结的过程。感兴趣的话点击此处,免费学习一下

想了解更多有关大数据的相关信息,推荐咨询【达内教育】。达内与阿里、Adobe、红帽、ORACLE、微软、美国计算机行业协会(CompTIA)、网络等国际知名厂商建立了项目合作关系。共同制定行业培训标准,为达内学员提供高端技术、所学课程受国际厂商认可,让达内学员更具国际化就业竞争力。达内IT培训机构,试听名额限时抢购。

如何做数据分析

数据分析行业应用,一般数据来源:智能手机 感知装置 物联网 社群媒体等 云计算存储.cda官网有很多行业案例,比如
风能发电业务场景
风力发电机有一个叶片,时间长了就要换,否则不安全,过去这个叶片一般10年换一次,因为没办法知道具体产品的使用情况,只能根据以往叶片老化的情况来估算。但这家公司在叶片上装了传感器,就能检测每个叶片的具体使用情况了,风大的地方,叶片老化快,可能8年就要换,风力均匀的地方,有些叶片可能用15年,这样就能节省资本更新的成本了。
而且,过去这家公司只生产设备,这些设备被卖到国外,具体安装到什么地方,他是不知道的,有了传感器,公司就能知道这些发电机被安装到哪里,这些地方的风力是大是小,一年四季哪天有风哪天有雨,这些数据都可以获取。根据这些数据,就能知道哪些地区风力资源丰富,有重点地规划未来市场。传统的行业利用大数据,就能更好地实现市场预判和销售提升,分分钟实现逆袭。

⑩ 如果想成为一个数据分析师,需要哪些技能看哪些书籍

首先需要学习的知识,也就是需要学习的书籍, 概率论、统计学、多元统计分析、数据挖掘、sql数据库等相关书籍教材,基本上这些书名都有对应的书,所以这些是必须要学习的。

其次是软件操作知识,spss、modeler、sas、eviews、stata等 常规的统计与数据挖掘软件等,软件是将上述知识进行操作转化的,基本上统计学或数据挖掘中的原理知识都可以在这些软件中找到对应的命令。

第三 是多看一些数据分析或数据挖掘的案例。因为有了知识、有了软件操作,但是具体在实际操作用应该如何使用 还存在问题,此时就需要多看一些分析报告或者案例,通过案例就会逐渐知道如何将统计学原理与实践应用结合。

最后,随着大数据越来越热门,如果要往大数据挖掘方向的话,除了上述的你需要有一定的掌握之外,还需要学习现在很火热的sql server、 oracle、hadoop 等相关软件。

阅读全文

与工程数据分析方法培训教材相关的资料

热点内容
铜的显微结构分析方法 浏览:758
绕组电阻档的测量方法 浏览:64
devondale奶粉使用方法 浏览:243
黑枸杞剪枝方法图片 浏览:549
汽车导航拆卸安装方法 浏览:533
流鼻涕需要用什么方法让他治好 浏览:244
电热棒使用方法 浏览:144
统计指数的计算方法 浏览:936
铁皮石斛种植方法能种在石头上 浏览:174
高冰种翡翠原石鉴别方法图解 浏览:401
租房喝水的正确方法 浏览:821
月见草油的功效与作用及食用方法 浏览:4
玉树菇食用方法 浏览:955
子宫上长了瘤子消除最佳方法 浏览:476
led灯接线柱焊接方法视频 浏览:657
ipad如何隔空手势操作方法 浏览:423
如何起小运的方法 浏览:373
有什么草本方法祛痘 浏览:307
北京幼儿教育方法培训班哪里有 浏览:586
用什么方法可以去除手机后面杂质 浏览:458