导航:首页 > 研究方法 > 研究植物生长物质的方法有哪些

研究植物生长物质的方法有哪些

发布时间:2022-09-08 21:11:01

⑴ 植物生长的物质从哪里

植物激素是指植物细胞接受特定环境信号诱导产生的、低浓度时可调节植物生理反应的 活性物质。它们在细胞分裂与伸长、组织与器官分化、开花与结实、成熟与衰老、休眠与萌发以及离体组织培养等方面,分别或相互协调地调控植物的生长、发育与分化。这种调节的灵活性和多样性,可通过使用外源激素或人工合成植物生长调节剂的浓度与配比变化,进而改变内源激素水平与平衡来实现。植物激素有六大类即生长素(auxin)、赤霉素(GA)、细胞分裂素(CTK)、脱落酸(abscisic acid,ABA)、乙烯(ethyne,ETH)和油菜素甾醇(brassinosteroid,BR)、独脚金甾醇、水杨酸、茉莉酸。它们都是些简单的小分子有机化合物,但它们的生理效应却非常复杂、多样。例如从影响细胞的分裂、伸长、分化到影响植物发芽、生根、开花、结实、性别的决定、休眠和脱落等。所以,植物激素对植物的生长发育有重要的调节控制作用。

⑵ 植物生长调剂包括哪些

植物生长调节剂
随着对植物内源激素的研究,人们也在不断地用人工合成的方法制成一些具有植物激素活性的类似物用于农业的生产中,这就是植物生长调节剂,也叫外源激素。植物生长调节剂与内源激素相比,其生理效应针对性、目的性更强。其分为如下几大类。
根据植物生长调节剂在农业生产中所发挥的作用可以把植物生长调节剂可分为五大类,分别是:植物生长促进剂、植物生长抑制剂、植物生长延缓剂、保鲜剂、抗旱剂。
今天只给大家介绍植物生长促进剂。
植物生长促进剂(外源激素、合成激素)的种类和主要作用
能够促进植物细胞分裂、分化和延长生长的化合物都属于生长促进剂,它们能促进植物营养器官的生长和生殖器官的发育。这是植物生长调节剂种类最多﹑应用最为广泛的一类。
赤霉素(GA)其它名称 九二0,GA
农业生产中用到的产品制剂多为85%赤霉素结晶粉,4%赤霉素乳油,40%水溶性片剂,40%水溶性粉剂。
外源赤霉素进入植物体内,具有内源赤霉素同样的生理作用。赤霉素主要经叶片、嫩枝、花、种子或果实进入到植物体内,然后传导到生长活跃的部位起作用。赤霉素在农、林、园艺上使用极为广泛。
萘乙酸(NAA)
常见的制剂为 80%原粉,市售剂型还有99%精制粉剂、2%钠盐水剂、2%钾盐水剂、4.2%萘乙酸水剂。
萘乙酸是类生长素物质,是一种广谱性植物生长调节剂。对植物的主要作用是促进细胞分裂和扩大,诱导形成不定根,增加坐果,防止落果,改变雌雄花比率,并能促进植物的新陈代谢和光合作用,加速生长发育及增强抗性等。萘乙酸由叶片、树枝的嫩表皮、种子进入植物体内,随营养流输导至作用的部位。
生长素(IAA)其它名称 吲哚乙酸,异生长素,茁长素3-吲哚乙酸等
农业生产中用到的产品制剂多为粉剂,可湿性粉剂,为人工合成产品加辅料而成。
人工合成的可经由茎、叶和根系吸收,由于施用浓度不同,既可起促进作用,也可起抑制作用。
2,4-D 其他名称 坐果灵,防落素
常见的剂型为80%可湿性粉剂,72%丁酯乳油,55%、50%胺盐水剂。
2,4-D随使用浓度和用量不同,对植物可产生多种不同的效应:在较低浓度(0.5-1.0mg/L)下是植物组织培养的培养基成分之一;在中等浓度(1-25mg/L)下可防止落花落果,能有效刺激生长,诱导无籽果实和果实保鲜等作用;更高浓度(1000mg/L)下作为除草剂可杀死多种阔叶杂草。因此在对作物施用时一定要注意所用的量。较高浓度,抑制生长,更高浓度可使植物畸形发育致死。作为芽后使用的除草剂,单子叶的禾本植物对其一定的耐受力,双子叶的阔叶植物对其非常敏感,利用这种选择性,可用于水稻、麦类禾本科作物田间防除阔叶杂草。50%2,4-D胺盐在200ml/亩,剂量下药后20天,对柑桔园的水花生、律草、鸟蔹莓、铁苋菜、繁缕、酢浆草、地锦、刺儿草、打碗花等阔叶杂草有极好的防效,除草效果为92.5%-100%。对一年蓬、凹头苋、苍耳、有氏蓼也有较好的防治,药效在80%左右。防效偏低可能与上述四种杂草草龄较高,大多已开花结果有关。在参试剂量下50%2,4-D胺盐对柑桔树安全。
激动素(KT)其它名称 KT,动力精
激动素的化学名称6-糠基氨基嘌呤,分子式C10H9N5O。一般由6-氯嘌呤与呋喃甲基胺缩合而成。不溶于水,溶于强酸、碱及冰醋酸中。是第一个被发现具有细胞分裂素作用的物质,首次从脱氧核糖核酸降解产物中提出。在组织培养的情况下,激动素浓度低地方可促进根的分化,在浓度高的地方则有枝叶芽的分化,其中间浓度可显着地促进胞质分裂而形成愈伤组织块。激动素显有抑制衰老的作用,特别是对分离的成熟叶片,用激动素处理,发现它可抑制叶绿素、蛋白质、核酸等含量的降低,也能推迟细胞结构的破坏。延缓蛋白质和叶绿素的降解,延迟植物衰老,可用于果蔬保鲜。
膨大剂
氯吡苯脲
属苯脲类物质,主要是刺激细胞分裂素的物质,是一种高活性的化合物,具有细胞分裂素活性,可促进细胞分裂和扩大,施用在瓜果植物上,可促进花芽分化,保花保果,提高坐果率、促进果实膨大。
乙烯利
乙烯利化学名称为2-氯乙基膦酸,常见的制剂为 40%乙烯利水剂。
乙烯利本身并没有生理活性,释放的乙烯是一种具有多种生理功能的植物激素,已经明确的生理效应有:促进果实生理成熟(目前生产上为了提早香蕉、柑橘、桃子、番茄等水果的上市时间,普遍使用乙烯利处理),促进叶片衰老和脱落,促进种子发芽和植株开花,促进根和苗的生长。如果施用不当会叶片、果实的脱落,矮化植株,改变雌雄的比率,诱导某些作物雄性不育等。
DA-6其他名称 胺鲜酯等
DA-6能提高植株体内叶绿素,蛋白质,核酸的含量和光合速率,提高过氧化物酶及硝酸还原酶的活性,促进植株的碳,氮代谢,增强植株对水肥的吸收和干物质的积累,调节体内水分平衡,增强作物,果树的抗病,抗旱,抗寒能力;延缓植株衰老,促进作物早熟、增产、提高作物的品质;从而达到增产,增质。
DA-6,是新发现的一种高效植物生长物质,对多种农作物具有显着的增产、抗逆、抗病,改善品质、早熟等功效,具有很高生物活性的化合物。它能与多种元素复配,还可以和杀菌剂复配使用,增强植物的抗病能力,提高杀菌效果;DA-6以它独特的多功能作用,在农业上得到广泛应用。
DA-6为白色或谈片粉状结晶体,含量在98%以上,可与多种农药、肥料复配使用,在弱酸性和中性介质中稳定。
DA-6单独使用以10-15PPM效果最好,即一克DA-6兑水70-100公斤。DA-6与肥料、杀菌剂、除草剂复配时以5PPM效果最好,每吨用量一般为产品稀释倍数的二百分之一。
复硝酚钠 其他名称
已被众多厂家制成2%、1.8%、0.9%、1.4%、0.7%、2.85%等水剂剂型,1.4%复硝酚可溶性粉剂等。
复硝酚钠是一种强力细胞赋活剂,与植物接触后能迅速渗透到植物体内,促进细胞的原生质流动,提高细胞活力。能加快生根速度,打破休眠,促进生长发育,防止落花落果,改善产品品质,提高产量,提高作物的抗病、抗虫、抗旱、抗涝、抗寒、抗盐碱、抗倒伏等抗逆能力。它广泛适用于粮食作物、经济作物、蔬菜、瓜果、果树、油料作物及花卉等。可在植物播种到收获期间的任何时期使用,可用于种子浸渍、苗床灌注、叶面喷洒和花蕾撒布等。由于它具有高效、低毒、无残留、适用作物范围广、无副作用、使用浓度范围宽等优点,已在世界上多个国家和地区推广应用。复硝酚钠还应用畜牧、渔业上,在提高肉、蛋、毛、皮产量和质量的同时,还能增强动物的免疫能力,预防多种疾病。
芸苔素内酯
是仿生植物内源激素-油菜素内酯人工合成物,芸苔素内酯的主要作用是,促进细胞分裂和伸长、生长;有利花粉授精,提高座果率;提高叶绿素含量,增加光合作用;增强植物的抗逆能力。另外,其与多种常用杀菌剂、化肥、植物生长调节剂混配应用,具有显着的协同效应和加成效应,在大多数情况下,能提高化肥的肥效和杀菌剂功效,降低农药药害;与各种植物生长调节剂或叶面肥的混配制剂在改进农作物品质,抗逆减灾方面具有极其广阔的开发前景和市场潜力,并且已引起国内外众多农药、化肥生产厂家和科研单位的重视。
好了,这次先到这里,下次再分享其他功效的调节剂。大家看完以后有什么感触?
只要用的对,这就是一个好东西,但是乱用,盲目的用,重复的用,就很容易造成“小老人”,让作物早衰。

⑶ 为什么说无土栽培是研究植物生长所需矿质营养的重要方法

无土栽培,植物需要的营养元素都是人工加入的,因此你就知道你加了什么,没加什么,这样就可以知道植物在加什么或没加什么的时候的长势情况啊。
土壤栽培的话,土壤中本来就存在很多营养物质了,你无控制生长条件啊。

⑷ 植物生长都需要哪些矿物质

植物需要哪些无机盐研究植物矿物质营养的一个方法是水培养(water culture)。

19世纪后期,现代植物生理学的奠基人德国Sachs将蚕豆、玉米和荞麦的种子做水培养的实验,观察这些种子在蒸馏水中和在各种组合的无机盐溶液中的萌发生长情况。他发现幼苗在含KNO3、NaCl、CaSO4和Ca3(PO4)2的溶液中生长良好,在全缺这些盐类的水溶液中,幼苗不能生长或很快衰败。缺少一两种盐类,幼苗很快停止生长或出现某种缺陷如新根不能发育等。但即使在具备上述盐类的溶液中,新生的叶也不能变为绿色。他设想,植物可能还需要除溶液中已有元素以外的其他元素,于是他在溶液中加了少量氯化铁溶液。果然,白叶变绿。由此,他得出结论,植物需要铁,缺铁时,叶绿素不能产生。到19世纪末,Sachs和其他植物生理学家确定了P、K、N、S、Ca、Fe、Mg 7种元素是植物所必需的,这些元素都是从土壤吸收来的。

但是,植物体的组成除上述无机盐类的元素外,还含有少量的其他元素。这些微量元素是植物所必需的,还只是偶然随水进入植物体、对植物的营养没有什么意义呢?这一问题直到本世纪20年代才有了明确答复。原来,早期人们在水培养中使用的无机盐类虽被宣称为纯净,其实都含有杂质,所用蒸馏水也含有杂质,甚至所使用的玻璃器也可能有一些元素溶于水中。后来用高纯净的无机盐和蒸馏水,用硬玻璃或石英盛器作实验,才陆续证明,绿色植物的生长,除上述7种元素外,还需要极少量的其他元素,如B、Mn、Cu、Zn、Mo等。表1是高等植物生长的必需元素,缺少了这些元素,植物就不能正常生长和生殖,就要出现特定的营养缺乏症。从表1可知,植物对N、K、P、S、Mg、Ca 6种元素的需要量较大,加上来自CO2和H2O的C、H、O 3种元素是所有植物生长发育的必需元素,这些元素或是生物大分子如蛋白质、核酸等的成分,或是参与细胞中的离子平衡。Fe、B、Cu、Zn、Mn、Cl、Mo等也是植物的必需元素,但需要量极少,它们大多是酶和辅酶的成分。

肥料:土壤中的矿物质,特别是氮、磷、钾等,不断被植物大量吸收,必须补充才能保持土壤的肥沃度。施肥的目的就在于此。

肥料主要分氮肥、磷肥、钾肥3类。3者以不同比例混合起来而成复合肥。有时也可加入少量其他元素。粪肥主要供氮,草木灰主要供钾,骨粉属磷肥。不同的肥料有不同的作用,施肥要有选择。例如,对于禾谷类作物,需要多施一些磷肥才能籽粒饱满;对于马铃薯、甘薯、甜菜等多施钾肥,可显着增加产量。广东、江西的某些地区由于土壤缺钾,水稻常出现赤枯病,应施用草木灰以补充钾。氨水是速效肥料,施加氨水,植物即可直接用来合成氨基酸,而不再依靠还原硝酸盐取得氨。微量元素,除非确有必要,一般在施肥中不必考虑。澳洲某些地区由于土壤缺钼,固氮菌少,因而土壤含氮量低,植物发育很差,施加钼肥,土壤肥力很快恢复。

⑸ 植物的生长发育

概述 植物激素是植物体内合成的对植物生长发育有显着作用的几类微量有机物质。也被称为植物天然激素或植物内源激素。
植物激素有六大类,即生长素(auxin)、赤霉素(GA)、细胞分裂素(CTK)、脱落酸(abscisic acid,ABA)、乙烯(ethyne,ETH)和油菜素甾醇(brassinosteroid,BR)。它们都是些简单的小分子有机化合物,但它们的生理效应却非常复杂、多样。例如从影响细胞的分裂、伸长、分化到影响植物发芽、生根、开花、结实、性别的决定、休眠和脱落等。所以,植物激素对植物的生长发育有重要的调节控制作用。
植物激素的化学结构已为人所知,有的已可以人工合成,如吲哚乙酸;有的还不能人工合成,如赤霉素。目前市场上售出的赤霉素试剂是从赤霉菌的培养过滤物中制取的。这些外加于植物的吲哚乙酸和赤霉素,与植物体自身产生的吲哚乙酸和赤霉素在来源上有所不同,所以作为植物生长调节剂,也有称为外源植物激素。
最近新确认的植物激素有,茉莉酸(酯)等等。
植物体内产生的植物激素有赤霉素、激动素、脱落酸等。现已能人工合成某些类似植物激素作用的物质如2,4-D(2,4-二氯苯酚代乙酚)等。
植物自身产生的、运往其他部位后能调节植物生长发育的微量有机物质。人工合成的具有植物激素活性的物质称为生长调节剂。已知的植物激素主要有以下5类:生长素、赤霉素、细胞分裂素、脱落酸和乙烯。而油菜素甾醇也逐渐被公认为第六大类植物激素。 [编辑本段]生长素Charles.D.Darwin在1880年研究植物向性运动时,只有各种激素的协调配合,发现植物幼嫩的尖端受单侧光照射后产生的一种影响,能传到茎的伸长区引起弯曲。1928年荷兰F.W.温特从燕麦胚芽鞘尖端分离出一种具生理活性的物质,称为生长素,它正是引起胚芽鞘伸长的物质。1934年荷兰F.克格尔等从人尿得到生长素的结晶,经鉴定为吲哚乙酸。促进>橡胶树漆树等排出乳汁。在植物中,则吲哚乙酸通过酶促反应从色氨酸合成。十字花科植物中合成吲哚乙酸的前体为吲哚乙腈,西葫芦中有相当多的吲哚乙醇,也可转变为吲哚乙酸。已合成的生长素又可被植物体内的酶或外界的光所分解,因而处于不断的合成与分解之中。
生长素在低等和高等植物中普遍存在。生长素主要集中在幼嫩、正生长的部位,如禾谷类的胚芽鞘,它的产生具有“自促作用”,双子叶植物的茎顶端、幼叶、花粉和子房以及正在生长的果实、种子等;衰老器官中含量极少。
用胚芽鞘切段证明植物体内的生长素通常只能从植物的上端向下端运输,而不能相反。这种运输方式称为极性运输,能以远快于扩散的速度进行。但从外部施用的生长素类药剂的运输方向则随施用部位和浓度而定,如根部吸收的生长素可随蒸腾流上升到地上幼嫩部位。
低浓度的生长素有促进器官伸长的作用。从而可减少蒸腾失水。超过最适浓度时由于会导致乙烯产生,生长的促进作用下降,甚至反会转为抑制。不同器官对生长素的反应不同,根最敏感,芽次之,茎的敏感性最差。种子中较高的脱落酸含量是种子休眠的主要原因。生长素能促进细胞伸长的主要原因,在于它能使细胞壁环境酸化、水解酶的活性增加,从而使细胞壁的结构松弛、可塑性增加,有利于细胞体积增大。生长素还能促进RNA和蛋白质的合成,促进细胞的分裂与分化。生长素具有双重性,不仅能促进植物生长,也能抑制植物生长。低浓度的生长素促进植物生长,过高浓度的生长素抑制植物生长。2,4-D曾被用做选择性除草剂。
吲哚乙酸可以人工合成。生产上使用的是人工合成的类似生长素的物质如吲哚丙酸、吲哚丁酸、萘乙酸、2,4-D、4-碘苯氧乙酸等,可用于防止脱落、促进单性结实、疏花疏果、插条生根、防止马铃薯发芽等方面。愈伤组织容易生芽;反之容易生根。 [编辑本段]赤霉素1926年日本黑泽在水稻恶苗病的研究中,发现感病稻苗的徒长和黄化现象与赤霉菌(Gibberellafujikuroi)有关。1935年薮田和住木从赤霉菌的分泌物中分离出了有生理活性的物质,定名为赤霉素(GA)。从50年代开始,英、美的科学工作者对赤霉素进行了研究,现已从赤霉菌和高等植物中分离出60多种赤霉素,分别被命名为GA1,GA2等。以后从植物中发现有十多种细胞分裂素,赤霉素广泛存在于菌类、藻类、蕨类、裸子植物及被子植物中。商品生产的赤霉素是GA3、GA4和GA7。GA3又称赤霉酸,是最早分离、鉴定出来的赤霉素,分子式为C19H22O6。即6-呋喃氨基嘌呤。
高等植物中的赤霉素主要存在于幼根、幼叶、幼嫩种子和果实等部位,由甲羟戊酸经贝壳杉烯等中间物合成。后证明其中含有一种能诱导细胞分裂的成分,赤霉素在植物体内运输时无极性,通常由木质部向上运输,由韧皮部向下或双向运输。赤霉素最显着的效应是促进植物茎伸长。无合成赤霉素的遗传基因的矮生品种,用赤霉素处理可以明显地引起茎秆伸长。目前在啤酒工业上多用赤霉素促进a-淀粉酶的产生,赤霉素也促进禾本科植物叶的伸长。在蔬菜生产上,常用赤霉素来提高茎叶用蔬菜的产量。一些需低温和长日照才能开花的二年生植物,
干种子吸水后,用赤霉素处理可以代替低温作用,使之在第1年开花。赤霉素还可促进果实发育和单性结实,打破块茎和种子的休眠,促进发芽。
干种子吸水后,胚中产生的赤霉素能诱导糊粉层内a-淀粉酶的合成和其他水解酶活性的增加,常用赤霉素来提高茎叶用蔬菜的产量。促使淀粉水解,在蔬菜生产上,加速种子发芽。赤霉素也促进禾本科植物叶的伸长。目前在啤酒工业上多用赤霉素促进a-淀粉酶的产生,避免大麦种子由于发芽而造成的大量有机物消耗,从而节约成本。 [编辑本段]细胞分裂素这种物质的发现是从激动素的发现开始的。由韧皮部向下或双向运输。1955年美国人F.斯库格等在烟草髓部组织培养中偶然发现培养基中加入从变质鲱鱼精子提取的DNA,可促进烟草愈伤组织强烈生长。后证明其中含有一种能诱导细胞分裂的成分,称为激动素。第一个天然细胞分裂素是1964年D.S.莱瑟姆等从未成熟的玉米种子中分离出来的玉米素。以后从植物中发现有十多种细胞分裂素,GA<sub>2</sub>等。都是腺嘌呤的衍生物。
高等植物细胞分裂素存在于植物的根、叶、种子、果实等部位。根尖合成的细胞分裂素可向上运到茎叶,但在未成熟的果实、种子中也有细胞分裂素形成。细胞分裂素的主要生理作用是促进细胞分裂和防止叶子衰老。绿色植物叶子衰老变黄是由于其中的蛋白质和叶绿素分解;而细胞分裂素可维持蛋白质的合成,从而使叶片保持绿色,发现感病稻苗的徒长和黄化现象与赤霉菌(Gibberellafujikuroi)有关。延长其寿命。细胞分裂素还可促进芽的分化。在组织培养中当它们的含量大于生长素时,愈伤组织容易生芽;反之容易生根。可用于防止脱落、促进单性结实、疏花疏果、插条生根、防止马铃薯发芽等方面。
人工合成的细胞分裂素苄基腺嘌呤常用于防止莴苣、芹菜、甘蓝等在贮存期间衰老变质。4-滴、4-碘苯氧乙酸等, [编辑本段]脱落酸60年代初美国人F.T.阿迪科特和英国人P.F.韦尔林分别从脱落的棉花幼果和桦树叶中分离出脱落酸,其分子式为C15H20O4。
脱落酸存在于植物的叶、休眠芽、成熟种子中。通常在衰老的器官或组织中的含量比在幼嫩部分中的多。它的作用在于抑制RNA和蛋白质的合成,从而抑制茎和侧芽生长,因此是一种生长抑制剂,有利于细胞体积增大。与赤霉素有拮抗作用。脱落酸通过促进离层的形成而促进叶柄的脱落,在于它能使细胞壁环境酸化、水解酶的活性增加,还能促进芽和种子休眠。种子中较高的脱落酸含量是种子休眠的主要原因。经层积处理的桃、红松等种子,芽次之,因其中的脱落酸含量减少而易于萌发,脱落酸也与叶片气孔的开闭有关。小麦叶片干旱时,保卫细胞内脱落酸含量增加,气孔就关闭,从而可减少蒸腾失水。根尖的向重力性运动与脱落酸的分布有关。 [编辑本段]乙烯早在20世纪初就发现用煤气灯照明时有一种气体能促进绿色柠檬变黄而成熟,这种气体就是乙烯。但直至60年代初期用气相层析仪从未成熟的果实中检测出极微量的乙烯后,乙烯才被列为植物激素。乙烯广泛存在于植物的各种组织、器官中,是由蛋氨酸在供氧充足的条件下转化而成的。它的产生具有“自促作用”,即乙烯的积累可以刺激更多的乙烯产生。乙烯可以促进RNA和蛋白质的合成,在高等植物体内,并使细胞膜的透性增加, 加速呼吸作用。因而果实中乙烯含量增加时,已合成的生长素又可被植物体内的酶或外界的光所分解,可促进其中有机物质的转化,加速成熟。乙烯也有促进器官脱落和衰老的作用。用乙烯处理黄化幼苗茎可使茎加粗和叶柄偏上生长。乙烯还可使瓜类植物雌花增多,在植物中,促进橡胶树、漆树等排出乳汁。乙烯是气体,在田间应用不方便。一种能释放乙烯的液体化合物2-氯乙基膦酸(商品名乙烯利)已广泛应用于果实催熟、棉花采收前脱叶和促进棉铃开裂吐絮、刺激橡胶乳汁分泌、水稻矮化、增加瓜类雌花及促进菠萝开花等。 [编辑本段]其他植物激素主要有油菜素甾醇、水杨酸、茉莉酸等,目前比较公认的第六大类植物激素是油菜素甾醇(Brassinosteroid)。油菜素甾醇是甾体类激素,与动物甾体激素的作用机理不同。其具有促进细胞伸长和细胞分裂、促进维管分化、促进花粉管伸长而保持雄性育性、加速组织衰老、促进根的横向发育、顶端优势的维持、促进种子萌发等生理作用。而目前油菜素甾醇的信号转导途径也是目前研究的前沿和热点之一。 [编辑本段]植物生长抑制素它能使茎或枝条的细胞分裂和伸长速度减慢,抑制植株及枝条加长生长。主要有以下几种:
b9:又叫必久,b995,阿拉,有抑制生长,促进花芽分化,提高抗寒能力,减少生理病害等作用。
矮壮素(ccc):又叫三西,碌化碌代胆碱。纯品为白色结晶,易溶于水,是人工合成的生长延缓剂。它抑制伸长,但 不抑 制细胞分裂,使植株变矮,茎杆变粗,节间变短,叶色深绿 。
脱落酸(aba):是植物体内存在的一种天然抑制剂,广泛存在于植物器官组织中。在将要脱落和休眠的组织器官中含量更高,它与生长素,赤霉素,细胞分裂素的作用是对抗的。它有抑制萌芽和枝条生长提早结束生长的,增强抗寒能力及延长种子休眠等作用。
青鲜素(mh):又叫抑芽丹,纯品为白色结晶,微溶于水。它有抑制细胞分裂和伸长提早结束生长,促进枝条成熟,提高抗寒能力等作用。
整性素:又叫形态素,抑制生长,对抑制发芽作用更为明显,可使植株矮化,破坏顶端优势,促进花芽分化,促进离层形成,抑制植物体内赤霉素的合成等。
植物激素对生长发育和生理过程的调节作用,往往不是某一种植物激素的单独效果。能传到茎的伸长区引起弯曲。由于植物体内各种内源激素间可以发生增效或拮抗作用,只有各种激素的协调配合,才能保证植物的正常生长发育。

⑹ 生长素的几个实验是什么分别证明了什么

应该是讲的生长素的发现吧,下面是全部内容

生长素的发现历史

生长素是发现最早的一类植物激素,有关知识最初来自英国科学家达尔文的金丝雀虉草向光性研究,他把一盆金丝雀虉草的幼苗放在房内,发现幼苗总是朝着太阳光照射的一边弯曲。如果用锡箔或其他不透光的纸包住幼苗的顶芽,或者把顶芽切去2.5~4毫米,那么幼苗就不再向光照的方向弯曲,达尔文把植物的这种现象叫“向光性”。 根据上述事实,达尔文推想,胚芽的尖端可能会产生某种物质,这种物质在单侧光的照射下,对胚芽生长会产生影响。

达尔文把他当时得到的结论写在他的论文“植物运动的本领”(1880年)中:“……当金丝雀虉草幼苗暴露于单侧光时,某些影响由上部传到下部,因而引起后者发生弯曲。只是幼苗的顶端能接受光的刺激,当把幼苗尖端遮光时,则不发生弯曲”。

那么,胚芽的尖端是否真的产生了某种物质,这种物质究竟是什么呢?为了解答这些疑问,在达尔文之后,科学家们开始了禾谷类胚芽鞘的研究。

菲廷(1907年)在水汽饱和的小室内横向切割燕麦胚芽鞘尖的一侧或两侧,不妨碍影响向下传导,在单向光线照射下,胚芽鞘仍然发生弯曲。波耶森(1910年)发现胚芽鞘尖端的影响,能穿过明胶薄片向下传导,发生向光性弯曲;但不能穿过不透水的云母片。拜耳(1918年)把切除胚芽鞘尖端放回胚芽鞘的一侧,发现没有单侧光的影响,也促进这一侧的伸长生长,发生弯曲。梭登(1923年)发现切去顶尖导致燕麦胚芽鞘生长停止,当重新放回切去的顶尖,伸长生长又恢复,从而证明植物的生长受激素所调节。斯达克(1917-1921年)将含有燕麦胚芽鞘尖端榨出的液汁的琼胶片,放在胚芽鞘残桩的一侧,也促进这一侧的生长,引起弯曲。由此,证实胚芽鞘尖的液汁物质中有促进生长的物质。荷兰科学家温特(1928年)在实验中,把切下的胚芽尖端放在琼脂块上,几小时以后,移去胚芽的尖端,再将这块琼脂切成小块,放在切去尖端的胚芽切面的一侧,结果发现这个胚芽会向放琼脂块的对侧弯曲生长。如果把没有接触过胚芽尖端的琼脂小块,放在切去尖端的胚芽切面的一侧,结果发现这个胚芽既不生长也不弯曲。证实切下的胚芽鞘尖的生长素能扩散到它下面的琼脂块。

到1933年前后,多克(1929-1932年)、柯甲(1934年)、西蒙(1934年)等人先后从人尿、玉米油和根霉以及燕麦胚芽鞘里提取出类生长素物质,经过化学分析和鉴定,终于弄清吲哚乙酸就是一种天然的生长激素。但在高等植物里直到1946年才从玉米的乳熟期籽粒的提出物中分离出吲哚乙酸。由于这种物质具有促进植物生长的功能,因此给它取名为生长素。虽然当时对生长素作用的具体情况还不是很清楚,但现在科学家已经知道,当单侧光照射时,植物产生的生长素会在植物体内分布不均匀,从而产生了向光性生长。

⑺ 植物生长物质分几类,在农业生产中有哪些作用

植物生长物质(plant growth substances)是调节植物生长发育的微量化学物质。它可分为两类:植物激素和植物生长调节剂。 植物激素(plant hormones,phytohormones)是指在植物体内合成的、通常从合成部位运往作用部位、对植物的生长发育产生显着调节作用的微量小分子有机质。 植物激素这个名词最初是从动物激素衍用过来的。植物激素与动物激素有某些相似之处,然而它们的作用方式和生理效应却差异显着。例如,动物激素的专一性很强,并有产生某激素的特殊腺体和确定的“靶”器官,表现出单一的生理效应。而植物没有产生激素的特殊腺体,也没有明显的“靶”器官。植物激素可在植物体的任何部位起作用,且同一激素有多种不同的生理效应,不同种激素之间还有相互促进或相互颉颃的作用。 到目前为止,有五大类植物激素得到大家公认,它们是:生长素类、赤霉素类、细胞分裂素类、脱落酸和乙烯。 植物体内激素的含量甚微,7 000~10 000株玉米幼苗顶端只含有1μg生长素;1kg向日葵鲜叶中的玉米素(一种细胞分裂素)约为5~9μg。 由于植物体内植物激素含量很少,难以提取,无法大规模在农业生产上应用。随着研究的深入,人们合成(或从微生物中提取)了多种与植物激素有相似生理作用的物质,称为植物生长调节剂(plant growth regulators)。 除了五大类植物激素外,人们在植物体内还陆续发现了其它一些对生长发育有调节作用的物质。如油菜花粉中的油菜素内酯,苜蓿中的三十烷醇,菊芋叶中的菊芋素(heliangint),半支莲叶中的半支莲醛(potulai),罗汉松中的罗汉松内酯(podolactone),月光花叶中的月光花素(colonyctin),还有广泛存在的多胺类化合物等都能调节植物的生长发育。此外,还有一些天然的生长抑制物质,如植物各器官中都存在的茉莉酸、茉莉酸甲酯、酚类物质中的酚酸和肉桂酸族以及苯醌中的胡桃醌等。这些物质虽然还没被公认为植物激素,但在调节植物生长发育的过程中起着不可忽视的作用。已有人建议将油菜素甾体类和茉莉酸类也归到植物激素中。随着研究的深入,人们将更深刻地了解这些物质在植物生命活动中所起的生理作用。
生长素的生理效应 生长素的生理作用十分广泛,包括对细胞分裂、伸长和分化,营养器官和生殖器官的生长、成熟和衰老的调控等方面。 (一)促进生长 温特曾经说过:“没有生长素,就没有生长”,可见生长素对生长的重要作用。生长素最明显的效应就是在外用时可促进茎切段和胚芽鞘切段的伸长生长,其原因主要是促进了细胞的伸长。在一定浓度范围内,生长素对离体的根和芽的生长也有促进作用。此外,生长素还可促进马铃薯和菊芋的块茎、组织培养中愈伤组织的生长。 生长素对生长的作用有三个特点: 1.双重作用 生长素在较低浓度下可促进生长,而高浓度时则抑制生长。从图7-6可以看出,在低浓度的生长素溶液中,根切段的伸长随浓度的增加而增加;当生长素浓度大于10-10mol·L-1时,对根切段伸长的促进作用逐渐减少;当浓度增加到10-8mol·L-1时,则对根切段的伸长表现出明显的抑制作用。生长素对茎和芽生长的效应与根相似,只是浓度不同。因此,任何一种器官,生长素对其促进生长时都有一个最适浓度,低于这个浓度时称亚最适浓度,这时生长随浓度的增加而加快,高于最适浓度时称超最适浓度,这时促进生长的效应随浓度的增加而逐渐下降。当浓度高到一定值后则抑制生长,这是由于高浓度的生长素诱导了乙烯的产生。 2.不同器官对生长素的敏感性不同 从图7-6可以看出,根对生长素的最适浓度大约为10-10mol·L-1,茎的最适浓度为2×10-5mol·L-1,而芽则处于根与茎之间,最适浓度约为10-8mol·L-1。由于根对生长素十分敏感,所以浓度稍高就超最适浓度而起抑制作用。 不同年龄的细胞对生长素的反应也不同,幼嫩细胞对生长素反应灵敏,而老的细胞敏感性则下降。高度木质化和其它分化程度很高的细胞对生长素都不敏感。黄化茎组织比绿色茎组织对生长素更为敏感。 3.对离体器官和整株植物效应有别 生长素对离体器官的生长具有明显的促进作用,而对整株植物往往效果不太明显。 (二)促进插条不定根的形成 生长素可以有效促进插条不定根的形成,这主要是剌激了插条基部切口处细胞的分裂与分化,诱导了根原基的形成。用生长素类物质促进插条形成不定根的方法已在苗木的无性繁殖上广泛应用。 (三)对养分的调运作用 生长素具有很强的吸引与调运养分的效应。从天竺葵叶片进行的试验中可以看出,14C标记的葡萄糖向着IAA浓度高的地方移动。利用这一特性,用IAA处理,可促使子房及其周围组织膨大而获得无籽果实。 (四)生长素的其它效应 生长素还广泛参与许多其它生理过程。如促进菠萝开花、引起顶端优势(即顶芽对侧芽生长的抑制)、诱导雌花分化(但效果不如乙烯)、促进形成层细胞向木质部细胞分化、促进光合产物的运输、叶片的扩大和气孔的开放等。此外,生长素还可抑制花朵脱落、叶片老化和块根形成等。 四、生长素的作用机理 生长素最明显的生理效应是促进细胞的伸长生长。用生长素处理茎切段后,不仅细胞伸长了,而且细胞壁有新物质的合成,原生质的量也增加了。由于植物细胞周围有一个半刚性的细胞壁,所以生长素处理后所引起细胞的生长必然包含了细胞壁的松驰和新物质的合成。

⑻ 植物进行生命活动需要哪些矿物质如何用实验方法证明植物生长需要这些元素

不同的植物所需的矿质物质是不同的,所以我就举其中一样,如镁,实验:1准备两份培养液(其中编号1是没有矿物质镁的溶液),编号1、2,取两株长势相同且状态良好的植物(注:实验的植物越多越好,为了简便,我只用两株),编号A、B;2将植物A、B分别放入1、2培养液中培养一段时间;3观察并记录。结果:A植物先从老叶的叶缘两侧开始向内黄化,随着缺镁程度的加剧,叶片呈黄色条斑,叶片皱缩,根群少,叶小、花小、花色淡,植株的生长受到抑制,B植物长势正常。结论:该种植物的生长需要矿物质镁

⑼ 植物生长的调节物质有哪些应用

植物生长调节物质的应用:(1)多效唑是一种新型的植物生长调节物质。它具有减弱植物顶端生长优势,促进侧芽生长,提高抗逆能力等生物效应。经多效唑喷施后的茉莉植株徒长枝减少,分枝增多,花期延长,产量提高。

喷施时期:在立夏打顶后进行第一次喷施,以后当花汛高峰期旺产日过后喷施,全年喷三次。喷施时间过迟,花期推后,效益下降。

喷施浓度:以0.02%~0.03%为宜,即100克15%多效唑可湿性粉剂对水50~75千克。茉莉长势差的浓度取低限;长势旺盛的浓度取高限。

注意事项:盛花期不宜喷施;以一次性喷湿喷匀为度,不可来回重复喷;严格掌握用药浓度,高浓度会降低当月产花量;选择晴天傍晚喷施,喷后6小时内如遇下雨需补喷。

(2)三十烷醇三十烷醇是一种含高碳醇的有机化合物,属广谱性作物生长调节物质。据应承志研究报道:1983—1985年在浙江余杭进行盆栽茉莉多点试验,结果表明喷施5毫克/千克的三十烷醇可增产20.1%。

(3)其他目前在花区使用着各种围绕提高产量的生长调节剂,如茉莉增花剂、茉莉王、叶面宝等。这些产品应预先通过田间小区试验,证实确有增产效果时方可在生产上应用。

总之,植物生长调节物质的应用,只是一项辅助措施,不可过频、过多喷施。否则会使花蕾畸形、变小、变轻、香气下降,植株早衰。

阅读全文

与研究植物生长物质的方法有哪些相关的资料

热点内容
简单擦眼霜的正确使用方法图 浏览:22
昂科威烧机油最简单的修复方法 浏览:155
简单小白菜种植方法 浏览:814
让安卓手机出故障的方法 浏览:399
铜的显微结构分析方法 浏览:758
绕组电阻档的测量方法 浏览:66
devondale奶粉使用方法 浏览:243
黑枸杞剪枝方法图片 浏览:549
汽车导航拆卸安装方法 浏览:533
流鼻涕需要用什么方法让他治好 浏览:246
电热棒使用方法 浏览:145
统计指数的计算方法 浏览:936
铁皮石斛种植方法能种在石头上 浏览:175
高冰种翡翠原石鉴别方法图解 浏览:401
租房喝水的正确方法 浏览:823
月见草油的功效与作用及食用方法 浏览:5
玉树菇食用方法 浏览:955
子宫上长了瘤子消除最佳方法 浏览:476
led灯接线柱焊接方法视频 浏览:657
ipad如何隔空手势操作方法 浏览:423