A. 如何使用dw统计量来进行自相关检验该检验方法的前提条件和局限性有哪些
给定显着水平a,依据样本容量n和解释变量个数k',查D.W.表得d统计量的上界和下界dL。
当0<d<dL时,表明存在一阶正自相关,而且正自相关的程度随d向0的靠近而增强。当dL<d<时,表明为不能确定存在自相关。当<d<4-时,表明不存在一阶自相关。当4-<d<4-dL时,表明不能确定存在自相关。当4-dL<d<4时,表明存在一阶负自相关,而且负自相关的程度随d向4的靠近而增强。
DW检验前提条件:
(1)回归模型中含有截距项。
(2)解释变量是非随机的。
(3)随机扰动项是一阶线性自相关。
(4)没有缺失数据,样本比较大。
DW检验局限性:
(1)DW检验有两个不能确定的区域,一旦DW值落在这两个区域,就无法判断。
(2)DW检验不适应随机误差项具有高阶序列相关的检验。
(3)只适用于有常数项的回归模型并且解释变量中不能含滞后的被解释变量。
(1)回归分析dw检验方法扩展阅读
自相关性产生的原因
线性回归模型中随机误差项存在序列相关的原因很多,但主要是经济变量自身特点、数据特点、变量选择及模型函数形式选择引起的。
1、经济变量惯性的作用引起随机误差项自相关;
2、经济行为的滞后性引起随机误差项自相关;
3、一些随机因素的干扰或影响引起随机误差项自相关;
4、模型设定误差引起随机误差项自相关;
5、观测数据处理引起随机误差项序列相关。
B. 统计学里什么叫做DW检验DW值代表什么
DW检验用于检验随机误差项具复有一阶自回归形式的序列相关问题,也是就自相关检验。
杜宾和瓦特森根据样本容量N和解释变量数目K,在给定来显着性水平下,建立D-W检验统计量的下临界值和上临界值,确定了具体的用于判断的范自围。
检验步骤
提出零假设和备选假设
H0:P=0随机误差项不存在一阶序列相关
H1:P≠0
构造D-W检验统计量
D=2(1-P)
P→0时D→2
P→1时D→0
P→-1时D→4
(2)回归分析dw检验方法扩展阅读:
DW = sum (eps_t - eps_{t-1})^2 / sum (eps_t)^2 约= 2(1 - r)
r表示相邻残差之间的相关系数
如果r = 0 也就是说近似于2的DW值表示残差不存在相关性
如果r > 0 也就是说接近0的DW值表示正相关
如果r < 0 也就是说接近4的DW值表示负相关
一般DW统计量的表提供d_l和d_u
DW < d_l 正相关
d_l <DW < d_u 该检验不确定
d_u < DW < 4 - d_u 不存在自相关
4 - d_u < DW < 4 - d_l 该检验不确定
DW > 4 - d_l 负相关
C. 统计学里什么叫做DW检验
DW检验用于检验随机误差项具有一阶自回归形式的序列相关问题,也是就自相关检验。
拓展资料:
该统计量的取值在0-4之间,例如如果自变量数小于4个,统计量大于2,基本上可肯定残差间相互独立。
局限性
1.只适合于一阶情形。
2.不适用于同时存在异方差和序列相关模型。
3.存在两个不能确定的区域。
4.当解释变量中含有被解释变量的滞后项时,检验失效。
参考资料:网络-D-W检验
D. 用spss软件怎么做dw检验呢具体的
1.的图
操作步骤:
1.分析——回归——线性,然后,将因变量选入因变量框中,将所有自变量均选入自变量框中,方法处选择输入。
2.点击统计,回归系数栏选择估算值,残差栏选择德宾-沃森即(DW),另外还要勾选模型拟合和共线性诊断。
3.点击图,将标准化残差“*ZRESID”选入“Y”轴框中,将标准化预测值“*ZPRED”选入“X”轴中,勾选直方图和正态概率图,点击继续,确定。
E. 简述dw检验 统计学里什么叫做DW检验
DW检验用于检验随机误差项具有一阶自回归形式的序列相关问题,也是就自相关检验。
(1)如果0<DW< L D ,则拒绝零假设,扰动项存在一阶正自相关。DW 越接近于0,正自相关性越强。
(2)如果L D <DW< U D ,则无法判断是否有自相关。
(3)如果U D <DW<4- U D ,则接受零假设,扰动项不存在一阶正自相关。DW 越接近2,判断无自相关性把握越大。
(5)回归分析dw检验方法扩展阅读:
构造D-W检验统计量
D=2(1-P)
P→0时 D→2
P→1时 D→0
P→-1时 D→4
杜宾和瓦特森根据样本容量N和解释变量数目K,在给定显着性水平下,建立D-W检验统计量的下临界值和上临界值,确定了具体的用于判断的范围。
F. 什么是dw检验
DW检验是J.Durbin(杜宾)和G.S.Watson(沃特森)于1951年提出的一种适用于小样本的检验方法.DW检验只能用于检验随机误差项具有一阶自回归形式的序列相关问题
G. 在回归分析的残差的独立性分析中,DW检验观测值的直观判断标准有哪些
一、图示法 图示法是一种很直观的检验方法,它是通过对残差散点图的分析来判断随机误差项的序列相关性。把给定的回归模型直接用普通最小二乘法估计参数,求出残差项,并把作为随机误差项的估计值,画出的散点图。由于把残差项作为随机误差项的估计值,随机误差项的性质也应能在残差中反映出来。(一)按时间顺序绘制残差图 如果残差,,随着时间的变化而呈现有规律的变动,则存在相关性,进而可以推断随机误差项之间存在序列相关性。如果随着时间的变化,并不频繁地改变符号,而是取几个正值后又连续地取几个负值(或者,与之相反,几个连续的负值后面紧跟着几个正值),则表明随机误差项存在正的序列相关,(见图6-1);如果随着时间的变化,不断地改变符号(见图6-2),那么随机误差项之间存在负的序列相关。 图6-2 负序列相关(二)绘制,的散点图 计算和,以为纵轴,为横轴,绘制(,),的散点图。如果大部分点落在第Ⅰ,Ⅲ象限,表明随机误差项存在正的序列相关(见图6-3);如果大部分点落在第Ⅱ,Ⅳ象限,表明随机误差项存在负的序列相关(见图6-4)。 图6-3 正序列相关 图6-4 负序列相关二、杜宾——瓦特森(D-W)检验 1、适用条件杜宾——瓦特森检验,简称D—W检验,是J.Durbin(杜宾)和G.S.Watson(瓦特森)于1951年提出的一种适用于小样本的检验序列相关性的方法。D-W检验是目前检验序列相关性最为常用的方法,但它只适用于检验随机误差项具有一阶自回归形式的序列相关问题。在使用该方法时前,必须注意该方法的适用条件。回归模型含有截距项,即截距项不为零;解释变量是非随机的;随机误差项为一阶自相关,即;回归模型中不应含有滞后内生变量作为解释变量,即不应出现下列形式: 其中,为的滞后一期变量;无缺失数据。当上述条件得到满足时,我们可以利用D-W方法检验序列相关问题。2、具体过程(1)提出假设,即不存在序列相关,,即存在序列相关性(2)定义D-W检验统计量为了检验上述假设,构造D-W检验统计量首先要求出回归估计式的残差,定义D-W统计量为: (6-11)其中,。由(6-11)式有 (6-12)由于与只有一次观测之差,故可认为近似相等,则由(6-12)式得 (6-13)随机误差序列的自相关系数定义为: (6-14)在实际应用中,随机误差序列的真实值是未知的,需要用估计值代替,得到自相关系数的估计值为: (6-15)在认为与近似相等的假定下,则(6-15)式可化简为: (6-16)所以,(6-13)式可以写成 (6-17)(3)检验序列相关性因为自相关系数的值介于-1和1之间,所以:,而且有值与的对应关系如表6-1所示。表6-1 值与的对应关系表值DW值随机误差项的序列相关性-1(-1,0) 0(0,1)1 4(2,4) 2(0,2)0 完全负序列相关 负序列相关 无序列相关 正序列相关 完全正序列相关从表6-1中,我们可以知道当值显着地接近于0或者4时,则存在序列相关性;而接近于2时,则不存在序列相关性。这样只要知道统计量的概率分布,在给定的显着性水平下,根据临界值的位置就可以对原假设进行检验。但是统计量的概率分布很难确定,作为一种变通的处理方法,杜宾和瓦特森在5%和1%的显着水平下,找到了上限临界值和下限临界值,并编制了D-W检验的上、下限表。这两个上下限只与样本的大小和解释变量的个数有关,而与解释变量的取值无关。具体的判别规则为:(1) ,拒绝,表明随机误差项之间存在正的序列相关;(2) ,拒绝,表明随机误差项之间存在正的序列相关;(3) ,接受,即认为随机误差项之间不存在序列相关性;(4) 或,不能判定是否存在序列相关性。上述四条判别规则可用图6-5表示: 3.D-W检验特点D-W检验法的优点在于其计算简单、应用方便,目前已成为最常用的序列相关性检验的方法。EViews软件在输出回归分析结果中直接给出了DW值,并且人们也习惯将DW值作为常规的检验统计量,连同值等一起在报告回归分析的计算结果时表明。但D-W检验也存在很大的局限性,在应用时应予以重视。D-W检验不适应随机误差项具有高阶序列相关的检验; D-W检验有两个无法判别的区域,一旦DW值落入这两个区域,必须调整样本容量或采取其他的检验方法;这一方法不适用于对联立方程模型中各单一方程随机误差项序列相关性的检验;D-W检验不适用于模型中含有滞后的被解释变量的情况。二、回归检验法 1、定义回归检验法适用于任一随机变量序列相关性的检验,并能提供序列相关的具体形式及相关系数的估计值。2、应用步骤分三步进行:第一步,依据模型变量的样本观测数据,应用普通最小二乘法求出模型的样本估计式,并计算出随机误差项的估计值;第二步,建立与、的相互关系模型,由于它们相互关系的形式和类型是未知的,需要用多种函数形式进行试验,常用的函数形式主要有: 第三步,对于不同形式的与、的相互关系模型,用普通最小二乘法进行参数估计,得出回归估计式,再对估计式进行统计检验。如果检验的结果是每一种估计式都不显着的,就表明与、是不相关的,随机误差项之间不存在序列相关性。如果通过检验发现某一个估计式是显着的(若有多个估计式显着就选择最为显着的),就表明与、是相关的,随机误差项之间存在序列相关性,相关的形式就是统计检验显着的回归估计式,相关系数就是该估计式的参数估计值。回归检验法需要用多种形式的回归模型对与、的相关性进行试验分析,工作量大、计算复杂,显得极为繁琐。线性回归模型中随机误差项序列相关性的检验,在计量经济学的研究中是一个很重要的问题。但目前应用的检验方法都存在一些缺限和局限,还不能对这一问题进行完全有效的检验,更为完善的检验方法有待于进一步研究。有关于高阶序列相关性的检验,可以参考其它相关教科书。第三节 序列相关的处理 如果检验发现随机误差项之间存在序列相关性,应当首先分析序列相关产生的原因,引起序列相关的原因不同,修正序列相关的方法也不同。如果是回归模型变量选用不当,则应对模型中包含的解释变量进行调整,去掉无关的以及非重要的变量,引入重要的变量;如果是模型的形式选择不当,则应重新确定正确的模型形式;如果以上两种方法都不能消除序列相关性,则需要采用其他数学方法进行处理以消除序列相关性,然后再对模型中的未知参数进行估计。三、差分法 差分法将原模型变换为差分模型,用增量数据代替原来的样本数据。差分法分为一阶差分法和广义差分法。(一)一阶差分法 假设原模型为: (6-18)一阶差分法变换后的模型为: (6-19)其中, 如果,原模型存在完全一阶正相关,即 ,其中不存在序列相关性,那么差分模型满足应用普通最小二乘法的基本假设。用普通最小二乘法估计差分模型得到的参数估计值,即为原模型参数的无偏、有效估计值。(二)广义差分法 一阶差分法仅适用于随机误差项的自相关系数等于1的情形。但在一般情况下,完全一阶正相关的情况并不多见,在这种情况下,随机误差项的序列相关性就要用广义差分法进行修正。对于模型(6-18)如果随机误差项存在一阶自相关,即,其中,为随机误差项的自相关系数,且有,不存在序列相关性。将(6-18)式滞后一期,并左右两边同乘,可得 (6-20)将(6-18)式减去(6-20)式,得 (6-21)在为已知的情况下,我们可以对(6-21)式进行如下变换 (6-22)将变换后的新变量代入(6-21)式,便可得到一个新的模型表示式: (6-23) 我们把上述变换过程称为广义差分变换,把通过广义差分变换得到的模型称为广义差分模型。我们应该注意到这一变换过程所构建的新变量,,由于差分变换要损失一个观测值,样本个数由个减少到个。为了避免损失自由度,可以将第一个观测值作如下变换:,通过对原模型进行广义差分变换,我们可以得到广义差分模型,广义差分模型中的随机误差项满足线性回归的经典假设,对广义差分模型进行OLS估计,得到的参数估计值仍然是最佳估计量。四、杜宾两步法 进行广义差分变换的前提是已知的值。但是随机误差项的自相关系数,的值不可观测,使得的值也是未知的。所以利用广义差分法处理序列相关性时,首先需要估计出的值。这可以用杜宾(Durbin)两步估计法。我们以一元线性回归模型为例,对于模型 (6-24)如果随机误差项存在阶自回归形式的序列相关,即 (6-25)当、、时,便可利用杜宾两步法对的相关系数进行估计。第一步,对(6-24)式进行差分变换,可得 (6-26)整理(6-26)式,可得 (6-27)第二步:应用普通最小二乘法对包含被解释变量及解释变量的滞后变量在内的模型(6-27)式进行估计,求出随机误差项的自相关系数,,…, 的估计值,,…, 。再将,,…, 代入(6-26)式,可得 (6-28)(6-28)式的随机误差项具有零均值、方差齐性、不存在序列相关性的特点。在,,…, 已知的情况下,可以用普通最小乘法对(6-28)式进行估计,求出参数、的估计值、。此方法也适用于多元线性回归模型。杜宾两步法不但求出了自相关系数的估计值,而且也得出了模型参数的估计值。五、迭代法 迭代估计法或科克伦-奥克特(Cochrane-Orcutt)估计法,是用逐步逼近的办法求的估计值。仍以(6-24)式为例,假设随机误差项存在一阶自回归形式的序列相关,即,,其中满足零均值、方差齐性、无序列相关性。迭代估计的具体步骤为:第一步,利用OLS法估计模型,计算残差出;第二步,根据上一步计算出的残差计算的估计值: 第三步,利用上一步求得的值对(6-24)式进行广义差分变换: 并得到广义差分模型:;第四步,再利用OLS法估计,计算出残差,根据残差计算的第二次逼近值: 第五步,重复执行第三、四步,直到的前后两次估计值比较接近,即估计误差小于事先给定的精度:。此时,以 作为的估计值,并用广义差分法进行变换,得到回归系数
H. 如何用SPSS做DW检验
1、打开相关界面,按照分析→非参数检验→相关样本的顺序进行点击。
I. )回归模型进行自相关检验,直接用DW检验,那么DW的值接近于几,检验是否有效
DW检验用于检验随机误差项具有一阶自回归形式的序列相关问题,也是就自相关检验
D-W检验:德宾—沃森统计量(D-W统计量)是检验模型是否存在自相关的一种简单有效的方法,其公式为:
D-W= ∑(Et-Et-1)^2/∑Et^2,Et是第t期的残差,Et-1是第t-1期的残差,∑是对t从第2期到第t期求和,^2表示平方。
把上式计算的D-w值,与德宾—沃森给出的不同显着性水平α的D-W值之上限dU和下限dL(它们与样本容量n和自变量个数p有关)进行比较,D-W的取值域在0-4之间。
在D-W小于等于2时,D-W检验法则规定:
如D-W<dL,认为ei存在正自相关;
如D-W>d U,认为ei无自相关;
如dL<D-W<dU,不能确定ei是否
有自相关。
在D-W大于2时,D-W检验法则规:
如4-D-W<dL,认为ei存在负自相关;
如4-D-w>d U认为ei无自相关;
如dL<4-D-W<dU,不能确定是否
有自相关。
J. excel数据分析中的dw是什么
1、定义:DW检验是Durbin-Watson于1951年提出的D.W检验是以普通最小二乘法回归并对回归余项的线性独立性假设进行的检验,即序列的自相关检验。
2、优点:能直接根据估计的残差计算,简便快捷。
3、缺点:即存在一个没有任何结论的区域。一旦d检验值落在里边,就无法判断是否有序列相关存在。