① 钢中常见合金元素的含量测定方法
钢中常见合金元素的含量测定方法:钢材常见者主要有碳素钢、不锈钢、低合金钢、轴承钢这几大类,有时还要包括弹簧钢等。每一类有很多牌号,每种牌号的钢材,其具体组分在《金属材料手册》中都有详细讲述,你可以自行查阅。
至于你所说的操作过程,那是得几十万字的内容呢,一下子讲不清楚,每种不同的钢材,甚至不同牌号的,分析方法都不完全一致呢,更何况不知道你懂不懂分析。如果不懂,那就根本不可能三五天就听明白。就必须得从头来,从《无机化学》、《有机化学》、《分析化学》、《仪器分析》、《分析化学手册》开始学起,认认真真看它三五年,才能真正明白。我在这里告诉你一些,不如当面告诉你;当面告诉你,不如带你操作;带你操作,不如你自己掌握了。如果你学过化学(大学级别的),那就去找《金属材料分析方法(手册)》、《钢铁材料分析方法(手册)》、《工厂实用化学分析》、某种钢材分析的国标等书籍、资料来看,就可以了。在电炉冶炼及产品检验中,元素的测定,多采用氧化还原滴定法测定元素:称取一定量样品,硫酸溶解,滴加浓硝酸促进溶解,驱除氮氧化物后,在酸性溶液中,用硝酸银做催化剂...煮沸分解多余的过硫酸铵后,以经同一牌号钢的标准样品标定过的硫酸亚铁铵标准溶液进行滴定,从标准溶液的消耗量计算出含量。对熟悉化验的人员来说,前面的叙述基本可以自己写出一个测钢元素的操作规程来了。然而,看样子,你对炼钢及化验钢中的各种元素一点也不熟悉,因为你提到的问题涉及许多内容,不是在网络里可以全部回答得了的,仅仅是了解它的全过程,也是需要用一本小册子才能大概说明白。更何况具体的技术细节,只有到现场去学习观察了解才能真正弄明白是怎么一回事。还有,化验只能是帮助冶炼人员了解钢里的成分含量,只是一种监控手段,本身不能提高钢的质量。在炼钢过程中,在熔融、氧化除杂、还原和调整钢的成分(包括碳、硅、锰、硫、磷及其它合金成分)等过程中,要取3-5个钢水样品进行高速分析,在几分钟内向炉前报出结果,指导炉前掌握并调整钢的成分,最终炼出合格的钢产品。而成品钢的分析,则是在事后分析。建议你还是找一些相关的小册子或书看看,最好到炼钢现场看看...
② 材料分析检测技术的介绍
《材料分析检测技术》阐述了主要的材料分析检测技术的基本原理、探测过程和处理技术。包括:材料分析检测技术概述、X射线衍射分析、扩展X射线吸收精细结构谱分析、透射电子显微分析、扫描电子显微镜和电子探针分析、扫描隧道显微分析和原子力显微分析、光电子能谱分析、俄歇电子能谱分析、原子光谱分析、分子光谱分析、拉曼光谱分析、核磁共振谱分析、电子自旋共振波谱分析、穆斯堡尔谱分析、热分析等。
③ 材料现代分析测试方法有哪些,详细介绍
1,X射线衍射分析技术
2,电子显微镜分析技术
3,热分析技术
4,红外光谱分析
详情可以看由天津大学,杜希文教授,编写了《材料分析方法》教材,该教材一经出版其编写思路受到同行的关注,2006年入选国家“十一五”规划教材,2007年被评为国家高等教育精品教材。与此同时,项目组对课程的实验环节进行了精心设计,完成了验证型实验向设计型实验的转变,受到校内外专家的好评,2008年“材料现代研究方法”被评为天津市精品课程,课程负责人杜希文教授和主讲教师赵乃勤教师获得天津大学教学名师称号,主讲教师侯峰获天津市青年教师授课竞赛一等奖。2009年,以本课程为主要内容的教改项目“材料类复合型人才实践教学体系的综合改革与实践”“ 获得天津市教学成果一等奖。
④ SEM、TEM、XRD、AES、STM、AFM的区别
SEM、TEM、XRD、AES、STM、AFM的区别主要是名称不同、工作原理不同、作用不同、
一、名称不同
1、SEM,英文全称:Scanningelectronmicroscope,中文称:扫描电子显微镜。
2、TEM,英文全称:,中文称:透射电子显微镜。
3、XRD,英文全称:Diffractionofx-rays,中文称:X射线衍射。
4、AES,英文全称:AugerElectronSpectros,中文称:俄歇电子能谱。
5、STM,英文全称:ScanningTunnelingMicroscope,中文称:扫描隧道显微镜。
6、AFM,英文全称:AtomicForceMicroscope,中文称:原子力显微镜。
二、工作原理不同
1.扫描电子显微镜的原理是用高能电子束对样品进行扫描,产生各种各样的物理信息。通过接收、放大和显示这些信息,可以观察到试样的表面形貌。
2.透射电子显微镜的整体工作原理如下:电子枪发出的电子束经过冷凝器在透镜的光轴在真空通道,通过冷凝器,它将收敛到一个薄,明亮而均匀的光斑,辐照样品室的样品。通过样品的电子束携带着样品内部的结构信息。通过样品致密部分的电子数量较少,而通过稀疏部分的电子数量较多。
物镜会聚焦点和一次放大后,电子束进入第二中间透镜和第一、第二投影透镜进行综合放大成像。最后,将放大后的电子图像投影到观察室的荧光屏上。屏幕将电子图像转换成可视图像供用户观察。
3、x射线衍射(XRD)的基本原理:当一束单色X射线入射晶体,因为水晶是由原子规则排列成一个细胞,规则的原子之间的距离和入射X射线波长具有相同的数量级,因此通过不同的原子散射X射线相互干涉,更影响一些特殊方向的X射线衍射,衍射线的位置和强度的空间分布,晶体结构密切相关。
4.入射的电子束和材料的作用可以激发原子内部的电子形成空穴。从填充孔到内壳层的转变所释放的能量可能以x射线的形式释放出来,产生特征性的x射线,也可能激发原子核外的另一个电子成为自由电子,即俄歇电子。
5.扫描隧道显微镜的工作原理非常简单。一个小电荷被放在探头上,电流从探头流出,穿过材料,到达下表面。当探针通过单个原子时,通过探针的电流发生变化,这些变化被记录下来。
电流在流经一个原子时涨落,从而非常详细地描绘出它的轮廓。经过多次流动后,人们可以通过绘制电流的波动得到构成网格的单个原子的美丽图画。
6.原子力显微镜的工作原理:当原子间的距离减小到一定程度时,原子间作用力迅速增大。因此,样品表面的高度可以直接由微探针的力转换而来,从而获得样品表面形貌的信息。
三、不同的功能
1.扫描电子显微镜(SEM)是介于透射电子显微镜和光学显微镜之间的一种微观形貌观察方法,可以直接利用样品表面材料的材料性质进行微观成像。
扫描电子显微镜具有高倍放大功能,可连续调节20000~200000倍。它有一个大的景深,一个大的视野,一个立体的形象,它可以直接观察到各种样品在不均匀表面上的细微结构。
样品制备很简单。目前,所有的扫描电镜设备都配备了x射线能谱仪,可以同时观察微观组织和形貌,分析微区成分。因此,它是当今非常有用的科学研究工具。
2.透射电子显微镜在材料科学和生物学中有着广泛的应用。由于电子容易散射或被物体吸收,穿透率低,样品的密度和厚度会影响最终成像质量。必须制备超薄的薄片,通常为50~100nm。
所以当你用透射电子显微镜观察样品时,你必须把它处理得很薄。常用的方法有:超薄切片法、冷冻超薄切片法、冷冻蚀刻法、冷冻断裂法等。对于液体样品,通常挂在预处理过的铜线上观察。
3X射线衍射检测的重要手段的人们意识到自然,探索自然,尤其是在凝聚态物理、材料科学、生活、医疗、化工、地质、矿物学、环境科学、考古学、历史、和许多其他领域发挥了积极作用,不断拓展新领域、新方法层出不穷。
特别是随着同步辐射源和自由电子激光的兴起,x射线衍射的研究方法还在不断扩展,如超高速x射线衍射、软x射线显微术、x射线吸收结构、共振非弹性x射线衍射、同步x射线层析显微术等。这些新的X射线衍射检测技术必将为各个学科注入新的活力。
4,俄歇电子在固体也经历了频繁的非弹性散射,可以逃避只是表面的固体表面原子层的俄歇电子,电子的能量通常是10~500电子伏特,他们的平均自由程很短,约5~20,所以俄歇电子能谱学调查是固体表面。
俄歇电子能谱通常采用电子束作为辐射源,可以进行聚焦和扫描。因此,俄歇电子能谱可用于表面微观分析,并可直接从屏幕上获得俄歇元素图像。它是现代固体表面研究的有力工具,广泛应用于各种材料的分析,催化、吸附、腐蚀、磨损等方面的研究。
5.当STM工作时,探头将足够接近样品,以产生具有高度和空间限制的电子束。因此,STM具有很高的空间分辨率,可以用于成像工作中的科学观测。
STM在加工的过程中进行了表面上可以实时成像进行了表面形态,用于查找各种结构性缺陷和表面损伤,表面沉积和蚀刻方法建立或切断电线,如消除缺陷,达到修复的目的,也可以用STM图像检查结果是好还是坏。
6.原子力显微镜的出现无疑促进了纳米技术的发展。扫描探针显微镜,以原子力显微镜为代表,是一系列的显微镜,使用一个小探针来扫描样品的表面,以提供高倍放大。Afm扫描可以提供各类样品的表面状态信息。
与传统显微镜相比,原子力显微镜观察样品的表面的优势高倍镜下在大气条件下,并且可以用于几乎所有样品(与某些表面光洁度要求)并可以获得样品表面的三维形貌图像没有任何其他的样品制备。
扫描后的三维形貌图像可进行粗糙度计算、厚度、步长、方框图或粒度分析。
⑤ 材料测试分析技术有哪些
材料分析方法:
1、化学分析:化学分析又称经典分析,包括滴定分析和重量分析两部分,是根据样品的量、反应产物的量或所消耗试剂的量及反应的化学计量关系,经计算得待测组分的含量。化学分析是鉴别材料中附加成分的种类、含量,是剖析材料组成、准确定量的必要手段。
2、差热分析:热分析是研究热力学参数或物理参数与温度变化关系分析的方法,可分性材料晶型转变、熔融、吸附、脱水、分解等物理性质,在物理、化学、化工、冶金、地质、建材、燃料、轻纺、食品、生物等领域得到广泛应用。通过热分析技术的综合应用可以判断材料种类、材料组分含量、筛选目标材料、对材料加工条件、 使用条件做出准确的预判,是材料分析过程中非常重要的组成部分。
3、元素分析:元素分析是研究被测元素原子的中外层电子由基态向激发态跃迁时吸收或者放出的特征谱线的一种分析手段,通过特征谱线的分析可了解待测材料的元素组成、化学键、原子含量及相对浓度。元素分析针对材料中非常规组分进行前期元素分析,辅助和佐证色谱分析,是材料分析中必不可少的环节。
4、光谱分析:光谱分析是通过对材料的发射光谱、吸收光谱、荧光光谱等特征光谱进行研究以分析物质结构特征或含量的方法,光谱分析根据光的波长分为可见、红外、紫外、X射线光谱分析。利用光谱分析可以精确、迅速、灵敏的鉴别材料、分析材料分子结构、确定化学组成和相对含量。是材料分析过程中对材料进行定性分析首要步骤。
5、色谱分析:是材料不同组分分子在固定相和流动相之间分配平衡的过程中,不同组分在固定相上相互分离,已达到对材料定性分析、定量的目的。根据分离机制,色谱分析可以分为吸附色谱、分配色谱、离子交换色谱、凝胶色谱、亲和色谱等分析类别,通过各种色谱技术的综合运用,可实现各种材料的组分分离、定量、定性分析。
6、联用(接口)技术:通过不同模式和类型的热分析技术与色谱、光谱、质谱联用(接口)技术实现对多组分复杂样品体系的分析,可完成组分多样性、体系多样性的材料精确、灵敏、快捷的组分、组成测试,是非常规材料剖析过程中不可或缺分析方法。
⑥ 金相分析指的是什么
水平太高,无法解答。
您说的是不是物相分析呀?
对物质中各组成成分的存在的状态、形态、价态进行确定的分析方法。
利用物理原理的方法有比重法、磁选法、X射线结构分析法等。或利用不同溶剂,将物质及其组分的各种不同的相进行选择性分离,然后再用物理或化学分析方法,确定其组成或结构。此外,还有价态分析。结晶基本成分分析和晶态结构分析等均属物相分析。
⑦ 材料分析方法的介绍
本书为高等理工科院校材料与工程专业本科公共理论课教材,同时也适用于本专业研究生的教学和科研。本书还可供从事材料研究、应用和生产的专业技术人员参考。
⑧ 材料分析表征是什么意思
材料分析表征是两个概念。
1、材料分析是对材料内在的结构和特性进行揭示的过程,分析基于试验或检测得出材料结构信息和特性数据。
2、材料表征是通过对材料结构信息和特性数据的加工得出的一种描述或解释,表征是在材料分析的基础上进行的一种主观抽象思维,用文字、图示、模型等解释和说明材料中隐含的内在的结构和特性。
分析给出结果,表征给出结论。
X射线衍射、N2吸附/脱附测试、电子扫描电镜及透射电镜可以给出材料的形貌结构信息,但这些结果不能叫表征。要想表征还需要对这些结果进行主观的抽象思维再加工。
(8)材料分析方法edma全称扩展阅读:
表征的特性
1、持久性
心理表征具有持久性。认知模型在系统的内部状态中是动态的、时时刻刻变化的。
2、差异性
认知模型认为表征的成分都是一些不同的成分,不同的状态强调这些不同成分的差异性。认知的心理表征的观点认为,不同的成分就是不同的实体,它们从特征罗列的表征到语义网络,再到结构的表征与图式是变化着的。
3、成分结构
这种从原始单元形成较复杂的概念的能力是语言的特殊情况,它通过并列衔接表征物体的形态单元(主要是名词)与表征这些物体之间关系的其他单元(主要是动词)来描述许多动作,因此符号表征具有的成分结构即角色中项可以促进概念的结合。
4、抽象性
抽象的思维与认知加工密切相关,因为在一定水平上存在着抽象的中介状态。环境信息本身不进入人的大脑影响行为,感觉的信息数据都是由物理刺激通过神经传递到达感觉器官的结果,因此描述抽象水平的中介状态具有重要的意义。
5、受规则控制
认知加工模型提出了一些规则。例如,皮亚杰的阶段理论基本思想认为,发展的目标状态就是形式运算的能力。乔姆斯基的语言学认为,语法规则将深层结构转换到表层结构。人工智能理论认为,应用算子可以解决问题。
⑨ 对材料进行组织形貌分析有哪些方法
对材料进行组织形貌分析的方法有:光学显微镜(OM)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、扫描隧道显微镜(STM)。材料的形貌是材料分析的重要组成部分,材料的很多物理化学性能是由其形貌特征所决定的。
显微镜是由一个透镜或几个透镜的组合构成的一种光学仪器,是人类进入原子时代的标志。主要用于放大微小物体成为人的肉眼所能看到的仪器。显微镜分光学显微镜和电子显微镜:光学显微镜是在1590年由荷兰的詹森所首创。现在的光学显微镜可把物体放大1600倍,分辨的最小极限达波长的1/2,国内显微镜机械筒长度一般是160毫米。其中对显微镜研制,微生物学有巨大贡献的人为列文虎克,荷兰籍人。