‘壹’ LED用蓝宝石衬底材料有哪几种
LED用衬底材料一般有蓝宝石衬底,碳化硅衬底及硅衬底三种,其中蓝宝石衬底应用最广泛,因为其加工方法以及加工成本等与其他两种相比较都有不小的优势。虽说在晶格匹配上面是氮化镓衬底砷化镓衬底最为匹配,但其生产加工方法要比碳化硅及硅等都更难上加难。
当前用于GaN基LED的衬底材料比较多,但是能用于商品化的衬底目前只有两种,即蓝宝石和碳化硅衬底。其它诸如GaN、Si、ZnO衬底还处于研发阶段,离产业化还有一段距离。
一、红黄光LED
红光LED以GaP(二元系)、AlGaAs(三元系)和AlGaInP(四元系)为主,主要采用GaP和GaAs作为衬底,未产业化的还有蓝宝石Al2O3和硅衬底。
1、GaAs衬底:在使用LPE生长红光LED时,一般使用AlGaAs外延层,而使用MOCVD生长红黄光LED时,一般生长AlInGaP外延结构。外延层生长在GaAs衬底上,由于晶格匹配,容易生长出较好的材料,但缺点是其吸收这一波长的光子,布拉格反射镜或晶片键合技术被用于消除这种额外的技术问题。
2、GaP衬底:在使用LPE生长红黄光LED时,一般使用GaP外延层,波长范围较宽565-700nm;使用VPE生长红黄光LED时,生长GaAsP外延层,波长在630-650nm 之间;而使用MOCVD时,一般生长AlInGaP外延结构,这个结构很好的解决了GaAs衬底吸光的缺点,直接将LED结构生长在透明衬底上,但缺点是晶格失配,需要利用缓冲层来生长InGaP和AlGaInP结构。另外,GaP基的III-N-V材料系统也引起广泛的兴趣,这种材料结构不但可以改变带宽,还可以在只加入0.5 %氮的情况下,带隙的变化从间接到直接,并在红光区域具有很强的发光效应(650nm)。采用这样的结构制造LED,可以由GaNP 晶格匹配的异质结构,通过一步外延形成LED结构,并省去GaAs衬底去除和晶片键合透明衬底的复杂工艺。
二、蓝绿光LED
用于氮化镓研究的衬底材料比较多,但是能用于生产的衬底目前只有二种,即蓝宝石Al2O3和碳化硅SiC衬底。
1、氮化镓衬底:用于氮化镓生长的最理想的衬底自然是氮化镓单晶材料,这样可以大大提高外延片膜的晶体品质,降低位元错密度,提高器件工作寿命,提高发光效率,提高器件工作电流密度。可是,制备氮化镓体单晶材料非常困难,到目前为止尚未有行之有效的办法。有研究人员通过HVPE方法在其他衬底(如Al2O3、SiC、LGO)上生长氮化镓厚膜,然后通过剥离技术实现衬底和氮化镓厚膜的分离,分离后的氮化镓厚膜可作为外延用的衬底。这样获得的氮化镓厚膜优点非常明显,即以它为衬底外延的氮化镓薄膜的位元错密度,比在Al2O3、SiC上外延的氮化镓薄膜的位元错密度要明显低;但价格昂贵。因而氮化镓厚膜作为半导体照明的衬底之用受到限制。
2、蓝宝石Al2O3衬底:目前用于氮化镓生长的最普遍的衬底是Al2O3,其优点是化学稳定性好、不吸收可见光、价格适中、制造技术相对成熟;不足方面虽然很多,但均一一被克服,如很大的晶格失配被过渡层生长技术所克服,导电性能差通过同侧P、N电极所克服,机械性能差不易切割通过雷射划片所克服,很大的热失配对外延层形成压应力因而不会龟裂。但是,差的导热性在器件小电流工作下没有暴露出明显不足,却在功率型器件大电流工作下问题十分突出。
3、SiC衬底:除了Al2O3衬底外,目前用于氮化镓生长衬底就是SiC,它在市场上的占有率位居第2,目前还未有第三种衬底用于氮化镓LED的商业化生产。它有许多突出的优点,如化学稳定性好、导电性能好、导热性能好、不吸收可见光等,但不足方面也很突出,如价格太高、晶体品质难以达到Al2O3和Si那么好、机械加工性能比较差。 另外,SiC衬底吸收380 nm以下的紫外光,不适合用来研发380 nm以下的紫外LED。由于SiC衬底优异的的导电性能和导热性能,不需要像Al2O3衬底上功率型氮化镓LED器件采用倒装焊技术解决散热问题,而是采用上下电极结构,可以比较好的解决功率型氮化镓LED器件的散热问题。目前国际上能提供商用的高品质的SiC衬底的厂家只有美国CREE公司。
4、Si衬底:在硅衬底上制备发光二极体是本领域中梦寐以求的一件事情,因为一旦技术获得突破,外延片生长成本和器件加工成本将大幅度下降。Si片作为GaN材料的衬底有许多优点,如晶体品质高,尺寸大,成本低,易加工,良好的导电性、导热性和热稳定性等。然而,由于GaN外延层与Si衬底之间存在巨大的晶格失配和热失配,以及在GaN的生长过程中容易形成非晶氮化硅,所以在Si 衬底上很难得到无龟裂及器件级品质的GaN材料。另外,由于硅衬底对光的吸收严重,LED出光效率低。
5、ZnO衬底:之所以ZnO作为GaN外延片的候选衬底,是因为他们两者具有非常惊人的相似之处。两者晶体结构相同、晶格失配度非常小,禁带宽度接近(能带不连续值小,接触势垒小)。但是,ZnO作为GaN外延衬底的致命的弱点是在GaN外延生长的温度和气氛中容易分解和被腐蚀。目前,ZnO半导体材料尚不能用来制造光电子器件或高温电子器件,主要是材料品质达不到器件水准和P型掺杂问题没有真正解决,适合ZnO基半导体材料生长的设备尚未研制成功。今后研发的重点是寻找合适的生长方法。但是,ZnO本身是一种有潜力的发光材料。 ZnO的禁带宽度为3.37 eV,属直接带隙,和GaN、SiC、金刚石等宽禁带半导体材料相比,它在380 nm附近紫光波段发展潜力最大,是高效紫光发光器件、低阈值紫光半导体雷射器的候选材料。ZnO材料的生长非常安全,可以采用没有任何毒性的水为氧源,用有机金属锌为锌源。
6、ZnSe衬底:有人使用MBE在ZnSe衬底上生长ZnCdSe/ZnSe等材料,用于蓝光和绿光LED器件,最先由住友公司推出,由于其不需要荧光粉就可以实现白光LED的目标,故可降低成品,同时电源回路构造简单,其操作电压也比GaN白光LED低。但是其并没有推广,这是因为由于使用MOCVD,p型参杂没有很好解决,试验中需要用到Sb来参杂,所以一般采用MBE生长,同时其发光效率较低,,而且由于自补偿效应的影响,使得其性能不稳定,器件寿命较短。
现在蓝宝石衬底是最为广泛应用的,晶体主要材料来自美国,俄罗斯,台湾,大陆也开始慢慢起来了
‘贰’ VPE是什么意思
vpe是英国台球界一个非常有名的品牌。他们的产品专注高端专业界,在专业台球圈很有名气
‘叁’ Mocvd是什么意思
MOCVD是金属有机化学气相沉积(Metal-organic Chemical Vapor Deposition)的英文缩写,是一种制备化合物半导体薄层单晶材料的方法。MOCVD是在气相外延生长(VPE)的基础上发展起来的一种新型气相外延生长技术.它以Ⅲ族、Ⅱ族元素的有机化合物和V、Ⅵ族元素的氢化物等作为晶体生长源材料,以热分解反应方式在衬底上进行气相外延,生长各种Ⅲ-V族、Ⅱ-Ⅵ族化合物半导体以及它们的多元固溶体的薄层单晶材料。
MOCVD技术具有下列优点:
(l)适用范围广泛,几乎可以生长所有化合物及合金半导体;
(2)非常适合于生长各种异质结构材料;
(3)可以生长超薄外延层,并能获得很陡的界面过渡;
(4)生长易于控制;
(5)可以生长纯度很高的材料;
(6)外延层大面积均匀性良好;
(7)可以进行大规模生产。
‘肆’ mocvd设备工作原理
MOCVD是在气相外延生长(VPE)的基础上发展起来的一种新型气相外延生长技术。
MOCVD是以Ⅲ族、Ⅱ族元素的有机化合物和V、Ⅵ族元素的氢化物等作为晶体生长源材料,以热分解反应方式在衬底上进行气相外延,生长各种Ⅲ-V主族、Ⅱ-Ⅵ副族化合物半导体以及它们的多元固溶体的薄层单晶材料。
原理~~~~~
MOCVD是以Ⅲ族、Ⅱ族元素的有机化合物和V、Ⅵ族元素的氢化物等作为晶体生长源材料,以热分解反应方式在衬底上进行气相外延,生长各种Ⅲ-V族、Ⅱ-Ⅵ族化合物半导体以及它们的多元固溶体的薄层单晶材料。通常MOCVD系统中的晶体生长都是在常压或低压(10-100Torr)下通H2的冷壁石英(不锈钢)反应室中进行,衬底温度为500-1200℃,用直流加热石墨基座(衬底基片在石墨基座上方),H2通过温度可控的液体源鼓泡携带金属有机物到生长区。
组成
因为MOCVD生长使用的源是易燃、易爆、毒性很大的物质,并且要生长多组分、大面积、薄层和超薄层异质材料。因此在MOCVD系统的设计思想上,通常要考虑系统密封性,流量、温度控制要精确,组分变换要迅速,系统要紧凑等。不同厂家和研究者所产生或组装的MOCVD设备是不同的。 一般由 源供给系统 、气体输运和流量控制系统、反应室及温度控制系统、尾气处理及安全防护报警系统、自动操作及电控系统。
‘伍’ 什么是vpe软件
VPE(VPNPE)是一种特殊的 PE,它和 CE 之间的连接方式不是传统的
DDN/E1/POS/ETH/PVC 等专线技术,而是 IPSec/L2TP/GRE/UDPVPN 等隧道技术。
VPE 完成 IPVPN 与 MPLSVPN 的融合,在网络边缘实现网络资源的逻辑划分及安全
隔离,核心网与边缘网络形成了一个整体,实现了端到端的 VPN功能。
‘陆’ mocvd是什么
MOCVD是金属有机化合物化学气相淀积(Metal-organic Chemical Vapor DePosition)的英文缩写。MOCVD是在气相外延生长(VPE)的基础上发展起来的一种新型气相外延生长技术.它以Ⅲ族、Ⅱ族元素的有机化合物和V、Ⅵ族元素的氢化物等作为晶体生长源材料,以热分解反应方式在衬底上进行气相外延,生长各种Ⅲ-V族、Ⅱ-Ⅵ族化合物半导体以及它们的多元固溶体的薄层单晶材料。通常MOCVD系统中的晶体生长都是在常压或低压(10-100Torr)下通H2的冷壁石英(不锈钢)反应室中进行,衬底温度为500-1200℃,用射频感应加热石墨基座(衬底基片在石墨基座上方),H2通过温度可控的液体源鼓泡携带金属有机物到生长区。
参考:http://ke..com/view/997070.htm
‘柒’ vpe是什么疾病的英文简称
你好!
翻译为:汽相外延!
希望能够帮到你!
‘捌’ 林兰英的工作简历
1944-1948,福建协和大学,讲师
1955-1956,Sylvania公司,高级工程师
1957-1960,中国科学院物理研究所,研究员
1960- , 中国科学院半导体研究所,研究员 1980-,中国科学技术协会,副主席
1978-1985,中国电子材料行业协会,主任委员
1986-,国家自然科学基金委员会,委员
专业领域:半导体材料 ,半导体材料物理 1959-1964,直拉硅和区熔硅晶体生长,主持
1977-1980,高纯VPE和LPE GaAs外延材料生长,主持
1985-1990,LCS SI-GaAs晶体生长,主持
1987-1994,空间GaAs材料生长和性质,主持 1980-1981,4K和16K硅DRAM及提高成品率研究,中国科学院,科学技术进步奖,一等
1982,高纯LPE GaAs生长及性质,晶体生长杂志,
1989,太空GaAs制备与性质,材料科学文集,
1993,林兰英论文选,福建科学技术出版社,
198905,太空GaAs生长及性质研究,中国科学院,科学技术进步奖,一等
198605,砷化镓材料质量提高研究,国家科学技术委员会,科学技术进步奖,二等
‘玖’ 中晟光电和中微半导体的mocvd有什么区别
摘要 你好!很高兴为你解答该问题!两家的MOCVD是没有区别的,MOCVD是1968年由美国洛克威公司的manasevit等人提出制备化台物单晶薄膜的一项新技术,到80年代初得以实用化。从定义上来看,MOCVD是在气相外延生长(VPE)的基础上发展起来的一种新型气相外延生长技术,MOCVD成为了目前半导体化台物材料制备的关键技术之一。广泛应用于包括半导体器件、光学器件、气敏元件、超导薄膜材料、铁电/铁磁薄膜、高介电材料等多种薄膜材料的制备。