Ⅰ 高效液相色谱有几种定量方法其中那种是比较精确的定量方法并简述
峰面积法、峰高法、归一法、外标法。峰面积法是比较精确的定量方法
Ⅱ 分光光度法中定量分析常用的方法有哪些
分光光度法中定量分析常用的方法有:标准曲线法和标准加入法。
Ⅲ 定量分析的一般步骤有哪些
定量分析的一般步骤有:取样、样品前处理、样品测定、结果计算、出具检验报告。
定量分析方法是对社会现象的数量特征、数量关系与数量变化进行分析的方法。在企业管理上,定量分析法是以企业财务报表为主要数据来源,按照某种数理方式进行加工整理,得出企业信用结果。
五种定量分析法包括:
比率分析法。根据不同数据做对比,得出比率。
趋势分析法。根据一阶段某一指标的变动绘制趋势分析图。
结构分析法。根据某一指标占总体的百分比来观察。
相互对比法。选取某两个指标作为一组进行对比。
数学模型法。建造适合某一指标的数学模型来观察指标的变化。
定量分析方法:比率分析法,根据不同数据做对比,得出比率。趋势分析法,根据一阶段某一指标的变动绘制趋势分析图。结构分析法,根据某一指标占总体的百分比来观察。相互对比法,选取某两个指标作为一组进行对比。数学模型法,建造适合某一指标的数学模型来观察指标的变化。
Ⅳ 原子吸收光谱法定量分析方法
转载:《分析测试网络网》
这是我写的“原子吸收光谱分析的定量分析方法”帖出来与大家共享,希望各位批评指正,在这先谢谢了~~
2.3 原子吸收光谱分析的定量方法
原子吸收光谱分析是一种动态分析方法,用校正曲线进行定量.常用的定量方法有标准曲线法、标准加入法和浓度直读法,如为多通道仪器,可用内标法定量.在这些方法中,标准曲线法是最基本的定量方法,是其他定量方法的基础.
2.3.1 标准曲线法
标准曲线法(standard curve method),又称校正曲线法(calibration curve method),是用标准物质配制标准系列,在标准条件下,测定各种标准样品的吸光度值Ai(i=1,2,3,…)对被测元素的含量 ci(i=1,2,3,…)建立校正曲线A=f(c),在同样条件下,测定样品的吸光度值Ax,根据被测元素的吸光度值Ax从校正曲线求得其含量cx.校正曲线如图2—4所示.
(对不起,图我现在都还没有画出来)图2—4 校正曲线及其置信范围(阴影部分表示置信范围)
校正曲线的质量对获得准确测定结果有着直接的影响,因此,我们在建立校正曲线过程中,应遵循以下的原则:
(1)选择精度好的分析方法在严格控制分析条件的情况下建立校正曲线;
(2)在保证校正曲线为线性的条件下,应尽可能扩大被测组分含量的取值范围;
(3)在实验工作量一定的情况下,适当增加实验点的数目、减少每一实验点的重复测定次数,比增加每一实验点的重复测定次数、减少实验点的数目能更有效地提高校正曲线的精度.但随着实验点数目的增加,校正曲线精度的提高速率越来越慢,实验点数目n大于6以后,精度提高速率很慢.从置信系数tα,f考虑,在 n6时,tα,f值减小的速率也很慢,校正曲线的置信范围变小的速率很慢,再靠进一步增加实验点数目提高标准曲线的精度是不合算的.因此,5~6个实验点建立校正曲线是合理的;
(4)被测组分的含量应尽可能位于校正曲线的中央部分.位于校正曲线高、低含量(浓度)两端的实验点的测定精度较位于曲线中央部分的实验点的测定精度差,因此,对校正曲线两端的实验点的测定次数要多一些;
(5)鉴于校正曲线低含量(浓度)区的测定精度较差,而空白溶液正位于这一测定精度差的区域,因此,以空白溶液校正仪器(即用空白溶液调零)是不合适的.合理的做法应是对空白溶液多进行几次测定,取其测定平均值,将它作为含量(浓度)为零的实验点参与校正曲线的拟合;
(6)由于“空白值”的测定误差较大,且为随机变量,不同的取样会得到不同的空白值,因此,在扣除空白值时,直接扣除用空白溶液测定的空白值不是一个好方法.用校正曲线拟合得到的截距值作为实际空白值扣除会得到更好的结果.这是因为截距值是统计平均值,它比由空白溶液直接测定的值更稳定,精度更好;
(7)测定未知样品时,重复测定可以提高估计值cx的精度,因此,在条件允许的情况下,多进行几次测定是有利的;
(8)检验校正曲线是否发生变化,最好用不同浓度的标准溶液进行检验.比如建立校正曲线时用浓度为c1、c3、c5、c7、c9的五个实验点,检验校正曲线是否发生变化时,最好用浓度为c2、c4、c6、c8、c10的五个实验点.这是因为当两条标准曲线无显着性差异时,可以用一条共同的标准曲线来拟合这10个实验点,实验点数目增加能有效提高标准曲线的精度.若用相同浓度的标准溶液进行检验,当用一条共同的标准曲线来拟合这两组实验点时,实验点数目并没有增加,仍然是5个实验点,只是增加了每一个实验点的精度,这样并不能有效地提高校正曲线的精度.
如读者有兴趣想进一步详细了解校正曲线的建立、如何进行校正曲线的显着性(相关性)检验、线性范围的确定、精度与置信区间的确定和利用校正曲线进行预报和控制以及两条校正曲线如何进行比较等问题,可参阅邓勃编写的《分析测试数据的统计处理方法》,北京清华大学出版社1995年版第5章.
2.3.2 标准加入法
对标准曲线法的定义中,可以看出分析结果的准确性直接依赖于标准系列与被分析样品的组成的精确匹配.但在实际分析工作中,样品的基体、组成和浓度千变万化,要找到完全与样品组成相匹配的标准物质是很困难的.
标准加入法(standard addition method)是在若干份等量的被分析样品中,分别加入0、c1、c2、c3、c4、c5等不同量的被测定元素标准溶液,依次在标准条件下测定它们的吸光度Ai(i=1,2,3,4,5,…),建立吸光度Ai对加入量ci的校正曲线(见图2—5).因为基体组成是相同的,可以自动补偿样品基体的物理和化学干扰,提高测定的准确度.校正曲线不通过原点,其截距的大小相当于被分析试样中所含被测元素所产生的响应,因此,将校正曲线外延与横坐标相交,原点至交点的距离,即为试样中被测元素的含量cx.
标准加入法所依据的原理是吸光度的加和性.我们在应用标准加入法时应注意以下几点:
(1)标准加入法只能用于校正曲线线性范围内才能得到正确结果,对非线性校正曲线,吸光度会导致测定结果偏高.因此,所有的测量都应在线性范围内;
(2)最低浓度的样品溶液最适宜的吸光度测量值在0.1~0.15范围内;最适宜的待测元素加入量是使测量值增加约2,3和4倍,一般至少测定4个点(包括样品溶液点),但各点必须仍在校正曲线的线性范围内;
(3)当伴生物对测定影响不太严重时,标准加入法可以消除物理干扰和与浓度无关的轻微的化学干扰,但不能消除有浓度有关的干扰如电离化学干扰,同时也不能消除光谱干扰和背景吸收的干扰.应采用相应的消除和减小以上干扰的措施后,再用标准加入法;
(4)应用标准加入法时扣除标准空白是必要的.空白和样品应该分别作标准加入法,然后作浓度扣除.因为两者基体不同、干扰不同,空白加标和样品加标的曲线的斜率是不同的,因此不能直接用扣除吸光度来计算.
2.3.3 浓度直读法
浓度直读法(concentration direct reading)的基础是标准曲线法.将标准曲线预先存于仪器内,只要测定了试样的吸光度,仪器自动根据内置的校正曲线算出试样中被测元素的浓度和含量,并显示杂仪器上.其测定的准确度直接依赖于:a、校正曲线的线性、稳定性;b、测得的试样吸光度值必须落在校正曲线动态范围内.前面已经提到,吸光度测量是一种动态测量,实验条件的变化,不可避免地引起吸光度值的变化,条件a不能保证.根据最小二乘线性回归的原理,平均值所在的实验点( , )一定落在校正曲线上.试样中被测元素含量偏离校正曲线线性范围的平均值 越远,测定结果的误差越大,而仪器通常没有明确浓度直读范围,不便控制.由此可见,浓度直读法定量的准确度要逊于标准曲线法和标准加入法.浓度直读法的优点是快速.
2.3.4 内标法
内标法(internal standard method)是相对强度法,是在标准试样和被分析试样中分别加入一定量的内标元素,在标准条件下测定分析元素和内标元素的吸光度比Ai/An,以Ai /An对ci(i=1,2,3,4,…)建立校正曲线,在同样条件下,测定试样中被测元素和内标元素的吸光度比Ax/An,根据所测得的吸光度比值从校正曲线求得试样中被测元素含量cx.内标法最大的优点是可以减少实验条件变动所引起的随机误差,提高了测定的精密度.
因为要同时测定被测元素与内标元素的吸光度,必须使用双通道原子吸收光谱仪器,而现在广泛使用的仪器是单通道原子吸收光谱仪器,因此,内标法在原子吸收光谱分析中很少应用.
内标元素与分析线对(被测元素的谱线为分析线,内标元素的谱线为内标线,两者组成分析线对)的选择:
(1)内标元素与被测元素在光源作用下应有相近的蒸发性质;
(2)内标元素若是外加的,必须是试样中不含有或含量极少可以忽略的;
(3)分析线对选择要匹配:或两条都是原子线,或两条都是离子线.尽量避免一条是原子线一条是离子线;
(4)分析线对两条谱线的激发电位应有相近.若内标元素与被测元素的电离电位相近,分析线对激发电位也相近,这样的分析线对称为“均匀线对”;
(5)分析线对波长应尽量接近.分析线对两条谱线应没有自吸或自吸很小,并不受其他谱对的干扰.
说明:文章内容引用了一些论坛中一些不知名的朋友的论述,在这里谢谢了啊~~~~
参考文献没有列出来:
邓勃主编.应用原子吸收与原子荧光光谱分析.北京:北京化工出版社,2003年;
邓勃.原子吸收分光光度法.北京:清华大学出版社,1981年;
邓勃.分析测试数据的统计处理方法.北京:清华大学出版社,1995年;
邓勃,何华 .原子吸收光谱分析.:化学工业出版社,2004年
朋友可以到行业内专业的网站进行交流学习!
分析测试网络网这块做得不错,气相、液相、质谱、光谱、药物分析、化学分析.这方面的专家比较多,基本上问题都能得到解答,有问题可去那提问,网址网络搜下就有.
Ⅳ 根据分析时所用试样的不同,定量分析法可分为( )
定量分析的任务是测定物质中某种或某组分的含量。定量分析过程通常包括:1、试样的采取和制备、2、称量和试样的分解、3、干扰组分的掩蔽和分离、4、定量测定和分析结果的计算和评价等
(1) 取样:根据分析对象是气体、液体、或固体,采用不同的取样方法。在取样过程中,最重要的一点是要使分析试样具有代表性。试样制备:试样经过破碎、过筛、混匀、缩分后才能得到符合分析要求的试样。破碎分为粗碎、中碎和细碎甚至研磨。每次破碎后要使样品全部通过筛孔。缩分是使粉碎后的试样量逐步减少,采用四分法。将过筛后的试样混匀,堆为锥形后压为圆饼形状,通过中心分成四等份,弃去对角的两份。是否需要继续缩分,可按下述公式进行计算。mQ(kg):试样的最小质量;k:缩分常数的经验值,试样均匀度越差,越大,通常在0.05~1 kg·mm-2之间。d(mm ):试样的最大粒度直径。· 采样与缩分试样量计算示例· 例:采集矿石样品,若试样的最大直径为10 mm, k =0.2 kg/mm2, 则应采集多少试样?· 解: mQ ≥ kd 2 = 0.2 ´ 10 2 = 20 (kg)· 例: 有一样品 mQ = 20 kg, k =0.2 kg / mm2, 用6号筛过筛, 问应缩分几次? 解: mQ ≥ kd 2 = 0.2 ´ 3.36 2 = 2.26 (kg)缩分1次剩余试样为20 ´ 0.5 = 10 (kg),缩分3次剩余试样20´ 0.53= 2.5 (kg) ≥ 2.26,故缩分3次。从分析成本考虑,样品量尽量少,从分析误差考虑,不能少于临界值 mQ ≥ kd 2
(2)试样分解和分析试液的制备
定量化学分析一般采用湿法分析,通常要求将干燥好的试样分解后转移入溶液中,然后进行分离及测定。试样分解和分析试液的制备要求:试样分解完全; 待测物质不损失;避免引入干扰杂质。根据试样性质的不同,分解的方法亦不同。
溶解法→无机试样
熔融法 →无机试样
微波消解法→无机试样
灰化法 →有机试样
(3)分离及测定
根据待测组分的性质、含量和对分析结果准确度的要求,选择合适的分析方法。根据方法的灵敏度、选择性及适用范围等来正确选择适合的分析方法。当试样共存组分对待测组分的测定有干扰时,常用掩蔽剂消除干扰,而无合适的掩蔽方法时,必须进行分离。
(4)分析结果的计算及评价
根据分析过程中有关反应的计量关系及分析测量所得数据,计算试样中待测组分的含量。对于测定结果及误差分布情况,应用统计学方法进行评价。
二、 定量分析结果的表示
⑴ 待测组分的化学表示形式
以待测组分实际存在形式含量表示。
以氧化物或元素形式表示
以所需的组分表示
电解质溶液的分析结果,以离子含量表示
三、 待测组分的含量表示方法
固体试样:常用质量分数表示 wB=mB/ms (%)
含量很低时,μg/g(或10-6),ng/g(10-9),pg/g(10-12)
液体试样:
物质的量浓度:单位mol/L。
质量摩尔浓度:单位mol/kg。
质量分数:待测组分的质量除以试液的质量,量纲为1。
体积分数:待测组分的体积除以试液的体积,量纲为1。
摩尔分数:待测组分的物质的量除以试液的物质的量,量纲为1。
质量浓度:以mg/L, μg/L, μg/mL,n g/mL, p g/mL。
气体试样:常量或微量组分的含量,通常以体积分数表示。
基础化学中经常用到的定量分析仪器有:高效液相色谱仪、气相色谱仪、分光光度计、常用玻璃仪器(烧杯、量筒、玻璃棒、容量瓶等)、天平等。此外,由于行业不同,应用的分析仪器截然不同,如在生物行业中会用到PCR。
Ⅵ 在分光光度法中,定量的方法有哪些
1、标准管法
将待测溶液与已知浓度的标准溶液在相同条件下分别测定A值,然后按下式求得待测溶液中物质的含量。
CT=(AT/AS)*CS
2、标准曲线法
先配制一系列浓度由小到大的标准溶液,分别测定出它们的A值,以A值为横坐标,浓度为纵坐标,作标准曲线(A~c工作曲线),可以求出标准曲线的回归方程。在测定待测溶液时,操作条件应与制作标准曲线时相同,以待测液的A值从标准曲线上查出(得到)该样品的相应浓度。
3、吸光系数法
当某物质溶液的浓度为1mol/L,厚度为1cm时,溶液对某波长的吸光度称为该物质的摩尔吸光系数,以ε表示。ε值可通过实验测得,也可由手册中查出。
(6)样品测定的定量分析方法是扩展阅读
分光光度法中标准曲线的影响因素
1、分析法自身的精密度:如显色反应灵敏度不高时,被测物质低于某一浓度就不能显色,当显色溶液中的掩蔽剂或缓冲液能够络和少量被测离子,就会使标准曲线线性关系不好。
2、测定用仪器(包括量具)的精密度:在分光光度法中要求在最大吸收峰处测定吸光度,分光光度计有效谱带宽度越窄越好,有利于获得纯度高的单色光,当单色光的纯度不够时,测定的吸光度就会偏低。
3、易挥发溶剂所引起的测定溶液浓度改变:如用亚甲蓝分光光度法测定阴离子合成洗涤剂时用四氯化碳、氯仿溶剂,因溶剂挥发性及实验时间的延长,会使测定的溶液浓度增大,导致吸光度重现性较差。
4、污染:制作标准曲线的操作步骤中,当存在损失或沾污时,会造成相关系数达不到实验要求。
5、空白值:空白值影响测定方法的检出限,也影响测定结果重现性,特别是对低浓度样品的测定,因此应引起足够重视,影响空白值主要因素有:纯水的纯度、操作过程中的沾污、实验条件的异常变化等。
Ⅶ 气相色谱定量分析方法有哪些
气相色谱定量检测一般就两种,一个是外标法,一个是内标法,对于没有标准物质的,就只能靠面积归一法粗略定量。
外标和内标网络上有很多介绍,这里跟你讲一下对于没有标准物质的中间体该怎么通过气相色谱定量。
1.首先,要通过重结晶、过柱子、吸附等等方法先获得尽可能纯的产物;
2.然后烘干至恒重,注意要把结晶水也烘掉;
3.烘干以后,根据产物合成、纯化过程投加的各种物料,用气相色谱测残留溶剂,尽可能测全、测准;
4.测煅烧残渣:800℃在马弗炉里烧半个小时以上,测一下煅烧残渣,这些可能是夹杂在产物中的无机盐;
5.测水分,用溶剂把产物溶解掉,用微量水分测定方法测定产物中的水分,注意要扣除溶剂的空白值;
6.气相色谱检测产物:先通过调节分流比、汽化温度、柱温等,确认产物峰上没有毛刺或者坎肩峰;调检测条件,选一个峰形最好的条件,面积归一法定量;
7.计算:先扣除前面检测出来的残留溶剂、煅烧残渣和水分的含量,再乘以面积归一法的面积百分含量。
这样相对来说是比较准的定量方法了,面积百分含量越高的且其他残留越低的,定量越准。
Ⅷ HPLC法中定量分析方法大致有哪几种
气相色谱定量检测一般就两种,一个是外标法,一个是标法,对于没有标准物质的,就只能靠容面积归一法粗略定量。
通过对人类和环境有影响的各种物质的含量、排放量的检测,跟踪环境质量的变化,确定环境质量水平,为环境管理、污染治理等工作提供基础和保证。简单地说,了解环境水平,进行环境监测,是开展一切环境工作的前提。
HPLC根据固定相和流动相的成分分为正相色谱和反向色谱。
正相色谱法
采用极性固定相(如聚乙二醇、氨基与腈基键合相);流动相为相对非极性的疏水性溶剂(烷烃类如正已烷、环已烷),常加入乙醇、异丙醇、四氢呋喃、三氯甲烷等以调节组分的保留时间。常用于分离中等极性和极性较强的化合物(如酚类、胺类、羰基类及氨基酸类等)。
Ⅸ 色谱分析中常用的定量分析方法有哪几种
色谱分析中常用的定量分析方法有哪几种
环境监测中常用到的色谱分析方法有: 气相色 谱法、 高效液相色谱法、 离子色谱法。 环境监测是通过对人类和环境有影响的各种物质的含量、排放量的检测,跟踪环境质量的变化,确定环境质量水平,为环境管理、污染治理等工作提供基础和保证。简单地说,了解环境水平,进行环境监测,是开展一切环境工作的前提。环境监测通常包括背景调查、确定方案、优化布点、现场采样、样品运送、实验分析、数据收集、分析综合等过程。总的来说,就是计划-采样-分析-综合的获得信息的过程。
Ⅹ 吸光度法进行定量分析的方法有哪些
1、标准管法 将待测溶液与已知浓度的标准溶液在相同条件下分别测定A值,然后按下式求得待测溶液中物质的含量。 CT=(AT/AS)*CS
2、标准曲线法 先配制一系列浓度由小到大的标准溶液,分别测定出它们的A值,以A值为横坐标,浓度为纵坐标,作标准曲线(A~c工作曲线),可以求出标准曲线的回归方程。在测定待测溶液时,操作条件应与制作标准曲线时相同,以待测液的A值从标准曲线上查出(得到)该样品的相应浓度。
3、吸光系数法 当某物质溶液的浓度为1mol/L,厚度为1cm时,溶液对某波长的吸光度称为该物质的摩尔吸光系数,以ε表示。ε值可通过实验测得,也可由手册中查出。