导航:首页 > 研究方法 > 研究流变学的两种主要方法

研究流变学的两种主要方法

发布时间:2022-09-02 17:47:46

1. 流变学的介绍

流变学,指从应力、应变、温度和时间等方面来研究物质变形和(或)流动的物理力学。

2. 流变的研究方法

流变学从一开始就是作为一门实验基础学科发展起来的,因此实验是研究流变学的主要方法之一。它通过宏观试验,获得物理概念,发展新的宏观理论。例如利用材料试件的拉压剪试验,探求应力、应变与时间的关系,研究屈服规律和材料的长期强度。通过微观实验,了解材料的微观结构性质,如多晶体材料颗粒中的缺陷、颗粒边界的性质,以及位错状态等基本性质,探讨材料流变的机制。 对流体材料一般用粘度计进行试验。比如,通过计算球体在流体中因自重作用沉落的时间,据以计算牛顿粘滞系数的落球粘度计法;通过研究的流体在管式粘度计中流动时,管内两端的压力差和流体的流量,以求得牛顿粘滞系数和宾厄姆流体屈服值的管式粘度计法;利用同轴的双层圆柱筒,使外筒产生一定速度的转动,利用仪器测定内筒的转角,以求得两筒间的流体的牛顿粘滞系数与转角的关系的转筒法等。
对弹性和粘弹性材料的实验方法分为蠕变试验、应力松弛试验和动力试验三种: 除蠕变和应力松弛这类静力试验外,还可进动力试验行,即对材料试件施加一定频谱范围内的正弦振动作用,研究材料的动力效应。此法特别适用于高分子类线性粘弹性材料。通过这种试验可以求得两个物理量:由于材料发生形变而在材料内部积累起来的弹性能量;每一振动循环的能量耗散。动力试验可以测量能量耗散和频率的关系,通过这个规律可以与蠕变试验比较分析,建立模型。
在上述的各种试验工作中,还要研究并应用各种现代测量原理和方法,大型电子计算机的出现对流变学领域的研究产生了深远的影响,如对于非线性材料的大应变、大位移的复杂课题已用有限元法或有限差分方法进行研究。

3. 流变学的研究内容

流变学研究内容是各种材料的蠕变和应力松弛的现象、屈服值以及材料的流变模型和本构方程。
材料的流变性能主要表现在蠕变和应力松弛两个方面。蠕变是指材料在恒定载荷作用下,变形随时间而增大的过程。蠕变是由材料的分子和原子结构的重新调整引起的,这一过程可用延滞时间来表征。当卸去载荷时,材料的变形部分地回复或完全地回复到起始状态,这就是结构重新调整的另一现象。
材料在恒定应变下,应力随着时间的变化而减小至某个有限值,这一过程称为应力松弛。这是材料的结构重新调整的另一种现象。
蠕变和应力松弛是物质内部结构变化的外部显现。这种可观测的物理性质取决于材料分子(或原子)结构的统计特性。因此在一定应力范围内,单个分子(或原子)的位置虽会有改变,但材料结构的统计特征却可能不会变化。
当作用在材料上的剪应力小于某一数值时,材料仅产生弹性形变;而当剪应力大于该数值时,材料将产生部分或完全永久变形。则此数值就是这种材料的屈服值。屈服值标志着材料由完全弹性进入具有流动现象的界限值,所以又称弹性极限、屈服极限或流动极限。同一材料可能会存在几种不同的屈服值,比如蠕变极限、断裂极限等。在对材料的研究中一般都是先研究材料的各种屈服值。
在不同物理条件下(如温度、压力、湿度、辐射、电磁场等),以应力、应变和时间的物理变量来定量描述材料的状态的方程,叫作流变状态方程或本构方程。材料的流变特性一般可用两种方法来模拟,即力学模型和物理模型:
在简单情况(单轴压缩或拉伸,单剪或纯剪)下,应力应变特性可用力学流变模型描述。在评价蠕变或应力松弛试验结果时,利用力学流变模型有助于了解材料的流变性能。这种模型已用了几十年,它们比较简单,可用来预测在任意应力历史和温度变化下的材料变形。
力学模型的流变模型没有考虑材料的内部物理特性,如分子运动、位错运动、裂纹扩张等。当前对材料质量的要求越来越高,如高强度超韧性的金属、高强度耐高温的陶瓷、高强度聚合物等。对它们的研究就必须考虑材料的内部物理特性,因此发展了高温蠕变理论。这个理论通过考虑了固体晶体内部和晶粒颗粒边界存在的缺陷对材料流变性能的影响,表达出材料内部结构的物理常数,亦即材料的物理流变模型。
它适用于具有复杂结构的物质,包括泥浆、污泥、悬浮液、聚合物、食品、体液和其他生物材料。这些物质的流动在固定温度下不能用单一粘度值来表征——反而其他一些因素影响粘度的改变。例如,摇动番茄酱可以减小它的粘度,但是水却不行。自从艾萨克·牛顿提出粘度的概念,粘度可变的液体研究也被称作非牛顿流体力学。

4. 什么是流变学

流变学,指从应力、应变、温度和时间等方面来研究物质变形和(或)流动的物理力学。
流变学是力学的一个新分支,它主要研究物理材料在应力、应变、温度湿度、辐射等条件下与时间因素有关的变形和流动的规律。
流变学研究的是在外力作用下,物体的变形和流动的学科,研究对象主要是流体,还有软固体或者在某些条件下固体可以流动而不是弹性形变,它适用于具有复杂结构的物质。“流变学”一词由拉法耶特学院的尤金·库克·宾汉教授根据他的同事马尔克斯·雷纳建议于1920年首创。这个词从误传为赫拉克利特的名言"Panta Rei",即“一切可流”(实际上来自辛普里丘着作)。

5. 血液流变学是什么

血液流变学越来越广泛应用于临床疾病的诊断-本文讨论了血液成分对流变流动的影响,考察了血液粘弹性与疾病之间的相关性,结合典型应用综述了血液流变学在临床诊断中的进展。

1、前言
血液流变学是生物流变学的重要分支,是研究有关血液的变形性与流动性的科学.血液流变学包括两部分内容:宏观血液流变学和微观血液流变学.前者包括血液粘度、血浆粘度、血沉,血液及管壁应力分布;后者包括红细胞聚集性、红细胞变形性,血小板聚集性、血小板粘附性等,故又称为细胞流变学,随着生物技术的高速发展,后者又进一步深入到分子水平的研究,包括血浆蛋白成分对血液粘度的影响,介质对细胞膜的影响、受体作用等,故称为分子血液流变学.由于血液流变学近十几年来在临床的应用越来越广泛,在疾病的诊断、治疗、疗效判定和预防等均有重要的意义。

2、血液组成成分生理特点与其对血液流动的影响
2.1、血浆的基本特征对流动的影响
血浆是具有粘稠性的黄色半透明的液体,具有凝固能力.血浆由水、有机物和无机物组成.其中水占90%-92%.有机物主要是蛋白质,占8%-10%,其中白蛋白含晕最多,它的分子量最小,主要的生理功能是产生血浆胶体渗透压和吸附低分子物质运转功能;球蛋白其次,它主要是一种结合蛋白,如日球蛋白和脂质结合成脂蛋白,血液中的脂类有75%是和β球蛋白结合.我们临床上测定的血脂,即是测定脂蛋白的含晕;纤维蛋白原最少,但在凝血酶的作用下,可转变成纤维蛋白,参与凝血.另外,还有各种酶、激素、糖,无机盐和一些代谢产物。

由于血浆中含有可溶性的纤维蛋白原,所以它的生理特点与此相关。第一,具有粘稠性,当血浆中血浆蛋白的含量与比例发生变化,如纤维蛋白原的增多,会导致血浆的粘度的增加。第二,与血液凝固有关,当血液从血管中流出后,血浆中的纤维蛋白原在凝血酶的作用下,变成不溶性的纤维蛋白,使血液凝固,具有止血作用。将纤维蛋白原除掉后,剩余的淡黄色液体就是血清,不凝固。第三,是机体物质交换的必经之路,关系着氧的释放与传输速度。

2.2、红细胞的变形性和聚集,性等流变学特性
在血细胞中,红细咆的数量最多:其生理功能是血液主要的生理功能最直接的体现,即运输氧和二氧化碳,维持机体新陈代谢和生命活动,这种生理功能是依靠红细胞所含的血红蛋白来完成。许多血液流变性参数都是关于红细胞的,或与红细咆密切相关,如血液粘度、红细胞压积,红细胞变形性、红细胞的刚性、红细胞聚集性等。

2.3、血小板的聚集性和粘附性
血小板是血细胞中体积最小的细胞,它的超微结构非常复杂。它的生理特性卞要是具有粘附,聚集和释放功能,在机体的止血、凝血和体内血栓形成中起着重要的作用。

粘附功能指血小板具有被血管内皮破损处的内皮下组织激活,并迅速粘附到损伤的血管壁卜的功能.这种功能,可因损伤组织处的血流发生异常的改变而增强:这种异常的血流引起血小板表面活性增加,可促使血小板的激活,同时,也可损伤红细胞膜.血小板的这种功能是机体止血和血栓形成的启动步骤,具有重要的临床意义。临床可用血小板粘附性测定来反映血小板的粘附功能。

聚集功能为血小板之间可相互粘着、聚合成团的功能,血小板的聚集可分为两个期:第一时相聚集:是血小板最先发生的聚集,发生的非常迅速,但血小板聚集后还町解聚,故届町逆性聚集。第二时相聚集:是血小板在第一时相聚集后,释放了内源性的ADP,而随后发生的聚集,聚集发生的缓慢,但聚集是不可逆转,临床可应用血小板聚集仪测定血小板的聚集性。

释放功能,即血小板被激活后,将其细胞器中的颗粒分泌出来的功能。血小板释放的生物活性物质很多,血小板释放分为两时相。第一时相,又称原发性释放,主要释放致密颗粒内容物,如ADP,5-羟色胺等,第二时相,称为继发性释放,主要释放。颗粒内容物,和各种溶酶体酶。不同的诱聚物引起的释放反应也不同。弱的诱聚物,如ADP,肾上腺素,只能引起血小板释放TXA27中等的诱聚物,如花生四烯酸可引起血小板。颗粒、致密颗粒,TXA2释放、强诱聚物,如胶原、凝血酶可使血小板释放全部的颗粒内容物,血小板释放颗粒内容物后称为空泡,细胞膜仍保持完整。

3、血液粘弹性特征
通常,固体才具有弹性,液体只具有粘性,而血液既具有粘性又具有弹性,称为血液的粘弹性。血液粘弹性的存在是由于血液其有形成分,尤其是红细胞的存在。在切变率近于零时,红细胞相互之间聚集形成聚集体,这种由红细胞聚集体形成的网络结构可以储存一定的能量,这就赋予血液粘弹性。血液的这种粘弹性使血液具有在受到外力作用发生变形后要恢复原状的反弹力。血液粘弹性是由于红细胞聚集体的存在所产生的。因此,当各种疾病造成红细胞聚集性增加,血流中红细胞聚集体增多时,血液的粘弹性增加。

对脑梗塞患者的血液凝血过程中的粘弹性测定发现,与健康人比较,患者的血液凝聚时间明显比健康人缩短,血液凝固倾向增强,形成的凝血块的坚固性增强。另外的研究也发现,脑梗塞患者的粘性分量、弹性分量和弹性模量明显高于健康人。表明脑梗塞患者红细胞聚集体增多,所形成的网络的强度也增强,易形成血栓;同时,红细胞的释氧功能降低,造成血液粘度增加,血流灌注障碍,使脑血流量减少。

由于血液的粘弹性还受到起着红细胞聚集桥联作用的血浆蛋白的影响,有研究表明,对高粘滞血症,如雷诺氏症疾病的患者,应用血浆去除法治疗,可使血浆粘度降低、血浆中的高分子蛋白质浓度降低,对红细胞聚集的桥联作用减弱,血液粘弹性测定发现,患者血液的粘性分量和弹性分量明显降低,表明该疗法对高粘滞血症有改善作刚。

4、血液流变学在临床诊断检验中的意义
血液流变学在疾病的诊断、治疗、疗效判定和预防等均有新进展,主要的研究重点如下。

4.1、高血粘滞综合征
是由于机体一种或多种血液粘滞因素升高而造成。例如:血浆粘度升高、全血粘度升高、红细胞刚性升高、红细胞聚集性升高、血小板聚集性升高、血小板粘附性升高、血液凝固性升高、血栓形成趋势增加等。这些因素的异常改变,将造成机体血液循环特别是微循环障碍,导致组织、细胞缺血和缺氧。

临床上常见有缺血性脑血管病、感染性休克,糖尿病、肺心病。冠心病等。在高血粘滞综合症的治疗中除治疗原发病,消除激原,如感染、理化因素等对机体的继续作用外,提出了药物疗法与非药物疗法两大类基本疗法。(1)药物疗法-药物稀释疗法,使用药物如肝素,潘生丁、阿司匹林、强心甙、低分子右旋糖酐,丹参、川芎等使血液变稀,有形成分疏散,血管扩张。红细胞变形能力增强,达到血液稀释之目的;中西医结合对血液流变学的研究,提出了许多降低血粘度的治疗方法,如丹参加蝮蛇抗栓酶[1]。西红花(又叫番红花,藏红花)改善脂肪肝患者的症状及肝功能疗效显着,血液流变的影响显着[2]近年引起国内外关注的红茶及茶色素药理作用研究及临床应用[3.4]。(2)非药物疗法-血液稀释疗法,主要是凋整血容量使红细胞压积下降.通常所谓的血液稀释疗法为等容血液稀释疗法.该方法就是基于血液流变学的理论,先将血液放出,分离红细胞,再回输血浆与补充相应的液体,这样可使血容量稳定,但红细胞积压下降,血液粘滞性降低,从而改善厂血液的流变特性,使微循环改善,组织细胞缺血缺氧状况好转:近年来,由于心脑血管疾病发病率与死亡率的逐年增高,血液稀释也越来越被更多的临床医生所接受.但在临床应用中有成功的实例,也存在失败的例子,这表明了它的复杂性,需要在此领域中不断去探讨[5]。

4.2、低粘滞血综合征
主要表现为血液粘滞性低于正常,形成低粘滞血征的原因主要是红细胞压积降低,多见于尿毒症,肝硬化腹水等。

4.3、某些疾病的鉴别诊断
血液流变性改变在临床上可用于某些疾病的鉴别诊断,例如,红细胞变形能力的降低可用于鉴别急性心肌梗塞与重度心绞痛。

4.4、治疗疗效的判断指标
高粘滞血征和低粘滞血征寸血液流变学各项指标为临床观察的重要指标,真性红细胞增多症患者的红细胞压积和血液粘度是判断临床疗效的指标。

4.5、药物副作用的检测
如在应用蛇毒注射液治疗中风病、应用溶栓疗法治疗急性心肌梗塞过程中,应随时检测患者的血液粘度、血小板功能和凝血功能,以防止患者继发性出血性疾病。

4.6、血液流变性检测
对疾病的预防具有不可忽视的价值.健康人的一生中,血液流变学的参数的变化幅度较小,但在某些情况下,当尚无表现出临床症状时,某些血液流变性参数就已经出现异常,如临床观察到,红细胞压积升高寸,脑梗塞发生的危险性增加,当红细胞压积为36%-45%时,脑梗塞的发生率为18.3%,当红细胞压积升至 46%-50%时,脑梗塞发生率增加到43.6%.恰当地运用血液流变性检测,可及时检测人的半健康状态,并指导医生和患者对这种半健康状态做出积极的反应,及时改善机体的失调,有效地阻止疾病的发生,提高人的生活质量,延长寿命,也避免厂治疗疾病过秆中人力物力的耗费。

6. “流变”是什么意思

流变学是研究在外力作用下,物体的变形和流动的学科。1920年利哈伊大学教授尤金·宾汉正式提出这一名称,来源于赫拉克利特的经典名言“一切皆流”

为了研究力引起的变形,流变学有实验与理论模拟两个互相促进的途径。试验方面采用多种流变仪,比如毛细管流变仪来测量在不同剪切应力作用下,流体粘度、流速等的变化,再进行分析,从中得出该物质的模量、分子量等重要性质。医学检查上常用的血流变测定也是此原理。也可以通过流变仪模拟流体在注射等成型过程中所受的应力和流体的变形,使得流变学成为研究高分子加工过程所必需的内容。

理论模拟是通过实验数据提出符合此类物质的物理背景,将其与普适的数学模型相结合。目标是可以通过数学计算描述流体运动。其物理背景较为复杂,对于纯弹性物体,可以用胡克定律来描述,即应力与应变成正比。对于牛顿流体,可以用应力=粘度×应变速率来描述。但是现实中的固体存在不符合胡克定律的塑性变形,液体也全是非牛顿流体。特别对于高分子,具有粘弹性性质,情况复杂。其数学模型主要借助于连续介质力学。目前对于一般流体的简单流动,理论模拟效果较好,但是对于复杂流道,由于存在很多复杂的边界效应,目前的计算能力还无法给出比较好的结果,这也成为近来流变学研究的重要方向。
流变学作为一门研究物质流动与变形的学科,与化学特别是胶体化学、高分子化学密切相关。随着三大合成材料工业的不断发展,近年来流变学研究也迅速发展起来,世界各国尤其是各工业发达国家纷纷成立了流变学会,如英国、德国、法国、荷兰、瑞典、日本、墨西哥、加拿大等。由于流变学具有交叉边缘学科的特点,因此它的应用范围相当广泛。
在石油、石化行业中的应用
由于从原油开采技术,如三次采油、完井等,到原油储运、短线运输、酸化压裂、聚合物压裂以及清洁胶束压裂液,无不与流变学有关。因此,流变学在该行业得到了广泛重视,并得到了良好的普及。
强化采油 新打的油井能保持一定的压力,自喷出一部分原油,但当油井压力开始下降时,二次采油即将开始。注水时在油水界面容易产生粘性指进现象,不利于采油,此时尚有50%的原油未能采出。强化采油即三次采油的潜力很大。三次采油的方法之一为高分子溶液灌注,所选材料有较柔性的聚丙烯酰胺和较刚性的黄原胶,虽然它们在剪切流场中行为相似,但在拉伸流场中则迥然不同,这点必须用流变学的观点判断清楚。
聚合物加工 通常聚合物必须经过再加工才能应用,而加工又分为注塑、挤出、压延、吹塑、纺丝等过程。但是,不管什么形式的加工,其中都充满了流变学的问题。欧美等工业发达国家均有专家专门研究聚合物加工发达国家均有专家专门研究聚合物加工流变学,每年还召开年会进行学术交流。由于国外已经开发出以流变学为基础计算机设计应用软件,因此,可以制造出大型塑料汽车铸件和大型飞机机身铸件。
农用薄膜的制造通常采用吹塑工艺。吹塑主要是通过聚合熔体进行,即熔体以管或泡的形式从挤压机出来后拉成薄膜,使其达到最终的厚度和分子取向。此时原料的拉伸粘度很明显是重要的流变参数。所以,流变学中拉伸粘度的测定被认为是具有工业重要性的研究,也就不足为奇了。
润滑油制造 润滑油中添加高分子稠化剂的目的是为了降低粘度随温度激烈变化的程度,使其在高温时可以保持良好的动力润滑,低温时也不会有过多的磨损。汽车用油的粘度用等级来代表,采用流变添加剂可制成满足多种等级需要的汽油。添加剂可以使基础油的粘度增加3倍以上。在润滑油中可以测出粘弹性效应,但是润滑剂流变学认为,粘弹性和增大的粘度均有利于支撑负荷。
在医药领域中的应用
生物流变学 如果说传统的流变学是应工业需要发展起来的,那么,生物流变学则是随着生命科学的发展应运而生的。在生物流变学中目前研究最广泛深入的是血液和血管流变学,是现代医学和理工科学之间的一门重要边缘学科。
此外,还应用在临床医学、制药等领域。
在轻工领域中的应用
轻工产品如牙膏、化妆品、清洁剂中必须用流变学指标控制质量和调节配方。以牙膏为例,人们使用牙膏时挤出要容易,挤出后要求挺括,在牙刷上不能下陷,刷牙时又要轻松,这就是要求牙膏遇剪时粘度迅速下降,而静止时又要具备一定的屈服应力,以保持坚挺。
我国流变学的应用研究起步较晚,20世纪60年代还只有个别自发研究,目前的应用研究领域较少,甚至连流变学赖以发展的聚合物加工行业也知之不多。以塑料制品为例,塑料厂引进的模具“吃”进口的聚合物粒子时,制品光滑、美观,可以和国外的同类产品相媲美,而一旦换成国产原料粒子时,产品质量就下降。这是因为所使用的模具是按国外原料的流变性能设计的,而国产原料的流变性与进口原料并不完全相同,所以制品质量下降。尽管生产厂对模具进行完善修改,但也只是凭经验做机械上的改动,并未考虑到粒子的流变性。
目前,流变学应用研究在我国远未普及,更谈不上发挥它应有的作用。为加强我国流变学的研究,建议相关部门在政策上对流变学这类交叉学科予以扶持,同时在高校尤其是重点高校的有关专业,如化学工程、聚合物加工等,开设流变学课程,特别是对硕士、博士研究生等高级研究人才的培养更为迫切和重要。

7. 流变的基本信息

【意思】 在外力作用下,物体的变形和流动。研究流变的学科成为流变学。
流变学
流变学是力学的一个新分支,它主要研究材料在应力、应变、温度湿度、辐射等条件下与时间因素有关的变形和流动的规律。

8. 流变学的释义

流变学是力学的一个新分支,它主要研究物理材料在应力、应变、温度湿度、辐射等条件下与时间因素有关的变形和流动的规律。
流变学研究的是在外力作用下,物体的变形和流动的学科,研究对象主要是流体,还有软固体或者在某些条件下固体可以流动而不是弹性形变,它适用于具有复杂结构的物质。“流变学”一词由拉法耶特学院的尤金·库克·宾汉教授根据他的同事马尔克斯·雷纳建议于1920年首创。这个词从误传为赫拉克利特的名言Panta Rei,即“一切可流”(实际上来自辛普里丘着作)。
流变学测量是观察高分子材料内部结构的窗口,通过高分子材料,诸如塑料、橡胶、树脂中不同尺度分子链的响应,可以表征高分子材料的分子量和分子量分布,能快速、简便、有效地进行原材料、中间产品和最终产品的质量检测和质量控制。流变测量在高聚物的分子量、分子量分布、支化度与加工性能之间构架了一座桥梁,所以它提供了一种直接的联系,帮助用户进行原料检验、加工工艺设计和预测产品性能。

9. 文学上流变什么意思

拆词分析嘛。流一般指流派,变就是变化,延伸。所以故名思议,大体就是一个流派在基本的主张上随着时间时代等作用下在作品的延伸发展和变化。这种变化可能是延伸的,也可能是本质的。
流变:原意是随着时间的推移而变化。即变迁,变化。 清 阮元 《文韵说》:“是以声韵流变,而成四六,亦祇论章句中之平仄,不复有押脚韵也。” 陈毅 《湖海诗社开征引》:“封建为基础,流变益疡溃。”

10. 求流变学的物理学史!!

流变学是力学的一个新分支,它主要研究材料在应力、应变、温度湿度、辐射等条件下与时间因素有关的变形和流动的规律。 流变学出现在20世纪20年代。学者们在研究橡胶、塑料、油漆、玻璃、混凝土,以及金属等工业材料;岩石、土、石油、矿物等地质材料;以及血液、肌肉骨骼等生物材料的性质过程中,发现使用古典弹性理论、塑性理论和牛顿流体理论已不能说明这些材料的复杂特性,于是就产生了流变学的思想。英国物理学家麦克斯韦和开尔文很早就认识到材料的变化与时间存在紧密联系的时间效应。 麦克斯韦在1869年发现,材料可以是弹性的,又可以是粘性的。对于粘性材料,应力不能保持恒定,而是以某一速率减小到零,其速率取决于施加的起始应力值和材料的性质。这种现象称为应力松弛。许多学者还发现,应力虽然不变,材料棒却可随时间继续变形,这种性能就是蠕变或流动。 经过长期探索,人们终于得知,一切材料都具有时间效应,于是出现了流变学,并在20世纪30年代后得到蓬勃发展。1929年,美国在宾厄姆教授的倡议下,创建流变学会;1939年,荷兰皇家科学院成立了以伯格斯教授为首的流变学小组;1940年英国出现了流变学家学会。当时,荷兰的工作处于领先地位,1948年国际流变学会议就是在荷兰举行的。法国、日本、瑞典、澳大利亚、奥地利、捷克斯洛伐克、意大利、比利时等国也先后成立了流变学会。 流变学的发展同世界经济发展和工业化进程密切相关。现代工业需要耐蠕变、耐高温的高质量金属、合金、陶瓷和高强度的聚合物等,因此同固体蠕变、粘弹性和蠕变断裂有关的流变学迅速发展起来。核工业中核反应堆和粒子加速器的发展,为研究由辐射产生的变形打开新的领域。 在地球科学中,人们很早就知道时间过程这一重要因素。流变学为研究地壳中极有趣的地球物理现象提供了物理-数学工具,如冰川期以后的上升、层状岩层的褶皱、造山作用、地震成因以及成矿作用等。对于地球内部过程,如岩浆活动、地幔热对流等,现在则可利用高温、高压岩石流变试验来模拟,从而发展了地球动力学。 在土木工程中,建筑的土地基的变形可延续数十年之久。地下隧道竣工数十年后,仍可出现蠕变断裂。因此,土流变性能和岩石流变性能的研究日益受到重视。

阅读全文

与研究流变学的两种主要方法相关的资料

热点内容
玻璃上油漆怎么洗掉最简单方法 浏览:122
新冦病毒有哪些检测方法 浏览:698
教儿童记数字简单方法图 浏览:544
联想增霸卡安装方法 浏览:935
手机照片定制方法 浏览:248
人正确的呼吸方法 浏览:143
常用肌松检测方法 浏览:838
access有什么方法关闭 浏览:486
筋膜炎的胳膊痛康复锻炼方法 浏览:277
管路中活接连接方法 浏览:365
如何坚持日更的方法 浏览:520
白醋丰胸的正确方法如下 浏览:266
女生如何减肚子上的肉肉最快方法 浏览:136
最简单打领带的方法 浏览:919
教学方法要树立什么的观点 浏览:977
企业如何开展口碑营销的传播方法 浏览:541
服务百姓的方式方法有哪些 浏览:897
蹲坑改马桶的最佳方法深圳 浏览:811
简单的瘦腿方法有几种 浏览:807
疥疮治疗最佳方法 浏览:471