导航:首页 > 研究方法 > 数据描述方法包括交叉分析

数据描述方法包括交叉分析

发布时间:2022-09-02 16:46:19

‘壹’ 交叉分析法

交叉分析法主要指结合计算机数据处理分析交叉进行的分析方法。目视解译是把地学工作人员的专业知识引入图像分析,根据影像特征和影像上目标的空间组合规律来识别目标,并利用影像的综合性、宏观性等特性对各自然要素进行综合分析。因而,目视解译方法是遥感图像解译的最基本方法。但是,目视解译精度不够,定量化有一定的困难,解译过程中免不了带有主观因素。遥感数据图像处理经过计算机对遥感原始数据进行处理,以各波段、各像元间灰度值的最小差异,识别目标电磁辐射强度的微小变化,进行彩色合成、密度分割、边缘增强等一系列数学变换,进而对某些专题目标的特征进行提取,达到识别目标的目的。

‘贰’ 数据分析的基本方法有哪些

数据分析的三个常用方法
1. 数据趋势分析
趋势分析一般而言,适用于产品核心指标的长期跟踪,比如,点击率,GMV,活跃用户数等。做出简单的数据趋势图,并不算是趋势分析,趋势分析更多的是需要明确数据的变化,以及对变化原因进行分析。
趋势分析,最好的产出是比值。在趋势分析的时候需要明确几个概念:环比,同比,定基比。环比是指,是本期统计数据与上期比较,例如2019年2月份与2019年1月份相比较,环比可以知道最近的变化趋势,但是会有些季节性差异。为了消除季节差异,于是有了同比的概念,例如2019年2月份和2018年2月份进行比较。定基比更好理解,就是和某个基点进行比较,比如2018年1月作为基点,定基比则为2019年2月和2018年1月进行比较。
比如:2019年2月份某APP月活跃用户数我2000万,相比1月份,环比增加2%,相比去年2月份,同比增长20%。趋势分析另一个核心目的则是对趋势做出解释,对于趋势线中明显的拐点,发生了什么事情要给出合理的解释,无论是外部原因还是内部原因。
2. 数据对比分析
数据的趋势变化独立的看,其实很多情况下并不能说明问题,比如如果一个企业盈利增长10%,我们并无法判断这个企业的好坏,如果这个企业所处行业的其他企业普遍为负增长,则5%很多,如果行业其他企业增长平均为50%,则这是一个很差的数据。
对比分析,就是给孤立的数据一个合理的参考系,否则孤立的数据毫无意义。在此我向大家推荐一个大数据技术交流圈: 658558542 突破技术瓶颈,提升思维能力 。
一般而言,对比的数据是数据的基本面,比如行业的情况,全站的情况等。有的时候,在产品迭代测试的时候,为了增加说服力,会人为的设置对比的基准。也就是A/B test。
比较试验最关键的是A/B两组只保持单一变量,其他条件保持一致。比如测试首页改版的效果,就需要保持A/B两组用户质量保持相同,上线时间保持相同,来源渠道相同等。只有这样才能得到比较有说服力的数据。
3. 数据细分分析
在得到一些初步结论的时候,需要进一步地细拆,因为在一些综合指标的使用过程中,会抹杀一些关键的数据细节,而指标本身的变化,也需要分析变化产生的原因。这里的细分一定要进行多维度的细拆。常见的拆分方法包括:
分时 :不同时间短数据是否有变化。
分渠道 :不同来源的流量或者产品是否有变化。
分用户 :新注册用户和老用户相比是否有差异,高等级用户和低等级用户相比是否有差异。
分地区 :不同地区的数据是否有变化。
组成拆分 :比如搜索由搜索词组成,可以拆分不同搜索词;店铺流量由不用店铺产生,可以分拆不同的店铺。
细分分析是一个非常重要的手段,多问一些为什么,才是得到结论的关键,而一步一步拆分,就是在不断问为什么的过程。

‘叁’ 数据分析思路都有哪些

1、趋势分析

最简单、最常见的数据分析方法,一般用于核心指标的长期跟踪,比如点击率、GMV、活跃用户数。可以看出数据有那些趋势上的变化,有没有周期性,有没有拐点等,继而分析原因。


2、多维分解


也就是通过不同的维度对于数据进行分解,以获取更加精细的数据洞察。举个例子,对网站维护进行数据分析,可以拆分出地区、访问来源、设备、浏览器等等维度。


3、用户分群


针对符合某种特定行为或背景信息的用户,进行特定的优化和分析,将多维度和多指标作为分群条件,有针对性地优化供应链,提升供应链稳定性。


4、漏斗分析


按照已知的转化路径,借助漏斗模型分析总体和每一步的转化情况。例如将漏斗图用于网站关键路径的转化率分析,不仅能显示用户的最终转化率,同时还可以展示每一节点的转化率。


5、留存分析


留存分析是一种用来分析用户参与情况/活跃程度的分析模型,考察进行初始行为的用户中,有多少人会进行后续行为。衡量留存的常见指标有次日留存率、7日留存率、30日留存率等。


6、A/B 测试


A/B测试是为了达到一个目标,采取了两套方案,通过实验观察两组方案的数据效果,判断两组方案的好坏,需要选择合理的分组样本、监测数据指标、事后数据分析和不同方案评估。


7、对比分析


分为横向对比(跟自己比)和纵向对比(跟别人比),常见的对比应用有A/B test,A/B test的关键就是保证两组中只有一个单一变量,其他条件保持一致。


8、交叉分析


交叉分析法就是将对比分析从多个维度进行交叉展现,进行多角度的结合分析,从中发现最为相关的维度来探索数据变化的原因。

‘肆’ 什么是数据分析方法

数据分析方法主要包括对比分析法,分组分析,交叉分析,平均分析法等,每种方法都有各自的特点和适用范围 ,在实际操作的过程中大家可以根据自己的需要来选择合适的方法。 查看原帖>>

‘伍’ 新媒体数据分析的方法主要有哪些

新媒体数据分析方法主要有:

第一:漏斗图分析法

漏斗图其实就是一个倒立的金字塔,相信这么说大家一定很清楚了它的形状了,那么漏斗图分析到底是怎么个方法呢?其实很简单,就是把你总结好的相关数据填入进去就可以直观的看出数据每一步转化的情况了。

第二:雷达图分析法

做新媒体运营的人都应该知道这个方法吧,毕竟百家号百家指数、大鱼号数据分析用的都是雷达图分析法,所以雷达图分析法通常用于指数分析,也就是自媒体平台对账号权重的一种评判。

第三:回归分析法

这种方法就比较繁琐了,它是指通过研究事务发展变化因果关系来预测未来即将发展趋势,也就是说这种方法是用来研究变量间相互关系,也常被称为因果法。

(5)数据描述方法包括交叉分析扩展阅读:

新媒体进行数据分析的原因:

1、通过数据分析可以知晓各渠道的一个推送效果:将相同的内容投放于不同渠道,可以通过数据分析出个平台的推荐量和阅读量,以此判断你的目标群体集中地。将不同的内容投放于相同的渠道,可以了解目标用户的内容偏好,以便更集中的输出和优化内容,提高用户粘性。

2、我们可以通过数据分析,及时调整优化内容:通过数据对比,可以发现相关问题所在,比如:标题没取好、图片没吸引力、内容不够优质、目标用户不在此平台活跃等,然后根据数据反馈的问题,及时做调整,避免掉粉。

3、通过数据分析可以为下一篇内容做出参考,从而使内容越来越优质:数据能客观反映当前内容的推广效果和状态好坏,给上级或公司提供可参考的决策、战略依据,从而找到最佳路径。

‘陆’ 在WPS表格中常见的数据分析的方法有哪几种

常见的数据分析方法有哪些?
1.趋势分析
当有大量数据时,我们希望更快,更方便地从数据中查找数据信息,这时我们需要使用图形功能。所谓的图形功能就是用EXCEl或其他绘图工具来绘制图形。
趋势分析通常用于长期跟踪核心指标,例如点击率,GMV和活跃用户数。通常,只制作一个简单的数据趋势图,但并不是分析数据趋势图。它必须像上面一样。数据具有那些趋势变化,无论是周期性的,是否存在拐点以及分析背后的原因,还是内部的或外部的。趋势分析的最佳输出是比率,有环比,同比和固定基数比。例如,2017年4月的GDP比3月增加了多少,这是环比关系,该环比关系反映了近期趋势的变化,但具有季节性影响。为了消除季节性因素的影响,引入了同比数据,例如:2017年4月的GDP与2016年4月相比增长了多少,这是同比数据。更好地理解固定基准比率,即固定某个基准点,例如,以2017年1月的数据为基准点,固定基准比率是2017年5月数据与该数据2017年1月之间的比较。
2.对比分析
水平对比度:水平对比度是与自己进行比较。最常见的数据指标是需要与目标值进行比较,以了解我们是否已完成目标;与上个月相比,要了解我们环比的增长情况。
纵向对比:简单来说,就是与其他对比。我们必须与竞争对手进行比较以了解我们在市场上的份额和地位。
许多人可能会说比较分析听起来很简单。让我举一个例子。有一个电子商务公司的登录页面。昨天的PV是5000。您如何看待此类数据?您不会有任何感觉。如果此签到页面的平均PV为10,000,则意味着昨天有一个主要问题。如果签到页面的平均PV为2000,则昨天有一个跳跃。数据只能通过比较才有意义。
3.象限分析
根据不同的数据,每个比较对象分为4个象限。如果将IQ和EQ划分,则可以将其划分为两个维度和四个象限,每个人都有自己的象限。一般来说,智商保证一个人的下限,情商提高一个人的上限。
说一个象限分析方法的例子,在实际工作中使用过:通常,p2p产品的注册用户由第三方渠道主导。如果您可以根据流量来源的质量和数量划分四个象限,然后选择一个固定的时间点,比较每个渠道的流量成本效果,则该质量可以用作保留的总金额的维度为标准。对于高质量和高数量的通道,继续增加引入高质量和低数量的通道,低质量和低数量的通过,低质量和高数量的尝试策略和要求,例如象限分析可以让我们比较和分析时间以获得非常直观和快速的结果。
4.交叉分析
比较分析包括水平和垂直比较。如果要同时比较水平和垂直方向,则可以使用交叉分析方法。交叉分析方法是从多个维度交叉显示数据,并从多个角度执行组合分析。
分析应用程序数据时,通常分为iOS和Android。
交叉分析的主要功能是从多个维度细分数据并找到最相关的维度,以探究数据更改的原因。

‘柒’ 论文常用数据分析方法

论文常用数据分析方法

论文常用数据分析方法,对好的论文分析研究方法应该从哪些方面展开,如何表达才能显得自己对该论文真的有所理解,应该看哪些书呢?下面我整理了论文常用数据分析方法,一起了解看看吧!

论文常用数据分析方法1

论文常用数据分析方法分类总结

1、 基本描述统计

频数分析是用于分析定类数据的选择频数和百分比分布。

描述分析用于描述定量数据的集中趋势、波动程度和分布形状。如要计算数据的平均值、中位数等,可使用描述分析。

分类汇总用于交叉研究,展示两个或更多变量的交叉信息,可将不同组别下的`数据进行汇总统计。

2、 信度分析

信度分析的方法主要有以下三种:Cronbach α信度系数法、折半信度法、重测信度法。

Cronbach α信度系数法为最常使用的方法,即通过Cronbach α信度系数测量测验或量表的信度是否达标。

折半信度是将所有量表题项分为两半,计算两部分各自的信度以及相关系数,进而估计整个量表的信度的测量方法。可在信度分析中选择使用折半系数或是Cronbach α系数。

重测信度是指同一批样本,在不同时间点做了两次相同的问题,然后计算两次回答的相关系数,通过相关系数去研究信度水平。

3、 效度分析

效度有很多种,可分为四种类型:内容效度、结构效度、区分效度、聚合效度。具体区别如下表所示:

论文常用数据分析方法2

4、 差异关系研究

T检验可分析X为定类数据,Y为定量数据之间的关系情况,针对T检验,X只能为2个类别。

当组别多于2组,且数据类型为X为定类数据,Y为定量数据,可使用方差分析。

如果要分析定类数据和定类数据之间的关系情况,可使用交叉卡方分析。

如果研究定类数据与定量数据关系情况,且数据不正态或者方差不齐时,可使用非参数检验。

5、 影响关系研究

相关分析用于研究定量数据之间的关系情况,可以分析包括是否有关系,以及关系紧密程度等。分析时可以不区分XY,但分析数据均要为定量数据。

回归分析通常指的是线性回归分析,一般可在相关分析后进行,用于研究影响关系情况,其中X通常为定量数据(也可以是定类数据,需要设置成哑变量),Y一定为定量数据。

回归分析通常分析Y只有一个,如果想研究多个自变量与多个因变量的影响关系情况,可选择路径分析。

‘捌’ 数据分析需要掌握些什么知识

要想成为一名专业的数据分析师,就需要满足数据分析师的职业要求。数据分析师的职业要求可以总结为以下几个方面。
(1)掌握统计相关的数学知识
和统计相关的数学知识是数据分析师需要具备的基础知识,数据分析师可以根据自己的能力和水平学习相关的统计学知识,初级数据分析师和高级数据分析师需要对统计学知识掌握的程度是不一样的。
如果你是初级数据分析师,了解一些描述统计相关的基础内容,有一定的公式计算能力就可以,如果了解常用的统计模型算法那会是你的加分项。
对高级数据分析师来说,只了解基础的统计学知识是不够的。统计模型的相关知识是高级数据分析师必备的能力,最好对线性代数(主要是矩阵计算相关知识)也有一些了解。
“工欲善其事,必先利其器”,要成为一名合格的数据分析师,会使用数据分析工具非常重要。这里所说的工具也就是数据分析软件,例如Excel、SPSS、SAS等。由于Excel通用性强、使用门槛低、功能强大,所以深受数据分析人员的喜爱,也是数据分析师必须掌握的一个数据分析工具,本书所涉及的数据分析内容均使用Excel进行讲解。当然,数据分析师也可以根据自己的能力选择性的掌握SPSS和SAS等进行高级数据分析的工具。
对于初级数据分析师来说,掌握Excel是硬性要求,必须能熟练使用数据透视表和公式,会使用VBA(一种宏语言)的话则是你的加分项。
对于高级数据分析师来说,使用数据分析工具是核心能力。VBA是必备技能,至少熟练使用SPSS/SAS/R其中的一种,可以根据具体情况选择掌握其他分析工具(MATLAB)。
不过,电商数据分析人员除了掌握Excel、SPSS和SAS等本地软件外,还需要掌握像生意参谋、京东商智等专门的电商数据获取和分析工具。
(3)理解业务
对业务的理解是数据分析师所有工作的基础,无论是数据获取方案、指标的选取还是得出最终结论,都依赖于数据分析师对业务本身的理解。
但是要学习和掌握业务知识需要长时间的积累,成为业务专家非常不易,数据分析师则是在业务专家之上的更深层次的思考和总结,否则在数据分析工作中谁指导谁都是个问题。
学习业务知识的方法有很多,以前的分析报告和取数案例都可以拿来研究,当然这也是一个循序渐进的过程。
(4)掌握数据分析方法
做数据分析一定要了解数据分析的方法、应用场景、使用过程以及优缺点,能够根据具体情况在实际工作中灵活应用,确保数据分析工作能够有效开展。
基本的数据分析方法有:平均分析法、分组分析法、对比分析法、交叉分析法、结构分析法、综合评价分析法、矩阵关联分析法等。
高级的数据分析方法包括:聚类分析法、回归分析法、类别分析法、因子分析法、对应分析法等。在做数据分析时,应该在明确目的的前提下选择适合的分析方法。
(5)了解基本设计原则
数据分析师需要通过图表把自己的分析结论和观点展现出来,根据相关的设计原则对图表进行调整,可以使数据分析结果一目了然。

‘玖’ 常用的数据分析方法有哪些


常见的数据分析方法有哪些?
1.趋势分析
当有大量数据时,我们希望更快,更方便地从数据中查找数据信息,这时我们需要使用图形功能。所谓的图形功能就是用EXCEl或其他绘图工具来绘制图形。
趋势分析通常用于长期跟踪核心指标,例如点击率,GMV和活跃用户数。通常,只制作一个简单的数据趋势图,但并不是分析数据趋势图。它必须像上面一样。数据具有那些趋势变化,无论是周期性的,是否存在拐点以及分析背后的原因,还是内部的或外部的。趋势分析的最佳输出是比率,有环比,同比和固定基数比。例如,2017年4月的GDP比3月增加了多少,这是环比关系,该环比关系反映了近期趋势的变化,但具有季节性影响。为了消除季节性因素的影响,引入了同比数据,例如:2017年4月的GDP与2016年4月相比增长了多少,这是同比数据。更好地理解固定基准比率,即固定某个基准点,例如,以2017年1月的数据为基准点,固定基准比率是2017年5月数据与该数据2017年1月之间的比较。
2.对比分析
水平对比度:水平对比度是与自己进行比较。最常见的数据指标是需要与目标值进行比较,以了解我们是否已完成目标;与上个月相比,要了解我们环比的增长情况。
纵向对比:简单来说,就是与其他对比。我们必须与竞争对手进行比较以了解我们在市场上的份额和地位。
许多人可能会说比较分析听起来很简单。让我举一个例子。有一个电子商务公司的登录页面。昨天的PV是5000。您如何看待此类数据?您不会有任何感觉。如果此签到页面的平均PV为10,000,则意味着昨天有一个主要问题。如果签到页面的平均PV为2000,则昨天有一个跳跃。数据只能通过比较才有意义。
3.象限分析
根据不同的数据,每个比较对象分为4个象限。如果将IQ和EQ划分,则可以将其划分为两个维度和四个象限,每个人都有自己的象限。一般来说,智商保证一个人的下限,情商提高一个人的上限。
说一个象限分析方法的例子,在实际工作中使用过:通常,p2p产品的注册用户由第三方渠道主导。如果您可以根据流量来源的质量和数量划分四个象限,然后选择一个固定的时间点,比较每个渠道的流量成本效果,则该质量可以用作保留的总金额的维度为标准。对于高质量和高数量的通道,继续增加引入高质量和低数量的通道,低质量和低数量的通过,低质量和高数量的尝试策略和要求,例如象限分析可以让我们比较和分析时间以获得非常直观和快速的结果。
4.交叉分析
比较分析包括水平和垂直比较。如果要同时比较水平和垂直方向,则可以使用交叉分析方法。交叉分析方法是从多个维度交叉显示数据,并从多个角度执行组合分析。
分析应用程序数据时,通常分为iOS和Android。
交叉分析的主要功能是从多个维度细分数据并找到最相关的维度,以探究数据更改的原因。

阅读全文

与数据描述方法包括交叉分析相关的资料

热点内容
联想增霸卡安装方法 浏览:935
手机照片定制方法 浏览:248
人正确的呼吸方法 浏览:143
常用肌松检测方法 浏览:838
access有什么方法关闭 浏览:486
筋膜炎的胳膊痛康复锻炼方法 浏览:277
管路中活接连接方法 浏览:365
如何坚持日更的方法 浏览:520
白醋丰胸的正确方法如下 浏览:266
女生如何减肚子上的肉肉最快方法 浏览:136
最简单打领带的方法 浏览:919
教学方法要树立什么的观点 浏览:977
企业如何开展口碑营销的传播方法 浏览:541
服务百姓的方式方法有哪些 浏览:897
蹲坑改马桶的最佳方法深圳 浏览:811
简单的瘦腿方法有几种 浏览:807
疥疮治疗最佳方法 浏览:471
仿真树制作方法视频 浏览:505
如何使用四种方法识别高考试卷 浏览:654
美的十匹空调e1解决方法 浏览:609