导航:首页 > 研究方法 > 机器学习属于什么研究方法

机器学习属于什么研究方法

发布时间:2022-08-30 18:48:32

Ⅰ 机器学习的含义是什么

一张图告诉你机器学习是什么?

Ⅱ 机器学习的研究内容有哪些

近年来,有很多新型的机器学习技术受到人们的广泛关注,也在解决实际问题中,提供了有效的方案。这里,我们简单介绍一下深度学习、强化学习、对抗学习、对偶学习、迁移学习、分布式学习、以及元学习,让大家可以明确机器学习的方向都有哪些,这样再选择自己感兴趣或擅长的研究方向,我觉得这是非常理智的做法。
▌深度学习
不同于传统的机器学习方法,深度学习是一类端到端的学习方法。基于多层的非线性神经网络,深度学习可以从原始数据直接学习,自动抽取特征并逐层抽象,最终实现回归、分类或排序等目的。在深度学习的驱动下,人们在计算机视觉、语音处理、自然语言方面相继取得了突破,达到或甚至超过了人类水平。深度学习的成功主要归功于三大因素——大数据、大模型、大计算,因此这三个方向都是当前研究的热点。
在过去的几十年中,很多不同的深度神经网络结构被提出,比如,卷积神经网络,被广泛应用于计算机视觉,如图像分类、物体识别、图像分割、视频分析等等;循环神经网络,能够对变长的序列数据进行处理,被广泛应用于自然语言理解、语音处理等;编解码模型(Encoder-Decoder)是深度学习中常见的一个框架,多用于图像或序列生成,例如比较热的机器翻译、文本摘要、图像描述(image captioning)问题。
▌强化学习
2016 年 3 月,DeepMInd 设计的基于深度卷积神经网络和强化学习的 AlphaGo 以 4:1 击败顶尖职业棋手李世乭,成为第一个不借助让子而击败围棋职业九段棋手的电脑程序。此次比赛成为AI历史上里程碑式的事件,也让强化学习成为机器学习领域的一个热点研究方向。
强化学习是机器学习的一个子领域,研究智能体如何在动态系统或者环境中以“试错”的方式进行学习,通过与系统或环境进行交互获得的奖赏指导行为,从而最大化累积奖赏或长期回报。由于其一般性,该问题在许多其他学科中也进行了研究,例如博弈论、控制理论、运筹学、信息论、多智能体系统、群体智能、统计学和遗传算法。
▌迁移学习
迁移学习的目的是把为其他任务(称其为源任务)训练好的模型迁移到新的学习任务(称其为目标任务)中,帮助新任务解决训练样本不足等技术挑战。之所以可以这样做,是因为很多学习任务之间存在相关性(比如都是图像识别任务),因此从一个任务中总结出来的知识(模型参数)可以对解决另外一个任务有所帮助。迁移学习目前是机器学习的研究热点之一,还有很大的发展空间。
▌对抗学习
传统的深度生成模型存在一个潜在问题:由于最大化概率似然,模型更倾向于生成偏极端的数据,影响生成的效果。对抗学习利用对抗性行为(比如产生对抗样本或者对抗模型)来加强模型的稳定性,提高数据生成的效果。近些年来,利用对抗学习思想进行无监督学习的生成对抗网络(GAN)被成功应用到图像、语音、文本等领域,成为了无监督学习的重要技术之一。
▌对偶学习
对偶学习是一种新的学习范式,其基本思想是利用机器学习任务之间的对偶属性获得更有效的反馈/正则化,引导、加强学习过程,从而降低深度学习对大规模人工标注数据的依赖。对偶学习的思想已经被应用到机器学习很多问题里,包括机器翻译、图像风格转换、问题回答和生成、图像分类和生成、文本分类和生成、图像转文本和文本转图像等等。
▌分布式学习
分布式技术是机器学习技术的加速器,能够显着提高机器学习的训练效率、进一步增大其应用范围。当“分布式”遇到“机器学习”,不应只局限在对串行算法进行多机并行以及底层实现方面的技术,我们更应该基于对机器学习的完整理解,将分布式和机器学习更加紧密地结合在一起。
▌元学习
元学习(meta learning)是近年来机器学习领域的一个新的研究热点。字面上来理解,元学习就是学会如何学习,重点是对学习本身的理解和适应,而不仅仅是完成某个特定的学习任务。也就是说,一个元学习器需要能够评估自己的学习方法,并根据特定的学习任务对自己的学习方法进行调整。

Ⅲ 什么是学习和机器学习 为什么要研究机器学习

机器学习很简单,就是使机器具有人的学习能力,人的思考能力,人的认知能力,至于判断机器学习的方法,有注明的图灵机测试。
机器学习是一门热门的学科,究其原因是为了服务人类的。
目前的机器学习其实是有着其“瓶颈”所在,比如,机器人学习新生事物时候,数据其实是人为指定的,而非自己去思考,也即,现在的机器学习是人为灌输思想的被动学习,而真正想让机器主动学习,具有人的思维方式,还有待研究。

Ⅳ 为什么要研究机器学习机器学习

机器学习是一种方法论,通过研究数据的各种独立角度寻找数据的函数变化关系,代入函数后通过机器自动在海量数据中去寻找函数输出值(也就是我们需要挖掘的内容,比如从众多图片中寻找所有属于人的脸;找出所有图片中的猫;通过话单分析人的活动轨迹,常住地、娱乐地、工作地、性格特征等)。
日常生活中,我们每天使用的美团外卖、淘宝购物、每日头条等APP,都使用了一种对用户使用习惯进行分析的学习型算法,通过对我们在APP中的操作行为与历史浏览数据学习,分析出我们的口味、购物习惯、兴趣爱好等,最后在APP中实现在首页推送我们感兴趣的物品与新闻等信息,自动迎合每个人的不同爱好,而这一切都是不需要人工去识别操作。
在通信领域,通过用户的行为数据(各类网管系统日志或告警信息)构建学习--这一块应该通过学习算法建立机器学习模型,通过计算机自动学习识别,可以对用户群体的各种特征与网络运行维护指标、网络设备性能指标进行关联分析,最终实现网络生态化(即网络可以根据用户的行为习惯自动调度优化设备资源配置,满足业务需求的同时防止设备能力建设维护的过度或不足,降低维护成本)

Ⅳ 机器学习的方法

机器学习(Machine Learning, ML)是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、算法复杂度理论等多门学科。专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能。

它是人工智能的核心,是使计算机具有智能的根本途径,其应用遍及人工智能的各个领域,它主要使用归纳、综合而不是演绎。
机器学习是近20多年兴起的一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、算法复杂度理论等多门学科。机器学习理论主要是设计和分析一些让计算机可以自动“学习”的算法。机器学习算法是一类从数据中自动分析获得规律,并利用规律对未知数据进行预测的算法。因为学习算法中涉及了大量的统计学理论,机器学习与统计推断学联系尤为密切,也被称为统计学习理论。算法设计方面,机器学习理论关注可以实现的,行之有效的学习算法。很多推论问题属于无程序可循难度,所以部分的机器学习研究是开发容易处理的近似算法。

机器学习已经有了十分广泛的应用,例如:数据挖掘、计算机视觉、自然语言处理、生物特征识别、搜索引擎、医学诊断、检测信用卡欺诈、证券市场分析、DNA序列测序、语音和手写识别、战略游戏和机器人运用。
学习是人类具有的一种重要智能行为,但究竟什么是学习,长期以来却众说纷纭。社会学家、逻辑学家和心理学家都各有其不同的看法。比如,Langley(1996) 定义的机器学习是“机器学习是一门人工智能的科学,该领域的主要研究对象是人工智能,特别是如何在经验学习中改善具体算法的性能”。(Machine learning is a science of the artificial. The field's main objects of study are artifacts, specifically algorithms that improve their performance with experience.')Tom Mitchell的机器学习(1997)对信息论中的一些概念有详细的解释,其中定义机器学习时提到,“机器学习是对能通过经验自动改进的计算机算法的研究”。(Machine Learning is the study of computer algorithms that improve automatically through experience.)Alpaydin(2004)同时提出自己对机器学习的定义,“机器学习是用数据或以往的经验,以此优化计算机程序的性能标准。”(Machine learning is programming computers to optimize a performance criterion using example data or past experience.)

尽管如此,为了便于进行讨论和估计学科的进展,有必要对机器学习给出定义,即使这种定义是不完全的和不充分的。顾名思义, 机器学习是研究如何使用机器来模拟人类学习活动的一门学科。稍为严格的提法是:机器学习是一门研究机器获取新知识和新技能,并识别现有知识的学问。这里所说的“机器”,指的就是计算机;现在是电子计算机,以后还可能是中子计算机、光子计算机或神经计算机等等

机器能否象人类一样能具有学习能力呢?1959年美国的塞缪尔(Samuel)设计了一个下棋程序,这个程序具有学习能力,它可以在不断的对弈中改善自己的棋艺。4年后,这个程序战胜了设计者本人。又过了3年,这个程序战胜了美国一个保持8年之久的常胜不败的冠军。这个程序向人们展示了机器学习的能力,提出了许多令人深思的社会问题与哲学问题。

机器的能力是否能超过人的,很多持否定意见的人的一个主要论据是:机器是人造的,其性能和动作完全是由设计者规定的,因此无论如何其能力也不会超过设计者本人。这种意见对不具备学习能力的机器来说的确是对的,可是对具备学习能力的机器就值得考虑了,因为这种机器的能力在应用中不断地提高,过一段时间之后,设计者本人也不知它的能力到了何种水平。

Ⅵ 机器学习的分类

机器学习的分类主要有学习策略、学习方法、数据形式。学习目标等。
从学习策略方面来看,如果比较严谨的讲,那就是可分为两种:
(1) 模拟人脑的机器学习
符号学习:模拟人脑的宏现心理级学习过程,以认知心理学原理为基础,以符号数据为输入,以符号运算为方法,用推理过程在图或状态空间中搜索,学习的目标为概念或规则等。符号学习的典型方法有记忆学习、示例学习、演绎学习.类比学习、解释学习等。
神经网络学习(或连接学习):模拟人脑的微观生理级学习过程,以脑和神经科学原理为基础,以人工神经网络为函数结构模型,以数值数据为输人,以数值运算为方法,用迭代过程在系数向量空间中搜索,学习的目标为函数。典型的连接学习有权值修正学习、拓扑结构学习。
(2) 直接采用数学方法的机器学习
主要有统计机器学习。
统计机器学习是基于对数据的初步认识以及学习目的的分析,选择合适的数学模型,拟定超参数,并输入样本数据,依据一定的策略,运用合适的学习算法对模型进行训练,最后运用训练好的模型对数据进行分析预测。
统计机器学习三个要素:
模型(model):模型在未进行训练前,其可能的参数是多个甚至无穷的,故可能的模型也是多个甚至无穷的,这些模型构成的集合就是假设空间。
策略(strategy):即从假设空间中挑选出参数最优的模型的准则。模型的分类或预测结果与实际情况的误差(损失函数)越小,模型就越好。那么策略就是误差最小。
算法(algorithm):即从假设空间中挑选模型的方法(等同于求解最佳的模型参数)。机器学习的参数求解通常都会转化为最优化问题,故学习算法通常是最优化算法,例如最速梯度下降法、牛顿法以及拟牛顿法等。
如果从学习方法方面来看的话,主要是归纳学习和演绎学习以及类比学习、分析学习等。
如果是从学习方式方面来看,主要有三种,为监督学习、无监督学习、 强化学习。
当从数据形式上来看的话,为 结构化学习、非结构化学习、
还可从学习目标方面来看,为 概念学习、规则学习、函数学习、类别学习、贝叶斯网络学习。

Ⅶ 什么是机器学习,人工智能,深度学习

人工智能(AI)、机器学习(machinelearning)和深度学习(deeplearning)都用上了。这三者在AlphaGo击败李世乭的过程中都起了作用,但它们说的并不是一回事。

今天我们就用最简单的方法——同心圆,可视化地展现出它们三者的关系和应用。

如下图,人工智能是最早出现的,也是最大、最外侧的同心圆;其次是机器学习,稍晚一点;最内侧,是深度学习,当今人工智能大爆炸的核心驱动。

Ⅷ 人工智能,机器学习,统计学,数据挖掘之间有什么区别

说到人工智能,就不能不提到机器学习和深度学习。很多时候,我们得先明确人工智能与机器学习和深度学习的关系,我们才能更好地去分析和理解人工智能与数据分析、统计学和数据挖掘思维关联。人工智能与统计学、数据分析和数据挖掘的联系,更多的是机器学习与深度学习,同数据分析与数据挖掘的关联。
0.人工智能
人工智能英文缩写为AI,它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。人工智能是计算机科学研究领域的一个重要分支,又是众多学科的一个交叉学科,它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器,该领域的研究包括语音识别、图像识别、机器人、自然语言处理、智能搜索和专家系统等等,人工智能可以对人的意识、思维的信息过程的模拟。人工智能包括众多的分支领域,比如大家熟悉的机器学习、自然语言理解和模式识别等。
1.机器学习
机器学习属于人工智能研究与应用的一个分支领域。机器学习的研究更加偏向理论性,其目的更偏向于是研究一种为了让计算机不断从数据中学习知识,而使机器学习得到的结果不断接近目标函数的理论。
机器学习,引用卡内基梅隆大学机器学习研究领域的着名教授Tom Mitchell的经典定义:
如果一个程序在使用既有的经验E(Experience)来执行某类任务T(Task)的过程中被认为是“具备学习能力的”,那么它一定要展现出:利用现有的经验E,不断改善其完成既定任务T的性能(Performance)的特质。
机器学习已经有了十分广泛的应用,例如:数据挖掘、计算机视觉、自然语言处理、生物特征识别、搜索引擎、医学诊断、检测信用卡欺诈、证券市场分析、DNA序列测序、语音和手写识别、战略游戏和机器人运用。在我们当下的生活中,语音输入识别、手写输入识别等技术,识别率相比之前若干年的技术识别率提升非常巨大,达到了将近97%以上,大家可以在各自的手机上体验这些功能,这些技术来自于机器学习技术的应用。
那机器学习与数据挖掘的联系是什么呢?
机器学习为数据挖掘提供了理论方法,而数据挖掘技术是机器学习技术的一个实际应用。逐步开发和应用了若干新的分析方法逐步演变而来形成的;这两个领域彼此之间交叉渗透,彼此都会利用对方发展起来的技术方法来实现业务目标,数据挖掘的概念更广,机器学习只是数据挖掘领域中的一个新兴分支与细分领域,只不过基于大数据技术让其逐渐成为了当下显学和主流。
2.数据挖掘
数据挖掘一般是指从大量的数据中通过算法搜索隐藏于其中信息的过程。数据挖掘本质上像是机器学习和人工智能的基础,它的主要目的是从各种各样的数据来源中,提取出超集的信息,然后将这些信息合并让你发现你从来没有想到过的模式和内在关系。这就意味着,数据挖掘不是一种用来证明假说的方法,而是用来构建各种各样的假说的方法。数据挖掘不能告诉你这些问题的答案,他只能告诉你,A和B可能存在相关关系,但是它无法告诉你A和B存在什么相关关系。机器学习是从假设空间H中寻找假设函数g近似目标函数f。数据挖掘是从大量的数据中寻找数据相互之间的特性。
数据挖掘是基于数据库系统的数据发现过程,立足与数据分析技术之上,提供给为高端和高级的规律趋势发现以及预测功能;同时数据量将变得更为庞大,依赖于模式识别等计算机前沿的技术;其还有另外一个名称为商业智能(BI, Business Intelligence),依托于超大型数据库以及数据仓库、数据集市等数据库技术来完成。
主要挖掘方法有: 分类 、 估计、预测、相关性分组或关联规则、 聚类、复杂数据类型挖掘(Text, Web ,图形图像,视频,音频等)等技术。
3.深度学习
深度学习的概念源于人工神经网络的研究。含多隐层的多层感知器就是一种深度学习结构。深度学习通过组合低层特征形成更加抽象的高层表示属性类别或特征,以发现数据的分布式特征表示。晦涩难懂的概念,略微有些难以理解,但是在其高冷的背后,却有深远的应用场景和未来。
那深度学习和机器学习是什么关系呢?
深度学习是实现机器学习的一种方式或一条路径。其动机在于建立、模拟人脑进行分析学习的神经网络,它模仿人脑的机制来解释数据。比如其按特定的物理距离连接;而深度学习使用独立的层、连接,还有数据传播方向,比如最近大火的卷积神经网络是第一个真正多层结构学习算法,它利用空间相对关系减少参数数目以提高训练性能,让机器认知过程逐层进行,逐步抽象,从而大幅度提升识别的准确性和效率。
神经网络是机器学习的一个分支,而深度学习又是神经网络的一个大分支,深度学习的基本结构是深度神经网络。
4.数据分析
数据分析的概念:基于数据库系统和应用程序,可以直观的查看统计分析系统中的数据,从而可以很快得到我们想要的结果;这个就是最基本的数据分析功能,也是我们在信息化时代了,除了重构业务流程、提升行业效率和降低成本之外的了。另外数据分析更多的是指从历史数据里面发现有价值的信息,从而提高决策的科学性。数据分析更侧重于通过分析数据的历史分布然后从中得出一些有价值的信息。还有一个数据分析更重要的功能,就是数据可视化。
比如说,在财务系统的信息化中,基于企业的财务系统,我们可以直观获取企业现金流量表、资产负债表和利润表,这些都来自与我们的数据分析技术。数据分析目前常用的软件是Excel, R, Python等工具。
在对比数据分析和数据挖掘时,数据分析则更像是对历史数据的一个统计分析过程,比如我们可以对历史数据进行分析后得到一个粗糙的结论,但当我们想要深入探索为什么会出现这个结论时,就需要进行数据挖掘,探索引起这个结论的种种因素,然后建立起结论和因素之间模型,当有因素有新的值出现时,我们就可以利用这个模型去预测可能产生的结论。
因此数据分析更像是数据挖掘的一个中间过程。
5.总结
人工智能与机器学习、深度学习的关系
严格意义上说,人工智能和机器学习没有直接关系,只不过是机器学习的方法被大量的应用于解决人工智能的问题而已。目前机器学习是人工智能的一种实现方式,也是最重要的实现方式。
深度学习是机器学习比较火的一个方向,其本身是神经网络算法的衍生,在图像、语音等富媒体的分类和识别上取得了非常好的效果。
数据挖掘与机器学习的关系
数据挖掘主要利用机器学习界提供的技术来分析海量数据,利用数据库界提供的技术来管理海量数据。
机器学习是数据挖掘的一种重要方法,但机器学习是另一门学科,并不从属于数据挖掘,二者相辅相成。
深度学习、机器学习的发展带了许多实际的商业应用,让虚幻的AI逐步落地,进而影响人类社会发展;
深度学习、机器学习以及未来的AI技术,将让无人驾驶汽车、更好的预防性治疗技术、更发达智能的疾病治疗诊断系统、更好的人类生活娱乐辅助推荐系统等,逐步融入人类社会的方方面面。
AI即使是现在,也是未来,不再是一种科幻影像和概念,业界变成了人类社会当下的一种存在,不管人类是否喜欢或者理解,他们都将革命性地改变创造AI的我们人类自身。

Ⅸ 什么是机器学习

机器学习(Machine Learning, ML)是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、算法复杂度理论等多门学科。专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能。

它是人工智能的核心,是使计算机具有智能的根本途径,其应用遍及人工智能的各个领域,它主要使用归纳、综合而不是演绎。

阅读全文

与机器学习属于什么研究方法相关的资料

热点内容
皂角刺如何食用方法 浏览:564
研究问卷的方法 浏览:828
古筝琴码的安装方法 浏览:579
国外大学研究方法有哪些 浏览:424
手上鸡眼的图片症状和处理方法 浏览:70
栀子的种植方法和图片 浏览:604
癣的症状和治疗方法 浏览:422
黛珂白檀乳液使用方法 浏览:849
考科二坡道定点停车方法视频 浏览:542
独词式标题选材常用方法 浏览:750
一天解决一本书的方法 浏览:239
沂蒙山楂的食用方法 浏览:179
系统思维的训练方法 浏览:41
组合数计算方法高中数学例题 浏览:305
如何用物理方法卷发 浏览:194
穿丝袜的正确方法视频教程 浏览:220
简单锻炼方法视频捂脸 浏览:274
如何唤醒孩子的方法 浏览:567
双开双控插座安装方法视频 浏览:704
gps手持测亩仪使用方法 浏览:152