Ⅰ 数据分析很难8大分析方法帮到你
1. 趋势分析法
将两个或两个以上的指标或比率进行对比,以便计算出它们增减变动的方向、数额、以及变动幅度的一种分析方法。
2. 对比分析法
将两个或两个以上指标对比,寻找其中规律。静态对比,不同指标横向对比。动态对比,同一指标纵向对比
3. 多维分解法
把一种产品或一种市场现象,放到一个两维以上的空间坐标上来进行分析。
4. 用户分群
根据用户与产品之间的互动程度进行划分,以更好经营用户。
5. 用户细查
用户抽样,具体观察用户在行为、交易上的特征数据,以观察是否具有显着特征,反推宏观数据,找出数据规律。
6. 漏斗分析法
对业务流程节点进行划分,建立整个业务流程的转化漏斗,并追踪分析。
7. 留存分析
用户注册后,追踪该用户次日/周/月的活跃情况。
8. AB测试法
A/B测试的实质是对照试验,即通过对几个不同的版本进行对比,从而选出最优解。
关于数据分析很难?8大分析方法帮到你,青藤小编就和您分享到这里了。如果您对大数据工程有浓厚的兴趣,希望这篇文章可以为您提供帮助。如果您还想了解更多关于数据分析师、大数据工程师的技巧及素材等内容,可以点击本站的其他文章进行学习。
以上是小编为大家分享的关于数据分析很难?8大分析方法帮到你的相关内容,更多信息可以关注环球青藤分享更多干货
Ⅱ 分析测试中常用的分解方法主要是A酸溶法和碱溶法B常温溶解法和高温溶解法C溶解法和熔融法D溶解法和火焰
C。
Ⅲ 分析测试方法
地球化学找矿分析中经常采用的分析测试方法归纳起来大致有如下几种。
1.比色分析
比色分析是在一定条件下,使试剂(显色剂)与试液中待测元素反应生成有色溶液,通过目估与标准有色溶液(又称标准色阶)对比,以确定待测元素的含量;或者通过仪器(如光电比色计或分光光度计)测定有色溶液对某一波长的光的吸光度,来求得待测元素的含量。用目估比较的方法一般称为目视比色法,只能达到半定量;用光电比色法或分光光度计来测定的方法又称分光光度法,可以达到定量要求。
比色分析的优点是简便、快速且灵敏度较高,一般可检出0.1~0.01μg/mL的含量。目前,比较常用的野外痕金快速测定就是采用目视比色法(微珠法或泡塑法)来确定的,一般可达纳克级,满足野外快速找金的要求;在化探扫面中W,Cd常采用分光光度法的方法来测定。
2.原子发射光谱分析
原子发射光谱分析的基本原理:任何元素的原子都是由带正电的原子核和围绕它高速旋转的带负电的电子组成,最外层的电子称为价电子。在正常情况下,原子处在最低的能量状态,称为基态。当基态原子受到外加能量(热能、电能等)激发时,它的外层电子从低能级向高能级跃迁,此时原子处于激发状态。该状态下价电子不稳定,大约在10-8s内便要恢复到较低的能量状态或基态,同时以光的形式释放出多余的能量。由于各种元素原子结构是一定的,每种元素都能发射某些特征波长的谱线(如铜有327.39nm,282.44nm,297.83nm,当然每条谱线的灵敏度有所差异)。根据元素有无特征谱线,就可确定该元素是否存在;根据特征谱线的强度就可确定元素的含量。
在地球化学找矿分析中激发光源多采用电弧光源,近年来等离子光源(ICP)也逐渐盛行起来。原子发射光谱分析法是地球化学找矿分析中最普遍采用的多元素测定方法,较好的方法一次装样可完成近20种元素的测定,由于其测定过程多采用人工方式,缺点是在测定速度上稍微慢了些,另外,干扰较多且不易掌握。目前在地球化学找矿分析中,应用最好方法就是Au,Ag和Pt发射光谱分析法,特别是Au的发射光谱测定是化探扫面推荐的标准配套分析法。
3.原子吸收光谱分析
原子吸收光谱分析基本原理:每一元素的原子具有吸收该元素本身发射的特征谱线的性能。分析某一元素时,用能产生该元素特征的光源(如以该元素制作的空心阴极灯)。当这种光源发射的光通过被测元素的基态原子蒸气时,光就被吸收。其吸收的量与样品中被测元素的含量成正比,通过测量光源发射的光通过原子蒸气被吸收的量即可测得元素的含量。
原子吸收系统分析的特点是灵敏度高(10-6级)、准确度和精密度较高、分析速度快、分析范围广,可测定70多种元素。在地球化学找矿分析中常用在Cu,Pb,Zn,Ni等元素的测定。近年来开始采用无火焰原子吸收光谱(石墨炉或钽舟电热原子化器),它能达到更高的灵敏度(10-9级),但精度目前还不理想。
4.荧光分析
物质的分子或原子,经入射光照射后,其中某些电子被激发至较高的能级,当它们从高能级跃迁至低能级时,可发射出比入射波长更长的光,则这种光称为荧光。随着激发源的不同(如可以是紫外线、X射线等),又有不同的荧光分析方法。
◎荧光光度分析:利用紫外线照射物质所产生的荧光强度来确定该物质的含量,在地球化学找矿分析中常用于铀含量的测定,灵敏度可达到10-7~10-6。
◎原子荧光分析:元素的基态原子蒸气,在吸收元素发射的特征波长的光线之后,从基态激发至激发态,当这些原子由激发态跃迁至基态时就发射出荧光,由此可借助测定荧光强度来测定试样中元素的含量。在地球化学找矿分析中常采用这些方法来测定As,Sb,Bi,Hg的含量。
◎X射线荧光分析:X射线荧光分析基本原理:当X射线(初级X射线)照射待测样品中的各种元素时,X射线中的光子便与样品的原子发生碰撞,并使原子中的一个内层电子被轰击出来,此时原子内层电子空位,将由能量较高的外层电子来补充,同时以X射线形式释放出多余的能量,这种次级X射线叫作X射线荧光。各元素所发射出来的X射线荧光的波长取决于它们的原子序数,而其强度与元素含量相关,借此可确定存在的元素及其含量。
该方法谱线简单,易于识别,干扰较小,方法选择性高,不仅用于微量组分(10-6)的测定,也适用于高至接近100%的含量组分的测定,且具有相当高的准确度。该方法不损坏样品,故同一试样可重复进行分析。它非常适用于原子序数5(B),6(C),8(O),9(F)~92(U)的测定,但仪器价格比较昂贵。
5.极谱分析
极谱分析是一种特殊条件下的电解分析,它用滴汞电极被分析物质的稀溶液,并根据得到的电压电流曲线,以半波电位确定何种元素存在,以极限扩散电流确定元素的含量。该方法灵敏度一般可达1μg/L~1mg/L。新的极谱技术可提高3~4数量级,甚至提高6个数量级(如催化极谱法测铂族元素),相对误差约2%~5%,一份试液(只几毫升)可同时测定几个元素,地球化学找矿中常用于W,Mo的测定。
6.离子选择性电极
离子选择性电极是一种电位分析法,简单地说是把一对电极(一个叫指示电极,其电位随被测离子浓度变化,另一个叫参比电极,电位不受溶液组成变化的影响,具恒定值,起电压传递作用)插入待测溶液,当把两电极连接起来,构成一个原电池时,两极间的电位差完全取决于溶液中待测离子的浓度(电位差和离子浓度的对数成线性关系)。
为了测定各种离子,可以制作各种离子的指示电极,它的电极的膜电位只与溶液中该离子的浓度对数成线性关系,故称为离子选择性电极,如氟离子选择性电极,其膜电位只与溶液中氟离子浓度有关。
该方法灵敏度高,有的达到10-9级,设备较简单,测定速度快。地球化学找矿中用于F,Cl,Br,I的测定。
实际应用中除上述介绍的主要方法外,还有诸如中子活化分析、等离子质谱分析等方法,但这些方法所采用设备价格过于昂贵,应用面不广,这里不再介绍。
地球化学找矿中分析测试方法多种多样,但依靠单一的分析测试手段完成分析测试任务要求显然是不现实的。在实际生产中常常是采用多种分析测试手段组合的方式,这样无论从分析测试灵敏度、精密度和准确度,还是从经济效益、测试速度上才能达到最优。例如,辽宁地矿局中心实验室在早期区域化探样品分析就采用了如下的组合方式(表3-12)。
表3-12 辽宁地矿局中心实验室区域化探样品采用的分析方法
注:XRF—X射线荧光光谱;ICP-P—等离子粉末光谱分析法;OES—发射光谱法;POL—极谱法;ISE—离子选择电极法;AAN—石墨炉原子吸收法;AFS—原子荧光光谱法;AAS—原子吸收光谱法;COL—比色法。
(据罗先熔等,2007)
Ⅳ 简述掉落物的分解过程,及分解速率的测定方法
摘要 水生态系统物质循环领域,涉及一种消落带植物分解速率的测试装置及其测试方法,其中测试装置包括漂浮于水面的浮盘和均匀可拆卸固定安装在浮盘底部的若干取样盆,取样盆内放置有连根带土植物,土壤表面覆盖有尼龙网,取样盆外可拆卸套设有尼龙网袋,该测试装置的测试方法中消落带植物处于活体状态,能够真实的计算活体植物水生分解过程中的分解速率,对评价植物分解对水环境污染负荷的贡献具有现实指导意义,同时也为消落带生态系统中植物碳氮磷等营养元素在水体、土壤中的迁移转化提供较好的研究方法。
Ⅳ 任务岩石矿物试样的分解
任务描述
直接用粉末试样测定的方法,如X射线荧光光谱法中的粉末压片法,发射光谱中的半定量分析和某些元素的定量分析、微区分析中的电子探针测定技术分析等,在地质分析中有重要的作用。但就地质试样整体分析而言,上述情况占的比重很小。大量的分析任务和众多的分析方法离不开试样的分解。试样的分解通常是指固体的粉末转化为液体(少数情况为气体)试样的过程。地质样品种类极其繁多,矿物组成千差万别,各组分的矿物结构、赋存状态和含量等千变万化,这就决定了分解方法的多样性,试图寻求一种分解方法能够分解所有试样的想法是不切实际的。通过本次任务的学习,能掌握各种酸分解方法和熔融分解方法操作技术。能针对测定试样的组成和含量,结合分解后的测试技术,选择适用的分解方法。
任务分析
根据试样的性质和测定方法的不同,常用的分解方法有溶解法、熔融法和干式灰化法等。
一、溶解法
采用适当的溶剂,将试样溶解后制成溶液的方法,称为溶解法。常用的溶剂有水、酸和碱等。
水溶法对于可溶性的无机盐,可直接用蒸馏水溶解制成溶液。
由于酸较易提纯,过量的酸,除磷酸外,也较易除去,分解时,不引进除氢离子以外的阳离子,操作简单,使用温度低,对容器腐蚀性小等优点,应用较广。酸分解法的缺点是对某些矿物的分解能力较差,某些元素可能挥发损失。多种无机酸及混合酸,常用作溶解试样的溶剂。利用这些酸的酸性、氧化性及配位性,使被测组分转入溶液。常用的酸有以下几种。
(一)盐酸分解试样
盐酸是地质试样分解常用的溶剂。其优点是操作简便,在玻璃容器中即可进行溶样,其盐类易溶于水。不足的是其对岩石矿物的分解有一定的局限性,许多岩石矿物不能被盐酸分解。
盐酸是碳酸盐岩的有效溶剂,特别是只含少量不溶性硅酸盐的碳酸盐岩,只要将其在950~1000℃灼烧后,试样即可被盐酸完全分解,这是由于灼烧时碱土金属的氧化物转变为不溶性硅酸盐的熔剂,使之成为可被盐酸分解的硅酸钙和硅酸镁。许多碳酸盐矿物如方解石、文石、毒重石、磷锶矿、白云石、铁白云石、菱镁矿、菱铁矿、菱锰矿、孔雀石、蓝铜矿、菱锌矿、白铅矿和翠镍矿等也易溶于盐酸。含氟的碳酸盐稀土矿物如氟碳钙铈矿,可被浓盐酸分解,而铀的碳酸盐矿物甚至可被稀盐酸分解。
铁矿物常用盐酸分解。在氯化亚锡等还原剂存在下,磁铁矿可被盐酸迅速分解。其他的铁矿物如赤铁矿、褐铁矿等也可缓缓地溶于盐酸中。钛磁铁矿和某些难分解的含铁硅酸盐矿物则不能为盐酸完全分解。先用盐酸在玻璃烧杯中分解试样,然后滤出不溶物,残渣再碱熔制成溶液后与盐酸分解的试样溶液合并,常用于铁矿石的系统分析。能被盐酸分解的矿物还有锰矿物、稀土元素的硅酸盐矿物(如硅铍钇矿和铈硅石)、锆矿石中的异性石和负异性石、镍的氧化矿物和含镍硅酸盐、钼的氧化矿物等。
在硫化矿物的分解中,盐酸-硝酸混合酸是广泛使用的溶剂。先用盐酸加热,使硫以硫化氢形式挥发,然后加入硝酸使试样分解。这种方法被用于黄铜矿、闪锌矿、方铅矿等试样的分解,在有色金属的测定中应用极广。在锰矿石、钴矿石、硼矿石的分析中也常用盐酸-硝酸分解。
用盐酸分解试样时几点需要注意的问题:
(1)分解试样宜用玻璃、陶瓷、塑料和石英,不宜用金、铂、银等器皿溶样,特别在氧化剂存在下,铂坩埚将会严重损耗。在铂器皿中用于盐酸分解铁矿石是不允许的,三氯化铁对铂有显着的侵蚀作用。
(2)使用盐酸溶矿,虽然许多矿物可被分解,对于复杂的岩石矿物而言,它并不是单矿物,因此用盐酸溶样后常发现有残渣。如果残渣中不含待测组分,则无需处理;然而在更多情况下,试样应该全部分解,因此在用盐酸溶样时有时可加入少量氟化铵或几滴氢氟酸以有利于少量硅酸盐矿物分解,或借助于熔融分解残渣。
(3)要注意盐酸溶样时有的组分会因挥发而损失,如As(Ⅲ)、Sb(Ⅲ)、Ge(Ⅳ)、Se(Ⅳ)、Hg(Ⅱ)、Sn(Ⅳ)、Re(Ⅷ)容易从盐酸溶液中(特别是加热时)挥发失去,特别是低价硒的氯化物和四氯化锗、三氯化铟、三氯化镓等。
(4)浓盐酸的沸点为109℃,故溶解温度最好低于80℃,否则,因盐酸蒸发太快,试样分解不完全。HCl具有酸性、还原性及氯离子的强配位性。主要用于溶解弱酸盐、某些氧化物、某些硫化物和比氢活泼的金属等。
(5)易溶于盐酸的元素或化合物是:Fe、Co、Ni、Cr、Zn、普通钢铁、高铬铁,多数金属氧化物(如MnO2、2PbO·PbO2、Fe2O3等)、过氧化物、氢氧化物、硫化物、碳酸盐、磷酸盐、硼酸盐等。
(6)不溶于盐酸的物质包括灼烧过的 Al、Be、Cr、Fe、Ti、Zr 和 Th 的氧化物,SnO2,Sb2O5,Nb2O5,Ta2O5,磷酸锆,独居石,磷钇矿,锶、钡和铅的硫酸盐,尖晶石,黄铁矿,汞和某些金属的硫化物,铬铁矿,铌和钽矿石和各种钍矿石。
(二)氢氟酸分解试样
氢氟酸属弱酸,由于其对硅酸盐岩石和矿物有特殊分解能力,在地质试样的分解中得到了广泛的应用。溶样通常在铂器皿或塑料器皿中进行。塑料器皿中以聚四氟乙烯器皿最常用。
氢氟酸冷浸取法溶样后用于硅、磷、氧化亚铁等少数组分的测定,但是氢氟酸在常温下的分解能力是有限的。红柱石、矽线石、锆石、电气石、黄玉、刚玉和金红石等许多矿物基本不溶。因此,加热分解仍然是主要的。
氢氟酸溶样需要注意以下几个问题:
(1)氢氟酸的酸性很弱,但配位能力很强。对于一般分解方法难于分解的硅酸盐,可以用氢氟酸作溶剂,在加压和温热的情况下很快分解。
(2)硅的损失与溶样条件有关。在一定的体积内,氢氟酸-氟硅酸-水形成沸点为116℃的恒沸三元体系,此时硅定量保留在溶液中,从而建立了氢氟酸溶样容量法测定硅的分析方法。如果将溶液加热蒸干,它与二氧化硅和硅酸盐反应生成气态的SiF4或氟硅酸(H2SiF6),而H2SiF6受热又分解为SiF4和HF。反应式为:
SiO2+4HF→SiF4↑+2H2O
SiO2+6HF→H2SiF6+2H2O
H2SiF6→2HF+SiF4↑
这也是石英岩中硅的测定方法。在用氢氟酸分解试样时,通常先用水湿润,然后再加氢氟酸,再加热。硼、砷、锑、钛、锗、锆、钼、锇和碲等氟化物随SiF4可完全挥发掉,或部分挥发掉,锰的氟化物也有少量挥发。过量的氢氟酸用硫酸或高氯酸冒白烟除去。
(3)在地质试样分解中,单独使用氢氟酸的情况并不常见,常见的是其与高沸点酸如高氯酸或硫酸联用,有时还与更多的其他酸联用。与高沸点酸联用的目的是为了去除氟离子,以便于以后的分析。由于地质试样的组成千差万别,溶样条件各不相同,常导致除氟的结论不尽一致。实验表明,用高氯酸冒烟除氟是有效的,其两次冒烟除氟的效果与硫酸一次冒烟相当,残留的氟离子可以忽略。一般来说,当试样中铝、钛、铁等可与氟离子形成配合物的金属元素含量越高,氟离子越难除尽。加入较多的高氯酸并适当延长冒烟时间有利于氟离子的除去。用氢氟酸-硫酸分解试样,由于硫酸的沸点为338℃,故除去氟离子的效果优于高氯酸。
氢氟酸的化学性质决定了它强烈腐蚀所有的硅酸盐玻璃器皿及用具、通风橱的玻璃窗等。它对操作者的眼、手指、骨、牙齿、皮肤都有严重的危害。因此,操作应在通风良好的橱内进行,反应器皿通常用铂金或塑料制品,量杯、移液管均用塑料制,并且不得在这类量具中敞口存放氢氟酸过久。使用氢氟酸时应有必要的防护如戴塑料或乳胶手套、口罩、眼镜等,操作完毕,应尽快离开现场。
(三)硝酸分解试样
硝酸是强氧化剂。硝酸对硫化矿物和磷灰石有很强的分解能力。镍的硫化矿和砷化物、锑矿物、钼的氧化矿物和硫化矿物、钒矿石、铜矿石等均可用硝酸分解。硝酸溶液具有以下一些特点:
(1)硝酸具有很强的酸性和氧化性,但配位能力很弱。除金、铂族元素及易被钝化的金属外,绝大部分金属能被硝酸溶解。绝大多数的硫化物可以被硝酸溶解。几乎所有的硝酸盐都易溶于水。
(2)除铂、金和某些稀有金属外,硝酸几乎可溶解所有的金属试样,但铝、铁、铬等在硝酸中因溶解时形成氧化膜而钝化。
(3)锡、锑、钨等在硝酸中生成难溶性化合物:SnO2·xH2O(锡酸)、Sb2O5·nH2O(锑酸)、H2WO4(钨酸等)。
(4)几乎所有的硫化物及其矿石皆可溶于硝酸,但宜在低温下进行,否则将析出硫黄。
在岩矿分析中,单独使用硝酸分解试样的情况并不多见,通常是与盐酸或其他无机酸配合使用。硝酸-硫酸混合酸常用于分解砷矿石、锑矿石、汞矿石和辉钼矿。为了充分利用硝酸的强氧化性,扩大硝酸在分解试样中的应用,早在8世纪,人们就开始使用王水。王水是由1份硝酸和3份盐酸混合而成。除了极个别的金属不能溶解外,许多不能溶解在硝酸里的金属、合金、矿石等,都能在王水中迅速分(溶)解。对于不同的试样,也可采用逆王水即3份硝酸和l份盐酸的混合物进行分解。实际上,根据试样的情况,可以调节硝酸和盐酸的不同比例,配制出不同的混合酸以适应分解不同样品的要求。
硝酸除了与盐酸配成混合溶剂使用外,硝酸与氢氟酸的混合溶剂和硝酸-氢氟酸-高氯酸混合溶剂也常有使用。
在采用硝酸或硝酸与其他酸的混合溶剂分解试样时,要特别注意器皿的匹配和反应条件的控制。
(四)硫酸分解试样
硫酸属于高沸点(338℃)无机酸。热的浓硫酸有氧化作用,可用于分解多种砷、锑、锡的硫化矿物和砷锑矿,还可用于分解方钴矿-斜方砷钴矿族的钴、镍砷化物,以及辉砷钴矿、辉砷镍矿、毒砂、斜方砷铁矿、淡红银矿、砷黝铜矿等硫、砷矿物。硫酸也是硒、碲矿物的良好溶剂,若在水浴上溶样,硒不挥发;如果加热至冒硫酸烟,硒的损失可达75%。硫酸溶液具有以下一些特点:
(1)稀硫酸不具备氧化性,而热的浓硫酸具有很强的氧化性和脱水性。稀硫酸常用来溶解氧化物、氢氧化物、碳酸盐、硫化物及砷化物矿石,但不能溶解含钙试样。
(2)热的浓硫酸可以分解金属及合金,如锑、氧化砷、锡、铅的合金等;另外几乎所有的有机物都能被其氧化。
(3)硫酸及碱金属硫酸盐的混合物用于分解含铁、铌、钽和稀土元素的矿物相当有效。硫酸-硫酸钾常用于稀土元素的磷酸盐矿物(如独居石、磷钇矿等)的分解。硫酸-硫酸铵可很好地分解钨精矿。
(4)硫酸的沸点(338℃)很高,可以蒸发至冒白烟,使低沸点酸(如HCl、HNO3、HF等)挥发除去,以消除低沸点酸对阴离子测定的干扰。
(五)磷酸分解试样
(1)磷酸分解试样时,温度不宜太高,时间不宜太长。单独使用磷酸溶解时,一般应控制在500~600℃、5min以内。若温度过高、时间过长,会析出焦磷酸盐难溶物、生成聚硅磷酸黏结于器皿底部,同时也腐蚀了玻璃。
(2)磷酸根具有很强的配位能力。磷酸根具有很强的配位能力,因此,几乎90% 的矿石都能溶于磷酸。包括许多其他酸不溶的铬铁矿、钛铁矿、铌铁矿、金红石等。对于含有高碳、高铬、高钨的合金也能很好的溶解。磷酸可用来分解许多硅酸盐矿物、多数硫化物矿物、天然的稀土元素磷酸盐、四价铀和六价铀的混合氧化物。磷酸最重要的分析应用是测定铬铁矿、铁氧体和各种不溶于氢氟酸的硅酸盐中的二价铁。
(3)用于单项测定,而不用于系统分析。尽管磷酸有很强的分解能力,但通常仅用于一些单项测定,而不用于系统分析。磷酸与许多金属,甚至在较强的酸性溶液中,亦能形成难溶的盐,给分析带来许多不便。
(六)高氯酸分解试样
高氯酸(HClO4)是性能优良的无机酸。作为地质试样的溶剂,它具有盐酸、硝酸和硫酸的优点。高氯酸是强酸,是强氧化剂和脱水剂,又是高沸点无机酸,除了钾、铷、铯的高氯酸盐溶解度较小外,其他的高氯酸盐均溶于水。因此,在岩石矿物的分解中它应用相当广泛。
(1)稀高氯酸没有氧化性,仅具有强酸性质;浓高氯酸在常温时无氧化性,但在加热时却具有很强的氧化性和脱水能力。热的浓高氯酸几乎能与所有金属反应,生成的高氯酸盐大多数都溶于水。分解钢或其他合金试样时,能将金属氧化为最高的氧化态(如把铬氧化为
(2)高氯酸与氢氟酸联合使用或再加上盐酸、硝酸等组成的混合酸,普遍用于多种岩石、矿物的分解;混合酸中如果盐酸和硝酸同时存在,不能在铂坩埚中溶样。试样分解后只需将高氯酸烟冒尽,很容易转换成其他溶液介质,也可以制成稀的高氯酸溶液。
(3)高氯酸对铬铁矿的分解能力十分出众。在将铬氧化为高价后用盐酸或氯化钠将铬以氯化铬酰形式除去,至今仍是铬铁矿的有效分解方法。高氯酸不能用于辉锑矿及锑的其他硫化矿物的分解。
(4)使用高氯酸应十分注意安全。高氯酸是一种透明的液体,把它放在空气中,会强烈发烟,具有极强腐蚀性。它的氧化能力惊人。热浓高氯酸在分解有机物或遇到无机还原剂如次亚磷酸、三价锑等会因反应剧烈而引起爆炸,因此使用高氯酸分解含有机物的试样时应加入一定量的硝酸,并在氧化过程中不断补加硝酸。高氯酸受热易分解,温度超过90℃,也会发生爆炸。皮肤上若溅起高氯酸,会引起灼伤,故而制取和使用高氯酸要特别小心。
(七)混合酸分解试样
混合酸常能起到取长补短的作用,有时还会得到新的、更强的溶解能力。
(1)王水:王水较硝酸有更强的分解能力,一些难溶的硫化矿如硫化汞等均能被氧化成硫酸盐。
王水:硝酸与盐酸按1∶3(体积比)混合。由于硝酸的氧化性和盐酸的配位性,使其具有更好的溶解能力。能溶解铅、铂、金、钼、钨等金属和铋、镍、铜、镓、铟、铀、钒等合金,也常用于溶解铁、钴、镍、铋、铜、锅、锑、汞、砷、钼等的硫化物和硒、锑等矿石。
逆王水:硝酸与盐酸按3∶1(体积比)混合。可分解银、汞、钼等金属及铁、锰、锗的硫化物。浓盐酸、浓硝酸、浓硫酸的混合物,称为硫王水,可溶解含硅量较大的矿石和铝合金。
(2)氢氟酸-硝酸:可分解硅铁、硅酸盐及含钨、铌、钛等试样。
(3)磷酸-硝酸:可分解铜和锌的硫化物和氧化物。
(4)磷酸-硫酸:可分解许多氧化矿物,如铁矿石和一些对其他无机酸稳定的硅酸盐。
(5)高氯酸-硫酸:适于分解铬尖石等很稳定的矿物。
(6)高氯酸-盐酸-硫酸:可分解铁矿、镍矿、锰矿石。
二、熔融分解试样
用酸或其他熔剂不能分解完全的试样,可用熔融的方法分解。熔融法是将试样与酸性或碱性熔剂混合,利用高温下试样与熔剂发生的多相反应,使试样组分转化为易溶于水或酸的化合物。该法是一种高效的分解方法。但要注意,熔融时,需加入大量的熔剂(一般为试样的6~12 倍)会引入干扰。另外,熔融时,由于坩埚材料的腐蚀,也会混入其他组分。根据所用熔剂的性质和操作条件,可将熔融法分为酸熔法、碱熔法和半熔法。
(一)酸熔法
酸熔法适用于碱性试样的分解,常用的熔剂有 K2S2O7、KHSO4、KHF2、B2O3等。KHSO4加热脱水后生成K2S2O7,二者的作用是一样的。在300℃以上时,K2S2O7中部分SO3可与碱性或中性氧化物(如TiO2、Al2O3、Cr2O3、Fe3O4、ZrO2等)作用,生成可溶性硫酸盐。常用于分解铝、铁、钛、铬、锆、铌等金属氧化物及硅酸盐、煤灰、炉渣和中性或碱性耐火材料等。KHF2在铂坩埚中低温熔融可分解硅酸盐、钍和稀土化合物等。B2O3在铂坩埚中于580℃熔融,可分解硅酸盐及其他许多金属氧化物。
(二)碱熔法
碱熔法用于酸性试样的分解。常用的熔剂有碳酸钠、碳酸钾、氢氧化钠、氢氧化钾、过氧化钠和它们的混合物等。
1.碳酸钠(熔点850℃)和碳酸钾(熔点890℃)
早在18世纪,无水碳酸钠就已开始用于硅酸盐的分解,并逐渐建立了硅酸盐岩石的经典分析方法。直至今天,无水碳酸钠在硅酸盐岩石试样的分解中仍然被广泛使用。在1000℃左右的高温炉中用无水碳酸钠熔融分解试样常在铂坩埚中进行。这种分解方法的缺点是熔块提取较为困难。对于铁含量很高的试样,如铁矿石或含重金属的试样不能在铂坩埚中直接用该法熔融,否则会损坏铂坩埚。正确的做法是:先用盐酸或王水在烧杯中溶解试样,过滤后残渣经洗涤后再用碳酸钠熔融。碳酸钠作为硅酸盐岩石的熔剂是有效的,它也用于重晶石和铍矿物,如硅铍石、日光榴石、绿闪石、海蓝宝石等的分解。在金属矿石分析中,往往是经酸处理后的残渣用碳酸钠熔融分解造岩矿物。
碳酸钠与碳酸钾按1∶1形成的混合物,其熔点为700℃左右,用于分解硅酸盐、硫酸盐等。分解硫、砷、铬的矿样时,用碳酸钠加入少量的硝酸或氯酸钾,在900℃时熔融,可利用空气中的氧将其氧化为
碳酸钠+硫(Na2CO3+S)用来分解含砷、锑、锡的矿石,可使其转化为可溶性的硫代酸盐。由于含硫的混合熔剂会腐蚀铂,故常在瓷坩埚中进行。
2.氢氧化钠(熔点321℃)和氢氧化钾(熔点404℃)
二者都是低熔点的强碱性熔剂,常用于分解铝土矿、硅酸盐等试样。可在铁、银或镍坩埚中进行分解。用碳酸钠作熔剂时,加入少量氢氧化钠,可提高其分解能力并降低熔点。
3.过氧化钠
过氧化钠(Na2O2)是一种具有强氧化性、强腐蚀性的碱性熔剂,其分解能力居各类熔剂之首,能分解许多难溶物,如铬铁矿、硅铁矿、黑钨矿、辉钼矿、绿柱石、独居石等。能将其大部分元素氧化成高价态。有时将过氧化钠与碳酸钠混合使用,以减缓其氧化的剧烈程度。用过氧化钠作熔剂时,不宜与有机物混合,以免发生爆炸。过氧化钠对坩埚腐蚀严重,一般用铁、镍或刚玉坩埚。过氧化钠作为熔剂的缺点是不够纯净,常含有钙等杂质。
4.氢氧化钠+过氧化钠或氢氧化钾+过氧化钠
常用于分解一些难溶性的酸性物质。
(三)半熔法
半熔法又称烧结法。该法是在低于熔点的温度下,将试样与熔剂混合加热至熔解。由于温度比较低,不易损坏坩埚而引入杂质,但加热所需时间较长。例如800℃时,用碳酸钠+氧化锌(Na2CO3+ZnO)分解矿石或煤;用氧化镁+碳酸钠(MgO+Na2CO3)分解矿石、煤或土壤等。
一般情况下,优先选用简便、快速、不易引入干扰的溶解法分解样品。熔融法分解样品时,操作费时费事,且易引入坩埚杂质,所以熔融时,应根据试样的性质及操作条件,选择合适的坩埚,尽量避免引入干扰。
(四)选择熔剂的基本原则
一般说来,酸性试样采用碱性熔剂,碱性试样用酸性熔剂,氧化性试样采用还原性熔剂,还原性试样采用氧化性熔剂,但也有例外。
三、干式灰化法
常用于分解有机试样或生物试样。在一定温度下,于马弗炉内加热,使试样分解、灰化,然后用适当的溶剂将剩余的残渣溶解。根据待测物质挥发性的差异,选择合适的灰化温度,以免造成分析误差。
除以上几种常用分解方法外,还有在密封容器中进行加热,使试样和溶剂在高温、高压下快速反应而分解的压力溶样法;还有目前已被人们普遍接受、特点较为明显的微波溶样法,即利用微波能,将试样、溶剂置于密封的、耐压、耐高温的聚四氟乙烯容器中进行微波加热溶样。该法可大大简化操作步骤,节省时间和能源,且不易引入干扰,同时也减少了对环境的污染,原本需数小时处理分解的样品,只需几分钟即可顺利完成。
四、在分解试样的过程中应遵循的原则
(1)试样分解必须完全。这是分析测试工作的首要条件,应根据试样的性质,选择适当的溶(熔)剂、合理的溶(熔)解方法和操作条件(分解温度、分解时间),并力求在较短的时间内将试样分解完全。
(2)防止待测组分的损失。分解试样往往需要加热,有些甚至蒸至近干。这些操作往往会发生暴沸或溅跳现象,使待测组分损失。此外加入不恰当的溶剂也会引起组分的损失。例如在测定钢铁中磷的含量时,不能采用盐酸或硫酸作溶剂,因为部分的磷会生成PH3逸出,使被测组分磷损失。
(3)不能引入与被测组分相同的物质。在分解试样过程中,必须注意不能选用含有与被测组分相同的试剂和器皿。例如测定的组分是磷,则所用试剂不能含有磷;测定硅酸盐试样,不能选用瓷坩埚(本身为硅酸盐材质)作为器皿溶样,因在试样分解过程中,瓷坩埚可能被腐蚀和溶出与被测组分相同的硅酸盐等物质。
(4)防止引入对待测组分测定引起干扰的物质。这主要是要注意所使用的试剂、器皿可能产生的化学反应而干扰待测组分的测定。
(5)选择的试样分解方法应与组分的测定方法相适应。例如,采用重量分析法和滴定分析法(K2SiF6法)测定二氧化硅时,两者的试样分解方法就不同。前者可用碳酸钠或氢氧化钠分解试样;而后者不能采用碳酸钠或氢氧化钠为熔剂,必须用碳酸钾熔融。
(6)根据溶(熔)剂的性质,选择合适的器皿(如坩埚、容器等)。因为有些溶(熔)剂会腐蚀某些材质制造的器皿,所以必须注意溶(熔)剂与器皿间的匹配。
技能训练
实战训练
1.实训前将同学分成5个小组,分别接受铁矿石、钴矿石、钨矿石、稀土、金矿石试样分解任务。
2.同学们以小组为单位,实训前按照任务单要求查找相关试样分解方法,提出书面试样分解方案。
3.试样分解方案通过指导老师检查后,老师示范分解操作,同学们以小组为单位完成试样分解。
Ⅵ 简述分析检验样品采集的一般原则及样品分解的一般方法有哪些
样品处理是整个分析测试过程中的一个重要环节,其目的是利用各种化学方法将待测元素从固(液)态试样中定量地以离子形式转入测试溶液.选择合理的样品分解方法,可使分析手续大大简化,使分析方法的适应性、准确性大大提高.
Ⅶ 目前常用的分析测试技术
本次研究过程中所涉及的PGE分析测试主要是利用锍试金富集-碲共沉淀-电感耦合等离子体质谱法(ICP-MS)来完成的。详细的分析流程可见有关参考文献,现简述如下:
取样10g于玻璃三角瓶中,加入适量的Na2B4O7·10H2O、Na2CO3、SiO2、羰基镍粉、单质硫及面粉等混合熔剂,充分摇动混匀后,转入粘土坩埚中,准确加入适量饿稀释剂后再覆盖少量熔剂。而后将粘土坩埚放入已升温至1100℃的马弗炉中熔融1.5h。取出坩埚,将熔融体注入铁模,冷却后取出锍镍扣。将其粉碎后转入烧杯中,加入60m L浓HCl,加热溶解至溶液变清且不再冒细泡为止。加入碲共沉淀剂1m L(0.5mg)、Sn Cl2溶液1m L,加热0.5h并放置数小时使沉淀凝聚。然后用0.45µm滤膜负压抽滤,2mol/L HCl洗沉淀数次。将沉淀和滤膜一同转入Teflon封闭溶样器,加入1m L王水,封闭,于约100℃溶解2~3h,冷却后转入10m L比色管中,用蒸馏水定容待ICP-MS测量。
这种分析方法主要特点是取样量大,可有效地降低“块金效应”的影响,一次熔样可同时测定Os、Ir、Pt、Ru、Rh、Pd等6个铂族元素,同时ICP-MS也具有多元素分析与灵敏度高检出限低的特点,因此,近年来越来越多的实验室采用这种分析方法作为PGE分析的常规方法。这种方法的关键首先在于要有合适的试金配料,这样才能得到良好的锍试金扣,其次在于样品粉碎、酸溶解、碲共沉淀、过滤等化学流程的操作,最后是ICP-MS仪器的测量。就一般岩石样品而言,在取样量为10g的条件下,试金配料为:Na2B4O7·10H2O、Na2CO3、SiO2、羰基镍粉、单质硫及面粉分别取20g、15g、2g、1.5g、1.2g和1g。此时,试金扣一般为2g左右。从每批分析的样品所带的标准物质橄榄岩GBW07290(GPT-3)和辉石橄榄岩GBW07291(GPT-4)的结果来看,结果比较稳定并且与推荐值吻合较好(表1-7)。但是,对于矿化的尤其是矿化严重的样品,按此试金配料得到的结果就不理想。表1-8为矿化较严重的样品,在取样量不同的条件下,所得到的平行样结果。从分析结果看,如果取样量为10g,得到的试金扣往往较大且金属光泽性不好,在盐酸溶解的过程中,或者有单质硫析出,或者有大量的酸不溶物产生,造成的直接影响是要么对PGE产生吸附作用,使得分析结果偏低,要么酸不溶物的存在可能会对质谱测量产生干扰,使得某些元素的结果又偏高。如果降低取样量为1g,调整试金配料,尽管能得到较好的试金扣,但是否能有效地降低“块金效应”的影响?因此,对于矿化的尤其是矿化严重的样品,分析结果很难加以评价。必须从分析方法本身,从矿化样品的试金配料、质谱干扰等方面进行进一步的研究,以期得到准确稳定的分析结果。
表1-7 标准物质统计结果(wB/ng·g-1)
表1-8 矿化样品的平行样结果
Ⅷ 进行wbs分解,可以采用以下哪些分析方法
WBS:工作分解结构(Work Breakdown Structure) 创建WBS:创建WBS是把项目可交付成果和项目工作分解成较小的,更易于管理的组成部分的过程.