导航:首页 > 研究方法 > 分子蒸馏研究方法

分子蒸馏研究方法

发布时间:2022-08-30 08:37:39

❶ 甘油二酯到底是什么

1、什么是甘油二酯?

甘油二酯(Diacylglycerol, DG),是一类甘油三酯(Triacylglycerol, TG)中一个脂肪酸被羟基取代的结构脂质。

DG是天然植物油脂的微量成分及体内脂肪代谢的内源中间产物,它是公认安全(GRAS)的食品成分。科学研究发现,膳食DG具有减少内脏脂肪、抑制体重增加、降低血脂等作用,因而受到广泛的关注。

❷ 北京化工大学什么时候开始对分子蒸馏技术研究的

这个我知道二十世纪九十年代初,北京化工大学开始了对分子蒸馏技术的研究,先后建立了实验研究基地、中试基地。其研究重点围绕三个方面:一是分子蒸馏机理研究;二是设备结构及装置系统性能研究;三是工业化应用研究。到目前为止,已开发新产品50余种,并已先后完成了利用分子蒸馏技术精制鱼油、天然维生素E、α-亚麻酸、二聚脂肪酸、异氰酸酯加成物、辣椒红色素、角鲨烯等多个产品的工业化生产,建成了分子蒸馏生产装置30余套,遍及全国15个省市。所有生产的产品均为填补国内空白,许多产品达到国际先进水平。

❸ 卵磷脂型DHA的新发现

(一)卵磷脂型DHA的来源
卵磷脂型DHA只存在于蛋黄中,因此只能来源于蛋黄。而鱼油DHA、藻油DHA不是甲酯型,就是乙酯型或甘油三酯型。
(二)卵磷脂型DHA的分子结构
卵磷脂Lecithin是一类含磷脂类物质,最早由Uauquelin于1812年从人脑中发现, Golbley于1844年从蛋黄中分离出卵磷脂(也称为蛋黄素),并于1850年按照希腊文lekithos(蛋黄)命名为Lecithos。广义的卵磷脂是各种磷脂的总称,包括磷脂酰胆碱(Phosphatidylcholine,PC)、磷脂酰乙醇胺(Phosphatidythanolamine,PE)、神经鞘磷脂(Sphingomyelin,SM)、肌醇磷脂(Phosphatidylinositol,PI)、溶血磷脂酰胆碱(Lysophosphatidylcholine,LPC))磷脂酰丝氨酸(Phosphatidyserine,PS)等,狭义的卵磷脂是指磷脂酰胆碱(PC)。
科学家经过长期研究发现,鸡蛋黄中卵磷脂主要为磷脂酰胆碱(70%~75%)和磷脂酰乙醇胺(15%~20%),当卵磷脂成分中的R1,R2为DHA时即形成了卵磷脂型DHA。磷脂酰胆碱和磷脂酰乙醇胺的结构式(R1,R2代表脂肪酸)如下:


(三)新一代卵磷脂型DHA具备的特点
1、纯天然
市售的甲酯型和乙酯型DHA是通过分子蒸馏等方法把鱼油或海藻中的DHA水解下来分离纯化得到的,而蛋黄中含有的卵磷脂型DHA是鸡吃了含有DHA或α-亚麻酸的饲料,在鸡体内经过一系列消化吸收等生理反应自然形成的,具有纯天然特性。至于鸡为什么会在体内转化、吸收并特异性的积累形成卵磷脂型DHA还需要科学界进一步探索研究。
2、更容易被人体吸收
DHA存在形态不同,被人体吸收利用的效率差异很大。乙酯型DHA在人体内是以被动扩散的方式被吸收,吸收率仅为20%左右;甘油三酯型吸收率远高于乙酯型,也只有50%左右。因为卵磷脂可促进脂肪酸代谢,因此蛋黄卵磷脂型DHA在人体内吸收方式为主动吸收,吸收率接近100%。
3、安全性高
众所周知,蛋黄因为其营养丰富及安全性高是婴幼儿添加辅食的第一选择。蛋鸡是“生物筛”,鸡蛋形成过程中的屏蔽效能可将对婴幼儿健康产生不利影响物质阻挡在鸡蛋之外,因此蛋黄卵磷脂型DHA既不含对人体有升高胆固醇和破坏血管内膜作用的豆蔻酸、月桂酸等;也不存在被重金属污染而超标问题,产品更安全,妈妈和宝宝的健康更有保障。
同时,从人体对各种DHA的消化吸收过程来看,甲酯型DHA在人体内分解为甲醇和DHA;乙酯型DHA分解为乙醇和DHA;卵磷脂型DHA分解为卵磷脂和DHA。甲醇具有毒性,乙醇对胚胎和婴幼儿具有刺激性,而磷脂是很好的乳化剂,能促进乳糜微粒的形成,有助于提高乳糜的稳定性和运输脂肪酸的能力。因此可以促进DHA的运输能力,进而提高吸收率。磷脂的乳化能力具有与胆汁的协同作用,具有节约胆汁的作用,对于肝胆发育尚未完全的婴幼儿具有更大价值。
4、营养丰富
蛋黄中卵磷脂型DHA属于动物胚胎磷脂,除了卵磷脂和DHA外,还富含人体所必须的其他营养素:蛋白质和多种矿物质(钙、铁、锌、硒、钾、镁等)和多种维生素(如维生素A、维生素E、维生素B2、B12,还含有丰富的长链不饱和脂肪酸—油酸、亚油酸以及多种氨基酸,打破了单纯补充DHA的模式,实现了生命所需营养的全方位补充,能对孕产妇和婴幼儿进行全面营养补充。
5、稳定性好
卵磷脂和DHA紧密结合在一起, 相比游离DHA更稳定,不易被氧化,保质期更长。
6、降低血液中胆固醇浓度,防止胆结石
体内过多的胆固醇会发生沉淀,从而形成胆结石,蛋黄卵磷脂型DHA中的卵磷脂可将胆固醇乳化为极细的颗粒,这种微细的乳化胆固醇颗粒可透过血管壁被组织利用,故具有降低血液中的胆固醇浓度及防止胆结石的作用。
7、产品气味、滋味好
新一代蛋黄卵磷脂型DHA气味芬芳,有淡淡的蛋香味,作为辅食添加在牛奶、面条、粥等主食里,使主食的滋味、气味更好,能够增加食欲;即使直接用温水冲服,也很容易被孕妇和婴幼儿接受和喜爱。
附:
卵磷脂型DHA与普通乙酯型DHA对比表 项 目 蛋黄DHA 普通DHA制品 来源 蛋黄 鱼油、海藻油 DHA类型 卵磷脂型 乙酯型 生产工艺 生物技术 分子蒸馏等方法 产品形态 粉末 油状 溶剂残留 无 有 豆蔻酸,月桂酸等 无 有(藻油) 消化吸收方式 主动吸收 被动吸收 DHA消化吸收率 ≥99% 21% 人体消化产生的物质 卵磷脂+DHA 乙醇+DHA 稳定性 稳定,不易氧化 不稳定,易氧化 口感及风味 蛋香味,无腥味 腥味重 适宜人群 孕产妇,婴幼儿 老年人,心脑血管病患者 主要营养成分对比 DHA含量(例) 100mg/袋 100mg/粒 卵磷脂(PC) 丰富 无 蛋白质 丰富 无 多种维生素(维生素A、维生素E、维生素B2、B12等) 富含 少量或无 多种矿物质(钙、铁、锌、硒、钾、镁等) 富含 无 油酸(长链不饱和脂肪酸) 丰富 无 亚油酸(长链不饱和脂肪酸) 富含 无 多种氨基酸 丰富 无 (四)卵磷脂型DHA的研究进展
卵磷脂型DHA只存在于蛋黄中,但由于含量极低,吃普通鸡蛋无法起到补充卵磷脂型DHA的作用。中国农业大学的科学家发明创新的复合植物提取物促进技术,采用纯植物提取物,根据生物富集和转化过程中各个阶段的特点,经过反复试验,把纯植物提取物进行科学配比,再与饲料充分发酵融合,充分释放了纯植物提取物的活性,使其在生物富集、转化过程的各个阶段发挥了强有力地促进作用,大大提高了富集率和转化率,为人们提供更多更好更优质的卵磷脂型DHA创造了条件。
卵磷脂+DHA是1+1>2
卵磷脂存在于人体所有的器官和细胞中,是构成细胞膜的主要成分,占细胞膜干重的70—80%,并集中存在脑及神经系统,磷脂酰胆碱因此被称为“细胞膜的建筑砖”。卵磷脂肩负着细胞的营养代谢、能量代谢、信息传递等功能,是生命和健康的必需物质,被誉为与蛋白质、维生素并列的“第三营养素”。
牛奶、动物的脑、骨髓以及大豆和鸡蛋等食物中都含有卵磷脂,其中蛋黄卵磷脂是营养成分最完整,营养价值最高的。卵磷脂的质量差异取决于所含活性成分的含量,其中最主要的活性成分即磷脂酰胆碱和磷脂酰乙醇胺。
DHA是脑细胞增殖和大脑沟回形成所必须的重要构成成分的物质,但是仅有独立的脑神经细胞,大脑仍不能够正常思维,只有当各神经细胞间建立起信息传递的通道时,大脑才能具备思维的能力。信息传递的通道,就象一条条高速公路,高速公路的路面决定信息传递的速度,DHA促进了高速公路的延伸,保证高速公路四通八达;而高速公路的护栏,可确保信息传递的准确性,防止信息“上错路”,卵磷脂不但是高速公路路面的物质前体,同时也是护栏的重要组成部分。DHA和卵磷脂二者紧密合作才能保证信息安全高速准确地到达目的地,二者对大脑的作用相辅相成,密不可分。因此,同时补充卵磷脂和DHA能起到事半功倍的效果,使得1+1>2。
参考文献:
1、Beckermann B, Beneke M, Seitz I. (1990). Comparativebioavailability of eicosapentaenoic acid and docosahexaenoic acid fromtriglycerides, free fatty acids and ethyl esters in volunteers.Arzneimittelforschung; 40(6): 700-704.
2、Best CA, Laposata M. (2003). Fatty acid ethylesters: toxic non-oxidative metabolites of ethanol and markers of ethanolintake. Front Biosci; 8: 202-17.
3、Bondía-Martínez E,López-Sabater MC,Castellote-BargallóAI,Rodríguez-PalmeroM,González-CorbellaMJ,Rivero-Urgell M,Campoy-Folgoso C,Bayés-García R.(1998).
4、Fatty acid composition of plasma and erythrocytes interm infants fed human milk and formulae with and without docosahexaenoic andarachidonic acids from egg yolk lecithin.Early Hum Dev.; 53 Suppl:S109-19.
5、Carlier H., Bernard A, Caseli A. (1991). Digestionand absorption of polyunsaturated fatty acids. Reprod Nutr Dev; 31: 475-500.
6、Carlson SE,Ford AJ,Werkman SH,Peeples JM,Koo WW.(1996). Visual acuity and fatty acid status of term infants fed human milk andformulas with and without docosahexaenoate and arachidonate from egg yolklecithin.Pediatr Res; May;39(5):882-8.
7、DyerbergJ, Madsen P, Moller JM, Aardestrup I, Schmidt EB. (2010).Bioavailability of marine n-3 fatty acid formations. Prostaglandins Leutkot.Essent. Fatty Acids 83,137-141.
8、Fave G, Coste TC and Armand M. (2004).Physicochemical properties of lipids: New strategies to manage fatty acid bioavailability.Cellular and Molecular Biology TM 50 (7), 815-831.
9、Habber TS., Wilson JS, Minoti VA, Pirola RC. (1991).Fatty acid ethyl esters increase rat pancreatic lysosomal fragility. J. Lab.Clin. Med. 121:75-764.
10、HansenJB, Olsen JO, Wilsgård L, Lyngmo V, Svensson B. (1993). Comparativeeffects of prolonged intake of highly purified fish oils as ethyl ester ortriglyceride on lipids, homeostasis and platelet function in normolipaemic men. EurJ Clin Nutr;,47: 497-507.
11、Harris WS, Zucker ML, Dujovne CA. (1988). Omega-3fatty acids in hypertriglyceridemic patients: triglycerides vs methyl esters. AmJ Clin Nutr; 48: 992-997
12、Ikeda I, Sasaki E, Yasunami H, Nomiyama S, NakayamaM, Sugano M, Imaizumi K, Yazawa K. (1995). Digestion and lymphatic transport ofeicosapentaenoic and docosahexaenoic acids given in the form oftriacylglycerol, free acid and ethyl ester in rats. Biochim Biophys Acta; 1259:297-304.
13、Krokan HE, Bjerve KS, Mørk E. (1993). The enteral bioavailability ofeicosapentaenoic acid and docosahexaenoic acid is as good from ethyl esters asfrom glyceryl esters in spite of lower hydrolytic rates by pancreatic lipase invitro. Biochim Biophys Acta; 1168: 59-67.
14、Lambert MS, Botham KM, Mayes PA. (1997).Modification of the fatty acid composition of dietary oils and fats onincorporation into chylomicrons and chylomicron remnants. Br J Nutr.;76:435-45
15、Lange, L. G., and B. E. Sobel. (1983). Mitochondrial dysfunction inced by fatty acid ethyl esters, myocardialmetabolites of ethanol. J. CZin. Invest. 72: 724-731,1983.
16、Lawson LD, Hughes BG. (1988). Human absorption offish oil fatty acids as triacylglycerols, free acids, or ethyl esters. BiochemBiophys Res Commun, 52, 328-335.
17、MogelsonS, Pieper SJ, Lange LG. (1984). Thermodynamic bases for fatty acid ethyl ester synthase catalyzedesterification of free fatty acid with ethanol and accumulation of fatty acidethyl esters. Biochemistry. 1984 Aug 28;23(18):4082-7.
18、Neubronner J, Schuchardt JP, Kressel G, Merkel M,Schacky C and Hahn A. Enhanced increase of omega-3 index in response to longterm n-3 fatty acid supplementation from triacylglycerides versus ethyl esters.Eur. J. of Clin. Nutr.(2010),1-8.
19、NordøyA, Barstad L, Connor WE, Hatcher L. (1991). Absorption of the n-3eicosapentaenoic and docosahexaenoic acids as ethyl esters and triglycerides byhumans. Am J Clin Nutr 53:1185-90.
20、Saghir M, Werner J, Laposata M. (1997). Rapid invivo hydrolysis of fatty acid ethyl esters, toxic nonoxidative ethanolmetabolites. Am J Physiol.;273:G184-90.
21、Song JH, Inoue Y, Miyazawa T. (1997). Oxidativestability of docosahexaenoic acid-containing oils in the form of phospholipids,triacylglycerols, and ethyl esters. Biosci Biotechnol Biochem. 61(12):2085-8
22、Szczepiorkowski, Z. RI., G. R. Dickersin, and M.Laposata. (1995)Fatty acid ethyl esters decrease human hepatoblastoma cellproliferation and protein synthesis. GastroenteroZogy 108: 515- 522.
23、Visioli F, Rise P, Barassi MC, Marangoni F, Galli C.(2003). Dietary intake of fish vs. formulations leads to higher plasmaconcentrations of n-3 fatty acids. Lipids; 38: 415-418.
24、Valenzuela A, Valenzuela V, Sanhueza J, Nieto S.(2005). Effect of supplementation with docosahexaenoic acid ethyl ester andsn-2 docosahexaenyl monoacylglyceride on plasma and erythrocyte fatty acids inrats. Ann Nutr Metab; 49: 49-53.
25、Werner J, Laposata M, Fernandez-del Castillo C,Saghir M, Iozzo RV, Lewandrowski KB, Warshaw AL. (1997). Pancreatic injury in rats inced by fatty acid ethyl ester, a nonoxidativemetabolite of alcohol. Gastroenterology;113: 286–94.
26、Yang LY, Kuksis A, Myher JJ. (1990). Lipolysis ofmenhaden oil triacylglycerols and the corresponding fatty acid alkyl esters bypancreatic lipase in vitro: a reexamination. J Lipid Res. 31(1):137-47.
27、Yang LY, Kukis A, Myher JJ. (1990). Intestinalabsorption of menhaden and rapeseed and their fatty acid methyl and ethylesters in the rat. Biochem Cell Biol.;68:480-91
28、曹万新,孟橘,田玉霞。DHA的生理功能及应用研究进展,中国油脂,2011,36(3)
29、常皓,王二雷,宫新统,刘静波。蛋黄卵磷脂研究概况,食品工业科技,2010,5
30、丁慧萍,李艳红,丁倩,张福东,王涛,王俐,蔡美琴。藻油及鱼油二十二碳六烯酸复方制剂对儿童记忆功能的影响,中华临床营养杂志,2011,19(2)
31、傅利军,赵蔚蔚。蛋黄来源卵磷脂的应用及进展,食品安全导刊。2011,12
32、宫新统,林松毅,刘静波,李丹,黄金枝。HPLC在高纯度蛋黄卵磷脂提取技术中的应用研究。食品科学,2008,12
33、古绍彬,虞龙,向砥,于洋,余增亮。利用海洋微藻生产DHA和EPA的研究现状及前景。中国水产科学,2001,8(3)
34、郝颖,汪之和。EPA、DHA的营养功能及其产品安全性分析。现代食品科技,2006,22(3)
36、李扬。高纯度蛋黄卵磷脂制备工艺的研究。吉林大学,2007
梁井瑞,胡耀池,陈园力,蒋露,张红漫。分子蒸馏法纯化DHA藻油。中国油脂,2012,37(6)
37、刘伟民,马海乐,李国文。鱼油生理活性物质EPA和DHA分离进展。食品科学,2002, 23(10)
38、刘艳,丰利芳,唐庆,徐三清,罗小平。孕期补充DHA对脂多糖所致宫内感染仔鼠脑组织TLR4表达的影响。华中科技大学学报(医学版),2011,40(4)
39、孟丽萍,张坚,赵文华。母亲DHA摄入与胎儿、婴儿DHA营养状况及发育的关系。卫生研究,2005,34(2)
40、彭云,李汴生,林应胜,黄巍峰,张影霞。微藻DHA在蛋糕中的应用。现代食品科技,2012,28(2)
41、任国谱,黄兴旺,岳红,肖莲荣,申衍豪。婴幼儿配方奶粉中二十二碳六烯酸(DHA)的氧化稳定性研究。中国乳品工业,2011,39(1)
42、阮征,吴谋成,胡筱波,薛照辉。多不饱和脂肪酸的研究进展。中国油脂,2003,28(2)
43、谭利伟,麻丽坤,赵进,尹兆正。蛋黄卵磷脂的应用研究进展。中国家禽,2005,21
44、田冰,刘亚军,刘继明。高效快速提取蛋黄卵磷脂的新方法。食品科技,2000,2
45、王卫飞,马永钧,范海星,王永华,杨博。酶法合成富含DHA、EPA甘油三酯的研究。中国油脂,2011,36(2)
46、吴克刚,孟宏昌。婴幼儿配方奶粉强化DHA和AA的研究。中国乳品工业,2004,32(2)
47、张娟梅,柯崇榕,黄建忠。DHA单细胞油脂的萃取与浓缩。中国油脂,2008,33(10)
48、丁宗一,杜丽蓉。不同喂养方法对婴幼儿生长速率影响的研究。中华儿科杂志,2002,40(11)
49、张义明。DHA的来源及合理应用。食品工业科技,2003,24(8)
50、周远扬,雷百战,潘艺。鱼油EPA与DHA提取方法研究进展。广东农业科学,2009,(12)
51、周冉,王飞,常明,岳红坤,史兰香,刘司婕。从微藻中提取分离EPA和DHA的方法。安徽农业科学,2012,40(14)
52、朱路英,张学成,宋晓金,况成宏,孙远征。n-3多不饱和脂肪酸DHA、EPA研究进展。海洋科学,2007,31(11)

如何提炼纯辣椒素

你在网上时找不到这篇文章的。给你分享分享吧 1、从干红辣椒中提取辣椒红素 对有机溶剂提取、非连续酶法提取和连续酶法提取辣椒红素进行了研究,并对这三种提取方法的提取条件分别进行了优化。将这三种提取方法分别在最优提取条件下进行比较发现:丙酮提取法所得辣椒红素色价最高,而非连续酶法提取所得辣椒红素色价居中,但是其副产物-辣椒碱的含量比丙酮提取法提高了 30%,连续酶法提取所得辣椒红素所含杂质较多色价较低,辣椒碱含量也不高。因此,本实验采用丙酮提取法提取辣椒红素。提取所得的辣椒红素采用硅胶柱层析分离出辣 2、红辣椒色素的提取分离及光稳定性 红辣椒粉中的色素和辣椒碱类化合物的测定方法;确定了有机溶剂法提取和初步精制辣椒油树脂的工艺;分别以辣椒粉和辣椒油树脂为原料,采用超临界二氧化碳萃取分离技术和分子蒸馏技术分离辣椒色素和辣椒碱类化合 物;由硅胶柱层析分离得到黄色素,并与混合辣 3、红辣椒中辣椒素的提取纯化及其检测方法 以干红辣椒皮粉为原料,采用索氏提取法制备辣椒树脂,结果表明:从提取效率和经济成本这两方面来考虑,提取的最佳条件为:提取溶剂95%乙醇,原料粒度40^60目,料液比1:4 g/mL,提取时间4h,经索氏提取后的溶液经浓缩可得到辣椒素总含量为1.25%辣椒树脂。 采用了水蒸气蒸馏法、硅胶柱层析法、减压升华法纯化辣椒素,结果表明:减压升华法为最佳纯化方法。以辣椒树脂为原料,在110℃下减压升华8h左右,然后用丙酮洗下弯管及冷凝管上沾附的辣椒素,过滤后去除溶剂,用4、辣椒红色素超临界流体技术提取和应用 以干红辣椒为原料,采用溶剂法和超临界法结合提取辣椒红色素等产品的系统研究。首先要以干椒为原料制备粗产品,浸取溶剂、辣椒皮粉细度、固液比和浸取时间等工艺参数的影响,在此基础上确定出采用传统溶剂法制取辣椒树脂中间产品的最佳工艺条件:然后以辣椒树脂为原料,进行了超临界预实验、树脂超临界萃取正交实验、装料系数与萃取时间测定研究,确定出采用超临界COz萃取法提取辣椒红色素产品的最佳工艺条件。为使现有工艺与工业化接轨,提高现有色素产品的品质 5、辣椒碱提取工艺的优化设计 辣椒碱易溶于多种有机溶剂,选用九种有机溶剂进行比较,结果表明:从提取效率和经济成本这两方面来考虑,乙醇可作为提取辣椒碱的最佳浸提剂。其浸提的最佳条件是:原料粒度 80 目,浸提温度 75℃,料液比 1:5,提取时间 1h,提取次数 4~6 次,辣椒碱提取率可达(87+1)%,辣椒碱提取量0.876%,辣度为 131400。 超临界流体萃取技术作为一种新型化工分离技术,在食品加工领域有着广阔的应用前景。本文采用超临界 CO2流体萃取,其萃取的最佳条件是:萃取压力10 MPa6、辣椒素的提取工艺及分析方法 干红辣椒为原料制备辣椒树脂,并分别研究了浸取溶剂、辣椒皮粉细度、固液比、浸取时间和虹吸次数等工艺参数的影响,在此基础上确定出索氏浸取法制取辣椒树脂的最佳工艺条件;其次以辣椒树脂为原料,分别进行了萃取溶剂用量、萃取温度、时间、次数的单因素实验以及四因素三水平正交实验,确定出溶剂萃取法制备辣椒精的最佳工艺条件;最后以辣椒精为原料,分别进行了相转移预处理过程中pH值、树脂的静态筛选、洗脱剂、上柱流速、洗脱流速和结晶溶剂、温度等参数的选择 7、辣椒中红色素和辣椒素的分离与精制 确定了提取辣椒红素过程的有机溶剂种类和操作方式,根据结果研究了两种提取辣椒红素的方法:丙酮索 氏提取法和乙醇超声提取法。确定了各自的最佳条件,丙酮索氏提取的最优条件为:每5克辣椒粉用1 S OmL丙酮在65℃下提取4h;超声提取辣椒红素的最优条件为:在功率为200W下,取无水乙醇与辣椒粉的液固比为12:1,超声提取3 Omin。将这两种提取方法分别在最优提取条件下比较提取的色素收率和色价发现,超声提取过程仅需要 很短时间就能达到和索氏法相同的收率,因此采用 8、辣椒中辣椒素提取分离纯化工艺 建立了一种准确、快速分析测定辣椒素含量的反相高效液相色谱方法,对提取物中辣椒素与辣椒素类物质的色谱分离条件进行优化,确定流动相为甲醇一水(70:30 V/V),流速0.6mL/min,检测波长280nm,柱温控制在25 C;在保证良好线性关系的条件下,扩大了测定方法的线性范围;该方法具有较高的精密度和准确性,且分析周期短,适用于辣椒素含量的精确分析。同时,对分光 9、药用天然结晶辣椒碱的制造方法 10、辣椒油脂中辣椒色素的提取方法 11、辣椒色素和辣素的提取方法 12、天然辣椒色素的生产方法 13、由辣椒提取辣椒色素和辣素工艺方法 14、辣椒红色素的提取方法 15、从辣椒中提取红色素的方法 16、辣椒红色素的提取新方法 17、自红辣椒中提取辣椒红色素和辣椒素的新工艺 18、快速提取无味辣椒红色素的新方法 19、由干红辣椒提取辣椒碱的工艺方法 20、超临界二氧化碳萃取辣椒碱类化合物的生产方法 21、超临界二氧化碳精制脱臭辣椒红色素生产方法 22、一种含辣椒碱的农药杀虫剂 23、用辣椒油树脂生产晶体状辣椒碱类化合物的方法 24、辣椒红色素的制备方法 25、以辣椒素为原料制造高纯度辣椒碱的方法 26、皮肤用辣椒碱脂质体制剂 27、辣椒碱自抛光防污涂料及其制备方法 28、从干辣椒生产辣椒素晶体的方法 29、从残次辣椒中提取辣椒精的方法 30、汽液逆流淋漓提取辣椒红色素的方法 31、从辣椒中分离辣椒红素和辣椒碱的方法 32、以6号溶剂油提取天然辣椒红色素的工业生产方法 33、提高辣椒精质量的工业方法 34、一种苦参碱·辣椒碱杀虫剂 35、辣椒碱和辣椒红色素的分步法生产工艺 36、从辣椒中提取辣椒碱晶体的方法 37、分子蒸馏洗涤法生产天然辣椒碱晶体的工业方法 38、一种用离子交换树脂法生产高纯辣椒素晶体的方法 39、从红辣椒中提取分离辣椒碱和辣椒红色素的方法 40、辣椒红色素和辣椒精的生产工艺与方法 41、水溶性辣椒红色素的制备方法 42、一种水分散型辣椒红色素微囊及其制备方法 43、大孔吸咐树脂法富集与纯化辣椒碱的方法 44、分子蒸馏法富集与纯化辣椒碱的方法 45、一种天然辣椒红色素的提取纯化方法 46、一种辣椒碱杀虫剂 47、高辣度辣椒精的制备方法 48、天然辣椒碱的提取方法 49、辣椒碱杀虫剂的生产方法及其应用 50、辣椒素和色素的微波一次提取法 文献资料 51、辣椒碱的研究进展及应用 52、离子交换法制备辣椒碱类化合物 53、辣椒红素与辣椒碱的分离 54、萃取_结晶法制备高纯辣椒碱类化合物 55、辣椒碱主要组分的RP_HPLC法测定 56、辣椒精中辣椒碱的提取工艺 57、离子交换法制备高纯辣椒碱类化合物 58、辣椒碱类化合物及脱色辣椒精生产技术研究 59、由干红辣椒提取辣椒碱的工艺方法 60、辣椒红色素提取方法研究进展 61、辣椒素类物质制备方法的研究 62、反相高效液相色谱法制备纯辣椒素的研究 63、辣椒红色素提取方法研究 64、辣椒红色素的提取及稳定性的研究 65、柱层析法分离精制辣椒红色素 66、辣椒素的分析方法及辣度分级 67、辣椒中辣椒素与色素提取的优化研究 68、辣椒素的应用与提取 69、超临界CO_2萃取辣椒红色素工艺条件的探讨 70、超声提取辣椒红素的研究 71、超临界CO_2萃取辣椒红色素工艺条件的研究 72、辣椒红色素提取与检测方法的研究进展 73、正交试验法优选辣椒中辣椒素提取工艺的研究 74、超声强化提取辣椒素的研究 75、超临界二氧化碳精制辣椒红色素的研究 76、辣椒红色素提取技术的研究 77、红辣椒中辣椒红色素的提取工艺研究 78、辣椒红色素的提取工艺及稳定性研究 79、辣椒素的工业化提取工艺 80、辣椒素的制备工艺及分析方法 81、从干红辣椒中提取辣椒红色素的研究 82、辣椒红色素的分离提取技术 83、辣椒中红色素的提取工艺 84、辣椒辣素的提取分离技术研究 85、辣椒辣素的分离纯化及分析 86、超临界萃取技术在辣椒红色素中的应用 87、辣椒提取辣椒红色素新工艺 88、超临界二氧化碳萃取技术在辣椒红色素精制工艺 89、红辣椒中红色素的提取与性质研究 90、天然辣椒红色素提取精制工艺研究 91、辣椒红色素提取精制方法 92、辣椒深加工产品中辣素含量的测定 93、辣椒素的提取与纯化 94、辣椒中辣椒红素的简便分离方法 95、辣椒红色素制取和应用研究概述 96、辣椒辣素的提取与纯化方法研究 97、辣椒红色素提取的研究 98、用硅胶柱层析分离辣椒红色素 99、微波法萃取辣椒中辣椒素的研究 100、辣椒红色素晶体制备技术的研究 101、辣椒碱的生产和应用 102、辣椒中辣椒碱和辣椒红色素的提取及应用 103、高效液相色谱法测定辣椒碱 104、辣椒碱的制取纯化及应用研究 105、辣椒碱的研究概述 106、辣椒碱的提取检测及其在有害生物防治中的应用 107、类辣椒碱素纯化实验研究 108、辣椒碱的 (略啦)

麻烦采纳,谢谢!

❺ 蒸馏设备的设备

(molecular distillation equipment)
分子蒸馏亦称短程蒸馏.它是一项较新的尚未广泛应用于工业化生产的液-液分离技术.其应用能解决大量常规蒸馏技术所不能解决的问题.
分子蒸馏与常规蒸馏技术相比有以下特点:
1.普通蒸馏是在沸点温度下进行分离操作:而分子蒸馏只要冷热两个面之间达到足够的温度差.就可以在任何温度下进行分离.因而分子蒸馏操作温度远低于物料的沸点.
2.普通蒸馏有鼓泡.沸腾现象:而分子蒸馏是液膜表面的自由蒸发.操作压力很低.一般为0.1-1Pa数量级,受热时间很短.一般仅为十秒至几十秒.
3.普通蒸馏的蒸发和冷凝是可逆过程.液相和气相之间处于动态相平衡,而在分子蒸馏过程中.从加热面逸出的分子直接飞射到冷凝面上.理论上没有返回到加热面的可能性.所以分子蒸馏没有不易分离的物质.
一套完整的分子蒸馏设备主要包括:分子蒸发器、脱气系统、进料系统、加热系统、冷却真空系统和控制系统。分子蒸馏装置的核心部分是分子蒸发器,其种类主要有3种:(1)降膜式:为早期形式,结构简单,但由于液膜厚,效率差,当今世界各国很少采用;(2)刮膜式:形成的液膜薄,分离效率高,但较降膜式结构复杂;(3)离心式:离心力成膜,膜薄,蒸发效率高,但结构复杂,真空密封较难,设备的制造成本高。为提高分离效率,往往需要采用多级串联使用而实现不同物质的多级分离。
1.降膜式分子蒸馏器
该装置是采取重力使蒸发面上的物料变为液膜降下的方式。将物料加热,蒸发物就可在相对方向的冷凝面上凝缩。降膜式装置为早期形式,结构简单,在蒸发面上形成的液膜较厚,效率差,现在各国很少采用。
2.刮膜式分子蒸馏装置
我国在80年代末才开展刮膜式分子蒸馏装置和工艺应用研究。它采取重力使蒸发面上的物料变为液膜降下的方式,但为了使蒸发面上的液膜厚度小且分布均匀,在蒸馏器中设置了一硬碳或聚四氟乙烯制的转动刮板。该刮板不但可以使下流液层得到充分搅拌,还可以加快蒸发面液层的更新,从而强化了物料的传热和传质过程。其优点是:液膜厚度小,并且沿蒸发表面流动;被蒸馏物料在操作温度下停留时间短,热分解的危险性较小,蒸馏过程可以连续进行,生产能力大。缺点是:液体分配装置难以完善,很难保证所有的蒸发表面都被液膜均匀覆盖;液体流动时常发生翻滚现象,所产生的雾沫也常溅到冷凝面上。但由于该装置结构相对简单,价格相对低廉,现在的实验室及工业生产中,大部分都采用该装置。
3.离心式分子蒸馏装置
该装置将物料送到高速旋转的转盘中央,并在旋转面扩展形成薄膜,同时加热蒸发,使之与对面的冷凝面凝缩,该装置是目前较为理想的分子蒸馏装置。但与其它两种装置相比,要求有高速旋转的转盘,又需要较高的真空密封技术。离心式分子蒸馏器与刮膜式分子蒸馏器相比具有以下优点:由于转盘高速旋转,可得到极薄的液膜且液膜分布更均匀,蒸发速率和分离效率更好;物料在蒸发面上的受热时间更短,降低了热敏物质热分解的危险;物料的处理量更大,更适合工业上的连续生产。 (alcohol distilling equipment)
特点:第一,节能。采用高效低阻的板型,降低釜温,适量回流,建立合理利用各级能量的蒸馏流程;尽量采用仪表控制或微机自控系统,使设备处于最佳负荷状态。
第二,生产强度高。提高单位塔截面的汽液通量,特别是对醪塔的设计,更应注意其汽液比的关系。使设备更加紧凑、生产强度和处理能力又能提高的方法之一,采用高效塔板代替原有旧式塔校(塔体不动)。
第三,排污性能好。在尽量减少成熟醪中纤维物含量的同时,对设备也要考虑其适应含固形物发酵液的蒸馏,最大限度减少停产清塔的次数。
第四,充分考虑塔器的放大效应.特别是对年产量在15000吨以上的塔设备,由于塔径均大于1.5米以上,所以要对大直径塔设备采取积极先进措施,以减轻分离效率的降低。
第五,结构简单,造价降低。在工艺条件许可的情况下,选用塔板结构简单而效率又高的新型塔板。
装置原理:
本装置适用于制药、食品、轻工、化工等待业的稀酒精回收,也适用于甲醇等其他溶煤的蒸馏。本装置根据用户的要求,可将30。左右的稀酒精蒸馏至90。-95。酒精,成品酒精度数要求再高。可加大回流比,但产量就相应减少。
采用高效的不锈钢波纹填料。蒸馏塔体采用不锈钢制作,从而是防止了铁屑堵塞填料的现象,延长了装置的使用期限。本装置中凡接触酒精的设备部分如冷凝器、稳压罐、冷却蛇管等均采用不锈钢,以确保成品酒精不被污染。蒸馏釜采用可拆式U型加热管,在检修时可将U型加热管移出釜外,便于对加热管外壁及蒸馏釜内壁进行清洗。本装置可间歇生产,也可连续生产。
能力参数: 型号 塔径mm 30~40%进料的生产能力 60~80%进料的生产能力 90%酒精 95%酒精 90%酒精 95%酒精 T-200 φ200 35kg 26kg 45kg 36kg T-300 φ300 80kg 64kg 100kg 80kg T-400 φ400 150kg 120kg 180kg 140kg T-500 φ500 230kg 185kg 275kg 220kg T-600 φ600 335kg 270kg 400kg 320kg 减压蒸馏设备(atmospheric-vacuum distillation unit)常减压蒸馏装置通常包括三部分:
(1)原油预处理。采用加入化学物质和高压电场联合作用下的电化学法除去原油中混杂的水和盐类。
(2)常压蒸馏。原油在加热炉内被加热至370℃左右,送入常压蒸馏塔在常压(1大气压)下蒸馏出沸点较低的汽油和柴油馏分,残油是常压重油。
(3)减压蒸馏。常压重油再经加热炉被加热至410℃左右,进入减压蒸馏塔在约8.799千帕(60毫米汞柱)绝压下蒸馏,馏出裂化原料的润滑油原料,残油为减压渣油。参见原油蒸馏。 水气蒸馏是用来分散以及提纯液态或者固态有机化合物的一种要领,经常使用于下列几种环境:(1)某些沸点高的有机化合物,在常压下蒸馏虽可与副产物分散,但易被破坏;(2)混淆物中含有大量树脂状杂质或者不挥发性杂质,采用蒸馏、萃取等要领都难以分散;(3)从较多固体反应物中分散出被吸附的液体。
基本原理
按照道尔顿分压定律,当与水不相混溶的物质与水并存时,全般系统的蒸气压应为各组分蒸气压之以及,即:
p= pA+ pB
其中p 代表总的蒸气压,pA为水的蒸气压,pB 为与水不相混溶物质的蒸气压。
当混淆物中各组分蒸气压总以及等于外界大气压时,这时候的温度即为它们的沸点。此沸点比各组分的沸点都低。是以,在常压下应用水气蒸馏,就能在低于100℃的环境下将高沸点组分与水一路蒸出来。由于总的蒸气压与混淆物中两者间的相对于量无关,直至其中一组分几乎完全移去,温度才上涨至留在瓶中液体的沸点。我们懂得,混淆物蒸气中各个气体分压(pA,pB)之比等于它们的物质的量(nA,nB)之比,即:
而nA=mA/MA;nB=mB/MB。其中
mA、mB为各物质在肯定是容量中蒸气的质量,MA、MB为物质A以及B的相对于份子质量。是以:
可见,这两种物质在馏液中的相对于证量(就是它们在蒸气中的相对于证量)与它们的蒸气压以及相对于份子质量成正比。
以苯胺为例,它的沸点为184.4℃,且以及水不相混溶。当以及水一路加热至98.4℃时,水的蒸气压为95.4 kPa,苯胺的蒸气压为5.6 kPa,它们的总压力靠近大气压力,于是液体就开始沸腾,苯胺就随水气一路被蒸馏出来,水以及苯胺的相对于份子质量别离为18以及93,代入上式:
即蒸出3.3 g水可以容或者带出1 g苯胺。苯胺在溶液中的组分占23.3%。测试中蒸出的水量往往超过计算值,由于苯胺微溶于水,测试中尚有一部分水气不遑与苯胺充分接触便离开蒸馏烧杯的缘故。
哄骗水气蒸馏来分散提纯物质时,要求此物质在100℃摆布时的蒸气压至少在1.33 kPa摆布。要是蒸气压在 0.13~0.67 kPa,则其在馏出液中的含量仅占1%,甚至更低。为了要使馏出液中的含量增高,就要想办法提高此物质的蒸气压,也就是说要提高温度,使蒸气的温度超过100℃,即要用过热水气蒸馏。例如苯甲醛(沸点178℃),进行水气蒸馏时,在97.9℃沸腾,这时候pA=93.8 kPa,pB=7.5 kPa,则:
这时候馏出液中苯甲醛占32.1%。
假如导入133℃过热蒸气,苯甲醛的蒸气压可达29.3kPa,故而只要有72 kPa的水气压,就可使系统沸腾,则:
这样馏出液中苯甲醛的含量就提高到了70.6%。
应用过热水气还具有使水气冷凝少的长处,为了防止过热蒸气冷凝,可在蒸馏瓶下保温,甚至加热。
从上面的分析可以看出,施用水气蒸馏这种分散要领是有条件限定的,被提纯物质必需具备以下几个条件:(1)不溶或者难溶于水;(2)与沸水永劫间并存而不发生化学反应;(3)在100℃摆布必需具有肯定似的蒸气压(一般不小于1.33 kPa)。

❻ 分子蒸馏的应用

1、单甘酯的生产
分子蒸馏技术广泛应用于食品工业,主要用于混合油脂的分离。可得到w(单脂肪酸甘油酯)>90%的高纯度产品。从蒸馏液面上将单甘酯分子蒸发出来后立即进行冷却,实现分离。利用分子蒸馏可将未反应的甘油、单甘酯依次分离出来。单甘酯即甘油一酸酯,它是重要的食品乳化剂。单甘酯的用量目前占食品乳化剂用量的三分之二。在商品中它可起到乳化、起酥、蓬松、保鲜等作用,可作为饼干、面包、糕点、糖果等专用食品添加剂。单甘酯可采用脂肪酸与甘油的酯化反应和油脂与甘油的醇解反应两种工艺制取,其原料为各种油脂、脂肪酸和甘油。采用酯化反应或醇解反应合成的单甘酯,通常都含有一定数量的双甘酯和三甘酯,通常w(单甘酯)=40%~50%,采用分子蒸馏技术可以得到w(单甘酯)>90%的高纯度产品。此法是目前工业上高纯度单甘酯生产方法中最常用和最有效的方法,所得到的单甘酯达到食品级要求。分子蒸馏单甘酯产品以质取胜,逐渐代替了纯度低、色泽深的普通单甘酯,市场前景乐观,开发分子蒸馏单甘酯可为企业带来丰厚的利润。
2、鱼油的精制
从动物中提取天然产物,也广泛采取分子蒸馏技术,如精制鱼油等[8]。鱼油中富含全顺式高度不饱和脂肪酸二十碳五烯酸(简称EPA)和二十二碳六烯酸(简称DHA),此成分具有很好的生理活性,不仅具有降血脂、降血压、抑制血小板凝集、降低血液黏度等作用,而且还具有抗炎、抗癌、提高免疫能力等作用,被认为是很有潜力的天然药物和功能食品。EPA、DHA主要从海产鱼油中提取,传统分离方法是采用尿素包合沉淀法[9]和冷冻法[10]。运用尿素包合沉淀法可以有效地脱除产品中饱和的及低不饱和的脂肪酸组分,提高产品中DHA和EPA的含量,但由于很难将其他高不饱和脂肪酸与DHA和EPA分离,只能使w(DHA+EPA)<80%。而且产品色泽重,腥味大,过氧化值高,还需进一步脱色除臭后才能制成产品,回收率仅为16%;由于物料中的杂质脂肪酸的平均自由程同EPA、DHA乙酯相近,分子蒸馏法尽管只能使w(EPA+DHA)=72 5%,但回收率可达到70%,产品的色泽好、气味纯正、过氧化值低,而且可以将混合物分割成DHA与EPA不同含量比例的产品。因此分子蒸馏法不失为分离纯化EPA、DHA一种有效方法。
3、油脂脱酸
在油脂的生产过程中,由于从油料中提取的毛油中含有一定量的游离脂肪酸,从而影响油脂的色泽和风味以及保质期。传统工业生产中化学碱炼或物理蒸馏的脱酸方法有一定的局限性。由于油品酸值高,化学碱炼工艺中添加的碱量大,碱在与游离脂肪酸的中和过程中,也皂化了大量中性油使得精炼得率偏低;物理精炼用水蒸气气提脱酸,油脂需要在较长时间的高温下处理,影响油脂的品质,一些有效成分会随水蒸气溢出,从而会降低保健营养价值。
马传国等在对高酸值花椒籽油脱酸的研究中,利用分子蒸馏对不同酸值的花椒籽油进行脱酸,能获得比较高的轻(脂肪酸)、重(油脂)馏分得率,这是目前化学碱炼或物理蒸馏等工艺所不能达到的。对酸值为28mgKOH/g和41 2mgKOH/g的高酸值油脂用分子蒸馏法脱酸后,油脂的酸值分别下降到2 6mgKOH/g和3 8mgKOH/g,油脂的得率分别为86%和80 9%,中性油脂基本没有损失。所以利用分子蒸馏技术对高酸值油脂脱酸具有良好的效果,具有广阔的应用前景。
4、高碳醇的精制
高碳脂肪醇是指二十碳以上的直链饱和醇,具有多种生理活性。目前最受关注的是二十八烷醇和三十烷醇,它们具有抗疲劳、降血脂、护肝、美容等功效,可做营养保健剂的添加剂,某些国家也作为降血脂药物,发展前景看好。
精制高碳醇,其工艺十分复杂,需要经过醇相皂化,多种及多次溶剂浸提,然后用多次柱层析分离,最后还要采用溶剂结晶才能得到一定纯度的产品。日本采用蜡脂皂化、溶剂提取、真空分馏的方法得到w(高碳醇)=10%~30%的产品。而刘元法等对米糠蜡中二十八烷醇精制研究中得出,经多级分子蒸馏后,可得到w(高碳醇)=80%的产品。张相年等利用富含二十八烷醇的长链脂肪酸高碳醇酯,还原得到二十八烷醇。即以虫蜡为原料,在乙醚中加氢化铝锂(AlLiH4),在70~80℃还原2 5h得到高碳醇混合物,经分子蒸馏纯化,高碳醇纯度达到w(高碳醇)=96%,其中w(二十八烷醇)=16 7%。利用分子蒸馏技术精制高碳醇,工艺简单,操作安全可靠,产品质量高。 (二)在精细化工中的应用
分子蒸馏技术在精细化工行业中可用于碳氢化合物、原油及类似物的分离;表面活性剂的提纯及化工中间体的制备;羊毛脂及其衍生物的脱臭、脱色;塑料增塑剂、稳定剂的精制以及硅油、石蜡油、高级润滑油的精制等。在天然产物的分离上,许多芳香油的精制提纯,都应用分子蒸馏而获得高品质精油。
1、芳香油的提纯
随着日用化工、轻工、制药等行业和对外贸易的迅速发展,对天然精油的需求量不断增加。精油来自芳香植物,从芳香植物中提取精油的方法有:水蒸气蒸馏法、浸提法、压榨法和吸附法。精油的主要成分大都是醛、酮、醇类。且大部分都是萜类,这些化合物沸点高,属热敏性物质,受热时很不稳定。因此,在传统的蒸馏过程中,因长时间受热会使分子结构发生改变而使油的品质下降。
陆韩涛等用分子蒸馏的方法对山苍子油、姜樟油、广藿香油等几种芳香油进行了提纯,结果见表3。结果表明,分子蒸馏技术是提纯精油的一种有效的方法,可将芳香油中的某一主要成分进行浓缩,并除去异臭和带色杂质,提高其纯度。由于此过程是在高真空和较低温度下进行,物料受热时间极短,因此保证了精油的质量,尤其是对高沸点和热敏性成分的芳香油,更显示了其优越性。
此外,利用分子蒸馏技术分离毛叶木姜子果油中的柠檬醛可得到w(柠檬醛)=95%,产率53%的产品;对干姜的有效成分的分离中,通过调节不同的蒸馏温度和真空度可得到不同的有效成分种类及其相对含量,调节适宜的蒸馏温度和真空度可获得相对含量较高的有效成分。
2、高聚物中间体的纯化
在由单体合成聚合物的过程中,总会残留过量的单体物质,并产生一些不需要的小分子聚合体,这些杂质严重影响产品的质量。传统清除单体物质及小分子聚合体的方法是采用真空蒸馏,这种方法操作温度较高。由于高聚物一般都是热敏性物质,因此温度一高,高聚物就容易歧化、缩合或分解。例如,对聚酰胺树脂中的二聚体进行纯化,采用常规蒸馏方法只能使w(二聚体聚酰胺树脂)=75%~87%,采用分子蒸馏技术则可以使w(二聚体聚酰胺树脂)=90%~95%。在对酚醛树脂和聚氨酯的纯化中,采用分子蒸馏的方法可以使酚醛树脂中的单体酚含量脱除到w(单体酚)<0 .01%,使w(二异氰酸酯单体)<0 .1%。分子蒸馏技术能极好地保护高聚物产品的品质,提高产品纯度,简化工艺,降低成本。
3、羊毛脂的提取
羊毛脂及其衍生物广泛应用于化妆品。羊毛脂成分复杂,主要含酯、游离醇、游离酸和烃。这些组分相对分子质量较大,沸点高,具热敏性。用分子蒸馏技术将各组分进行分离,对不同成分进行物理和化学方法改性,可得到聚氧乙烯羊毛脂、乙酰羊毛脂、羊毛酸、异丙酯及羊毛聚氧乙烯脂等性能优良的羊毛脂系列产品。 利用分子蒸馏技术,在医药工业中可提取天然维生素A、维生素E;制取氨基酸及葡萄糖的衍生物;以及胡萝卜和类胡萝卜素等。现以维生素E为例:天然维生素E在自然界中广泛存在于植物油种子中,特别是大豆、玉米胚芽、棉籽、菜籽、葵花籽、米胚芽中含有大量的维生素E。由于维生素E是脂溶性维生素,因此在油料取油过程中它随油一起被提取出来。脱臭是油脂精练过程中的一道重要工序,馏出物是脱臭工序的副产品,主要成分是游离脂肪酸和甘油以及由它们的氧化产物分解得到的挥发性醛、酮碳氢类化合物,维生素E等。从脱臭馏出物中提取维生素E,就是要将馏出物中非维生素E成分分离出去,以提高馏出物中维生素E的含量。曹国峰等将脱臭馏出物先进行甲脂化,经冷冻、过滤后分离出甾醇,经减压真空蒸馏后再在220~240℃、压力为10-3~10-1Pa的高真空条件下进行分子蒸馏,可得到w(天然维生素E)=50%~70%的产品。采取色谱法、离子交换、溶剂萃取等可对其进一步精制。此外,在分子生物学领域中,可以将分子蒸馏技术作为生物研究的一种前处理技术,以保存原有组织的生物活性和制备生物样品等。
综上所述,分子蒸馏技术作为一种特殊的新型分离技术,主要应用于高沸点、热敏性物料的提纯分离。实践证明,此技术不但科技含量高,而且应用范围广,是一项工业化应用前景十分广阔的高新技术。它在天然药物活性成分及单体提取和纯化过程的应用还刚刚开始,尚有很多问题需要进一步探索和研究。

❼ 简述中草药有效成分提取和分离方法

草药提取分离中方法有超临界流体萃取法、膜分离技术、超微粉碎技术、中药絮凝分离技术、半仿生提取法、超声提取法、旋流提取法、加压逆流提取法、酶法、大孔树脂吸附法、超滤法、分子蒸馏法等。具体如下 :

1、超临界流体萃取

利用超临界状态下的流体为萃取剂,从液体或固体中萃取中药材中的药效成分并进行分离的方法。原理是以一种超临界流体在高于临界温度和压力下,从目标物中萃取有效成分,当恢复到常压常温时,溶解在流体中成分立即以溶于吸收液的液体状态与气态流体分开。

2、膜提取分离技术

分离基本原理是利用化学成分分子量差异而达到分离目的.在中药应用方面主要是滤除细菌、微粒、大分子杂质(胶质、鞣质、蛋白、多糖)等或脱色。

3、超微粉碎技术

是利用超声粉碎、超低温粉碎技术,使生药中心粒径在5~10μm以下,细胞破壁率达到95%。药效成分易于提取也容易被人体直接吸收。适合于各种不同质地的药材,而且可使其中的有效成分直接暴露出来,从而使药材成分的溶出和起效更加迅速完全。

4、药絮凝分离技术

将絮凝剂加到中药的水提液中通过絮凝剂的吸附、架桥、絮凝作用以及无机盐电解质微粒和表面电荷产生凝聚作用,使许多不稳定的微粒如蛋白质、锰液质、鞍质等连接成絮团沉降,经滤过达到分离纯化的目的。

(7)分子蒸馏研究方法扩展阅读:

中草药提取和分离经历了三个发展阶段。第一阶段,是传统的丹、丸、膏、散;第二阶段,是以水醇法或醇水法为主的提取、粗处理技术与现代工业制剂技术相结合而制成中成药;第三阶段,是运用现代分离技术和检测技术精制化和定量化的现代植物药。

植物药的三个阶段,只是说明它们先后产生的时间顺序,并不表示后一阶段会取代或取消前一阶段。正如化学药不能取消天然药物、生物药也不能取消化学药一样。但后一层次比前一层次更多体现或运用了现代科技。

植物提取物和现代植物药在概念的内涵上存在着交叉性,互相包含着彼此的部分内容。现代植物药在很大程度上是以提取物为基础的,植物提取物是现代植物药的主要原料和组成部分;而有些植物提取物品种则被直接作为药用。

❽ 如何提炼辣椒素

1、从干红辣椒中提取辣椒红素
对有机溶剂提取、非连续酶法提取和连续酶法提取辣椒红素进行了研究,并对这三种提取方法的提取条件分别进行了优化。将这三种提取方法分别在最优提取条件下进行比较发现:丙酮提取法所得辣椒红素色价最高,而非连续酶法提取所得辣椒红素色价居中,但是其副产物-辣椒碱的含量比丙酮提取法提高了 30%,连续酶法提取所得辣椒红素所含杂质较多色价较低,辣椒碱含量也不高。因此,本实验采用丙酮提取法提取辣椒红素。提取所得的辣椒红素采用硅胶柱层析分离出辣

2、红辣椒色素的提取分离及光稳定性
红辣椒粉中的色素和辣椒碱类化合物的测定方法;确定了有机溶剂法提取和初步精制辣椒油树脂的工艺;分别以辣椒粉和辣椒油树脂为原料,采用超临界二氧化碳萃取分离技术和分子蒸馏技术分离辣椒色素和辣椒碱类化合
物;由硅胶柱层析分离得到黄色素,并与混合辣

3、红辣椒中辣椒素的提取纯化及其检测方法
以干红辣椒皮粉为原料,采用索氏提取法制备辣椒树脂,结果表明:从提取效率和经济成本这两方面来考虑,提取的最佳条件为:提取溶剂95%乙醇,原料粒度40^60目,料液比1:4 g/mL,提取时间4h,经索氏提取后的溶液经浓缩可得到辣椒素总含量为1.25%辣椒树脂。 采用了水蒸气蒸馏法、硅胶柱层析法、减压升华法纯化辣椒素,结果表明:减压升华法为最佳纯化方法。以辣椒树脂为原料,在110℃下减压升华8h左右,然后用丙酮洗下弯管及冷凝管上沾附的辣椒素,过滤后去除溶剂,用4、辣椒红色素超临界流体技术提取和应用
以干红辣椒为原料,采用溶剂法和超临界法结合提取辣椒红色素等产品的系统研究。首先要以干椒为原料制备粗产品,浸取溶剂、辣椒皮粉细度、固液比和浸取时间等工艺参数的影响,在此基础上确定出采用传统溶剂法制取辣椒树脂中间产品的最佳工艺条件:然后以辣椒树脂为原料,进行了超临界预实验、树脂超临界萃取正交实验、装料系数与萃取时间测定研究,确定出采用超临界COz萃取法提取辣椒红色素产品的最佳工艺条件。为使现有工艺与工业化接轨,提高现有色素产品的品质

5、辣椒碱提取工艺的优化设计
辣椒碱易溶于多种有机溶剂,选用九种有机溶剂进行比较,结果表明:从提取效率和经济成本这两方面来考虑,乙醇可作为提取辣椒碱的最佳浸提剂。其浸提的最佳条件是:原料粒度 80 目,浸提温度 75℃,料液比 1:5,提取时间 1h,提取次数 4~6 次,辣椒碱提取率可达(87+1)%,辣椒碱提取量0.876%,辣度为 131400。
超临界流体萃取技术作为一种新型化工分离技术,在食品加工领域有着广阔的应用前景。本文采用超临界 CO2流体萃取,其萃取的最佳条件是:萃取压力10 MPa6、辣椒素的提取工艺及分析方法
干红辣椒为原料制备辣椒树脂,并分别研究了浸取溶剂、辣椒皮粉细度、固液比、浸取时间和虹吸次数等工艺参数的影响,在此基础上确定出索氏浸取法制取辣椒树脂的最佳工艺条件;其次以辣椒树脂为原料,分别进行了萃取溶剂用量、萃取温度、时间、次数的单因素实验以及四因素三水平正交实验,确定出溶剂萃取法制备辣椒精的最佳工艺条件;最后以辣椒精为原料,分别进行了相转移预处理过程中pH值、树脂的静态筛选、洗脱剂、上柱流速、洗脱流速和结晶溶剂、温度等参数的选择

7、辣椒中红色素和辣椒素的分离与精制
确定了提取辣椒红素过程的有机溶剂种类和操作方式,根据结果研究了两种提取辣椒红素的方法:丙酮索
氏提取法和乙醇超声提取法。确定了各自的最佳条件,丙酮索氏提取的最优条件为:每5克辣椒粉用1 S OmL丙酮在65℃下提取4h;超声提取辣椒红素的最优条件为:在功率为200W下,取无水乙醇与辣椒粉的液固比为12:1,超声提取3 Omin。将这两种提取方法分别在最优提取条件下比较提取的色素收率和色价发现,超声提取过程仅需要
很短时间就能达到和索氏法相同的收率,因此采用

8、辣椒中辣椒素提取分离纯化工艺
建立了一种准确、快速分析测定辣椒素含量的反相高效液相色谱方法,对提取物中辣椒素与辣椒素类物质的色谱分离条件进行优化,确定流动相为甲醇一水(70:30 V/V),流速0.6mL/min,检测波长280nm,柱温控制在25 C;在保证良好线性关系的条件下,扩大了测定方法的线性范围;该方法具有较高的精密度和准确性,且分析周期短,适用于辣椒素含量的精确分析。同时,对分光

9、药用天然结晶辣椒碱的制造方法
10、辣椒油脂中辣椒色素的提取方法
11、辣椒色素和辣素的提取方法
12、天然辣椒色素的生产方法
13、由辣椒提取辣椒色素和辣素工艺方法
14、辣椒红色素的提取方法
15、从辣椒中提取红色素的方法
16、辣椒红色素的提取新方法
17、自红辣椒中提取辣椒红色素和辣椒素的新工艺
18、快速提取无味辣椒红色素的新方法
19、由干红辣椒提取辣椒碱的工艺方法
20、超临界二氧化碳萃取辣椒碱类化合物的生产方法
21、超临界二氧化碳精制脱臭辣椒红色素生产方法
22、一种含辣椒碱的农药杀虫剂
23、用辣椒油树脂生产晶体状辣椒碱类化合物的方法
24、辣椒红色素的制备方法
25、以辣椒素为原料制造高纯度辣椒碱的方法
26、皮肤用辣椒碱脂质体制剂
27、辣椒碱自抛光防污涂料及其制备方法
28、从干辣椒生产辣椒素晶体的方法
29、从残次辣椒中提取辣椒精的方法
30、汽液逆流淋漓提取辣椒红色素的方法
31、从辣椒中分离辣椒红素和辣椒碱的方法
32、以6号溶剂油提取天然辣椒红色素的工业生产方法
33、提高辣椒精质量的工业方法
34、一种苦参碱·辣椒碱杀虫剂
35、辣椒碱和辣椒红色素的分步法生产工艺
36、从辣椒中提取辣椒碱晶体的方法
37、分子蒸馏洗涤法生产天然辣椒碱晶体的工业方法
38、一种用离子交换树脂法生产高纯辣椒素晶体的方法
39、从红辣椒中提取分离辣椒碱和辣椒红色素的方法
40、辣椒红色素和辣椒精的生产工艺与方法
41、水溶性辣椒红色素的制备方法
42、一种水分散型辣椒红色素微囊及其制备方法
43、大孔吸咐树脂法富集与纯化辣椒碱的方法
44、分子蒸馏法富集与纯化辣椒碱的方法
45、一种天然辣椒红色素的提取纯化方法
46、一种辣椒碱杀虫剂
47、高辣度辣椒精的制备方法
48、天然辣椒碱的提取方法
49、辣椒碱杀虫剂的生产方法及其应用
50、辣椒素和色素的微波一次提取法

文献资料
51、辣椒碱的研究进展及应用
52、离子交换法制备辣椒碱类化合物
53、辣椒红素与辣椒碱的分离
54、萃取_结晶法制备高纯辣椒碱类化合物
55、辣椒碱主要组分的RP_HPLC法测定
56、辣椒精中辣椒碱的提取工艺
57、离子交换法制备高纯辣椒碱类化合物
58、辣椒碱类化合物及脱色辣椒精生产技术研究
59、由干红辣椒提取辣椒碱的工艺方法
60、辣椒红色素提取方法研究进展
61、辣椒素类物质制备方法的研究
62、反相高效液相色谱法制备纯辣椒素的研究
63、辣椒红色素提取方法研究
64、辣椒红色素的提取及稳定性的研究
65、柱层析法分离精制辣椒红色素
66、辣椒素的分析方法及辣度分级
67、辣椒中辣椒素与色素提取的优化研究
68、辣椒素的应用与提取
69、超临界CO_2萃取辣椒红色素工艺条件的探讨
70、超声提取辣椒红素的研究
71、超临界CO_2萃取辣椒红色素工艺条件的研究
72、辣椒红色素提取与检测方法的研究进展
73、正交试验法优选辣椒中辣椒素提取工艺的研究
74、超声强化提取辣椒素的研究
75、超临界二氧化碳精制辣椒红色素的研究
76、辣椒红色素提取技术的研究
77、红辣椒中辣椒红色素的提取工艺研究
78、辣椒红色素的提取工艺及稳定性研究
79、辣椒素的工业化提取工艺
80、辣椒素的制备工艺及分析方法
81、从干红辣椒中提取辣椒红色素的研究
82、辣椒红色素的分离提取技术
83、辣椒中红色素的提取工艺
84、辣椒辣素的提取分离技术研究
85、辣椒辣素的分离纯化及分析
86、超临界萃取技术在辣椒红色素中的应用
87、辣椒提取辣椒红色素新工艺
88、超临界二氧化碳萃取技术在辣椒红色素精制工艺
89、红辣椒中红色素的提取与性质研究
90、天然辣椒红色素提取精制工艺研究
91、辣椒红色素提取精制方法
92、辣椒深加工产品中辣素含量的测定
93、辣椒素的提取与纯化
94、辣椒中辣椒红素的简便分离方法
95、辣椒红色素制取和应用研究概述
96、辣椒辣素的提取与纯化方法研究
97、辣椒红色素提取的研究
98、用硅胶柱层析分离辣椒红色素
99、微波法萃取辣椒中辣椒素的研究
100、辣椒红色素晶体制备技术的研究
101、辣椒碱的生产和应用
102、辣椒中辣椒碱和辣椒红色素的提取及应用
103、高效液相色谱法测定辣椒碱
104、辣椒碱的制取纯化及应用研究
105、辣椒碱的研究概述
106、辣椒碱的提取检测及其在有害生物防治中的应用
107、类辣椒碱素纯化实验研究
108、辣椒碱的 (略啦)

❾ 固体如何蒸馏

分子蒸馏技术分子蒸馏技术是一种适合于高沸点、热敏性物料的浓缩、纯化的高新分离技术,已广泛应用于医药、食品、化工等领域。经过多年精心研究,我们不仅成功推出了适用于液态物料纯化的分子蒸馏技术及其装置,如鱼油、亚麻酸、共轭亚油酸,精油等产品精制,而且将分子蒸馏拓展到固体物料的纯化,目前已成功用于二十八烷醇、香紫苏醇、龙涎内酯等产品的纯化。 该技术及其装置尤适合分子量500以下的有机化合物的分离纯化,如天然浸膏中有效成分提取、合成精细化学品的纯化。

阅读全文

与分子蒸馏研究方法相关的资料

热点内容
手上鸡眼的图片症状和处理方法 浏览:68
栀子的种植方法和图片 浏览:602
癣的症状和治疗方法 浏览:420
黛珂白檀乳液使用方法 浏览:847
考科二坡道定点停车方法视频 浏览:540
独词式标题选材常用方法 浏览:748
一天解决一本书的方法 浏览:239
沂蒙山楂的食用方法 浏览:179
系统思维的训练方法 浏览:41
组合数计算方法高中数学例题 浏览:305
如何用物理方法卷发 浏览:194
穿丝袜的正确方法视频教程 浏览:220
简单锻炼方法视频捂脸 浏览:274
如何唤醒孩子的方法 浏览:567
双开双控插座安装方法视频 浏览:704
gps手持测亩仪使用方法 浏览:152
有什么方法可以安眠 浏览:215
种大蒜的视频种植方法 浏览:172
什么样的方法能瘦下来 浏览:431
虫牙打洞治疗方法 浏览:889