导航:首页 > 研究方法 > 矩阵低秩稀疏分解方法与应用研究

矩阵低秩稀疏分解方法与应用研究

发布时间:2022-08-29 11:26:57

⑴ 想问下矩阵的低秩的性质和稀疏的性质之间有什么联系和区别么

稀疏矩阵不一定低秩(考虑单位阵), 低秩矩阵也不一定稀疏(考虑所有元素全为1的矩阵)

参考网页链接

⑵ 矩阵低秩的意义

我知道在线性代数中要学习有一个是矩阵低秩,在这个公式中一个矩阵A的列秩是A的线性独立的纵列的极大数。通常表示为r(A),rk(A)或rankA。


矩阵的秩

先来看下线性代数中的“秩”的概念,有如下方程:

考虑到同一人脸的多幅图像,我们将每幅图像编码为列向量,然后将这些列排列成矩阵。这个矩阵应该是低秩矩阵,因为每个图像在同一位置(x,y)上的像素值应该相似。当噪声发生时,矩阵变得充满秩。在这一点上,我们可以通过低秩分解得到低秩矩阵和噪声矩阵。

总结:这样的应用在某些恢复方面有很大帮助。

⑶ 正定矩阵因子分解法(PMF)

3.2.4.1 方法建立

就全国范围而言,我国地下水质量总体较好,根据国家《地下水质量标准》(GB/T 14848—93),我国63%的地区地下水可直接饮用,17%经适当处理后可供饮用,12%不宜饮用,剩余8%为天然的咸水和盐水,由此可见,不宜饮用的地下水和天然咸水、盐水占到了20%,对于这些地下水型水源地饮用水指标并不一定受到污染而存在超标现象,其水质可能受到地下水形成演化影响更为明显,因此,考虑选择反映地下水形成、演化的地下水水化学类型常规指标,进行影响因素解析。地下水水质指标在取样与分析过程中,由于取样和样品处理、试剂和水纯度、仪器量度和仪器洁净、采用的分析方法、测定过程以及数据处理等过程均会产生测量误差(系统误差,随机误差,过失误差)。从取样到分析结果计算误差都绝对存在,虽然在各个过程中进行质量控制,但无法完全消除不确定性的影响,为确保分析结果的可靠性,采用PMF法对地下水水质指标考虑一定的不确定性误差,使分析数据能够准确地反映实际情况。

PMF(Positive Matrix Factorization)与主成分分析(PCA)、因子分析(FA)都是利用矩阵分解来解决实际问题的分析方法,在这些方法中,原始的大矩阵被近似分解为低秩的V=WH形式。但PMF与PCA和FA不同,PCA、FA方法中因子W和H中的元素可为正或负,即使输入的初始矩阵元素全是正的,传统的秩削减算法也不能保证原始数据的非负性。在数学上,从计算的观点看,分解结果中存在负值是正确的,但负值元素在实际问题中往往是没有意义的。PMF是在矩阵中所有元素均为非负数约束条件之下的矩阵分解方法,在求解过程中对因子载荷和因子得分均做非负约束,避免矩阵分解的结果中出现负值,使得因子载荷和因子得分具有可解释性和明确的物理意义。PMF使用最小二乘方法进行迭代运算,能够同时确定污染源谱和贡献,不需要转换就可以直接与原始数据矩阵作比较,分解矩阵中元素非负,使得分析的结果明确而易于解释,可以利用不确定性对数据质量进行优化,是美国国家环保局(EPA)推荐的源解析工具。

3.2.4.2 技术原理

PMF:模型是一种基于因子分析的方法,具有不需要测量源指纹谱、分解矩阵中元素非负、可以利用数据标准偏差来进行优化等优点。目前PMF模型此方法成功用于大气气溶胶、土壤和沉积物中持久性有毒物质的源解析,已有成熟的应用模型 PMF1.1,PMF2.0,PMF3.0等。PMF模型基本方程为:

Xnm=GnpFpm+E (3.7)

式中:n——取样点数;

m——各取样点测试的成分数量;

p——污染源个数;

Xnm——取样点各成分含量;

Gnp——主要源的贡献率;

Fpm——源指纹图谱。

基本计算过程如下:

1)样品数据无量纲化,无量纲化后的样品数据矩阵用D表示。

2)协方差矩阵求解,为计算特征值和特征向量,可先求得样品数据的协方差矩阵,用D′为D的转置,算法为:

Z=DD′ (3.8)

3)特征值及特征向量求解,用雅各布方法可求得协方差矩阵Z的特征值矩阵E和特征向量矩阵Q,Q′表示Q的转置。这时,协方差矩阵可表示为:

Z=QEQ′ (3.9)

4)主要污染源数求解,为使高维变量空间降维后能尽可能保留原来指标信息,利用累计方差贡献率提取显着性因子,判断条件为:

地下水型饮用水水源地保护与管理:以吴忠市金积水源地为例

式中:n——显着性因子个数;

m——污染物个数;

λ——特征值。

5)因子载荷矩阵求解,提取显着性因子后,利用求解得到的特征值矩阵E和特征向量矩阵Q进一步求得因子载荷矩阵S和因子得分矩阵C,这时,因子载荷矩阵可表示为:

S=QE1/2 (3.11)

因子得分矩阵可表示为:

C=(S′S)-1S′D (3.12)

6)非负约束旋转,由步骤5求得的因子载荷矩阵S和因子得分矩阵C分别对应主要污染源指纹图谱和主要污染源贡献,为解决其值可能为负的现象,需要做非负约束的旋转。

7)首先利用转换矩阵T1对步骤5求得的因子载荷矩阵S和因子得分矩阵C按下式进行旋转:

地下水型饮用水水源地保护与管理:以吴忠市金积水源地为例

C1=T1C (3.14)

式中:S1——旋转后的因子载荷矩阵;

C1——旋转后的因子得分矩阵;

T1——转换矩阵,且T1=(CC′)(CC′)-1(其中:C为把C中的负值替换为零后的因子得分矩阵)。

8)利用步骤7中旋转得到的因子载荷矩阵S1构建转换矩阵T2对步骤5中旋转得到的因子载荷矩阵S1和因子得分矩阵C1继续旋转:

S2=S1T2 (3.15)

地下水型饮用水水源地保护与管理:以吴忠市金积水源地为例

式中:S2——二次旋转后的因子载荷矩阵;

C2——二次旋转后的因子得分矩阵;

T2——二次转换矩阵,且T2=(S′1+S1-1(S′1+

)(其中:

为S1中的负值换为零后的因子载荷矩阵)。

9):重复步骤7、8,直到因子载荷中负值的平方和小于某一设定的误差精度e而终止,最终得到符合要求的因子载荷矩阵S,即主要污染源指纹图谱。

3.2.4.3 方法流程

针对受体采样数据直接进行矩阵分解,得到各污染源组分及其贡献率的统计方法(图3.5)。

图3.5 方法流程图

(1)缺失值处理

正定矩阵因子分析是基于多元统计的分析方法,对数据有效性具有一定的要求,因此在进行分析之前首先对数据进行预处理。根据已有数据的特征结合实际情况主要有以下5种处理方法。

1)采样数据量充足的情况下直接丢弃含缺失数据的记录。

2)存在部分缺失值情况下用全局变量或属性的平均值来代替所有缺失数据。把全局变量或是平均值看作属性的一个新值。

3)先根据欧式距离或相关分析来确定距离具有缺失数据样本最近的K个样本,将这K个值加权平均来估计该样本的缺失数据。

4)采用预测模型来预测每一个缺失数据。用已有数据作为训练样本来建立预测模型,如神经网络模型预测缺失数据。该方法最大限度地利用已知的相关数据,是比较流行的缺失数据处理技术。

5)对低于数据检测限的数据可用数据检测限值或1/2检测限以及更小比例检测限值代替。

(2)不确定性处理

计算数据不确定性。

地下水型饮用水水源地保护与管理:以吴忠市金积水源地为例

式中:s——误差百分数;

c——指标浓度值;

l——因子数据检出限。

(3)数据合理性分析

本研究所用数据在放入模型前以信噪比S/N(Signal to Noise)作为标准进行筛选,信噪比S/N为:

地下水型饮用水水源地保护与管理:以吴忠市金积水源地为例

式中:xij——第i采样点第j个样品的浓度;

sij——第i采样点第j个样品的标准偏差。

信噪比小,说明样品的噪声大,信噪比越大则表示样品检出的可能性越大,越适合模型。

(4)数据输入及因子分析

与其他因子分析方法一样,PMF不能直接确定因子数目。确定因子数目的一般方法是尝试多次运行软件,根据分析结果和误差,Q值以及改变因子数目时Q值的相对变化等来确定合理的因子数目。

3.2.4.4 适用范围

PMF对污染源和贡献施加了非负限制,并考虑了原始数据的不确定性,对数据偏差进行了校正,使结果更具有科学的解释。PMF使用最小二乘方法,得到的污染源不需要转换就可以直接与原始数据矩阵作比较,PMF方法能够同时确定污染源和贡献,而不需要事先知道源成分谱。适用于水文地质条件简单,观测数据量较大,污染源和污染种类相对较少的地区,运用简便,可应用分析软件进行计算。

3.2.4.5 NMF 源解析

NMF在实现上较PMF算法简单易行,非负矩阵分解根据目的的不同大致可以分为两种:一是在保证数据某些性质的基础上,将高维空间的样本点映射到某个低维空间上,除去一些不重要的细节,获得原数据的本质信息;二是在从复杂混乱的系统中得到混合前的独立信息的种类和强度。因此,基于非负矩阵分解过程应用领域的不同,分解过程所受的约束和需要保留的性质都不相同。本书尝试性地将NMF算法应用于水质影响因素的分离计算中(表3.2)。

表3.2 RMF矩阵分解权值表

依照非负矩阵分解理论的数学模型,寻找到一个分解过程V≈WH,使WH和V无限逼近,即尽可能缩小二者的误差。在确保逼近的效果,定义一个相应的衡量标准,这个衡量标准就叫作目标函数。目标函数一般采用欧氏距离和散度偏差来表示。在迭代过程中,采用不同的方法对矩阵W和H进行初始化,得到的结果也会不同,算法的性能主要取决于如何对矩阵W和H进行初始化。传统的非负矩阵算法在对矩阵W和H赋初值时采用随机方法,这样做虽然简单并且容易实现,但实验的可重复性以及算法的收敛速度是无法用随机初始化的方法来控制的,所以这种方法并不理想。许多学者提出改进W和H的初始化方法,并发展出专用性比较强的形式众多的矩阵分解算法,主要有以下几种:局部非负矩阵分解(Local Non-negative Matrix Factorization,LNMF)、加权非负矩阵分解(Weighted Non-negative Matrix Factorization,WNMF)、Fisher非负矩阵分解(Fisher Non-negative Matrix Factorization,FNMF)、稀疏非负矩阵分解(Sparse Non-negative Matrix Factorization,SNMF)、受限非负矩阵分解(Constrained Non-negative Matrix Factorization,CNMF)、非平滑非负矩阵分解(Non-smooth Non-negative Matrix Factorization,NSNMF)、稀疏受限非负矩阵分解(Nonnegative Matrix Factorization with Sparseness Constraints,NMF-SC)等理论方法,这些方法针对某一具体应用领域对NMF算法进行了改进。

本书尝试应用MATLAB工具箱中NNMF程序与改进的稀疏非负矩阵分解(SNMF)对研究区11项指标(同PMF数据)进行分解,得到各元素在综合成分中的得分H,初始W0,H0采用随机法取初值。r为分解的基向量个数,合适的r取值主要根据试算法确定,改变r值观察误差值变化情况,本书利用SMNF算法计算时,r分别取2,3,4,采用均方误差对迭代结果效果进行评价,结果显示当r取2,4时误差值为0.034,取3时误差值为0.016,因此r=3是较合理的基向量个数。采用NNMF算法进行计算时,利用MATLAB工具箱提供的两种计算法分别进行计算,乘性法则(Multiplicative Update Algorithm)计算结果误差项比最小二乘法(Alternating Least-squares Algorithm)计算误差值小且稳定,但总体NNMF计算误差较大,改变初始W0,H0取值和增加迭代次数误差均未明显减小,调整r取值,随着r值的增大误差逐渐减小。

对比SNMF和NNMF算法所得权值结果,两种方法所得权值趋势一致,但得分值有所不同,由于SNMF算法对矩阵进行了稀疏性约束,计算结果中较小的权值更趋近于0,两次结果中在三个基向量上总体权值较大的元素项为T-Hard、

、Mg2+、Ca2+

,从盲源分离的角度来看该几种元素对地下水具有较大的影响,但从地下水水质影响因素来看,该方法对数据的分析偏重于突出局部数据的特征,在各因素相关性较大但含量不高的情况下,容易忽略了关键的影响因素。从权值得分来看,SNMF法解析的第一个基向量上的元素包括EC、T-Hard、NH4—N、

、TDS;第二基向量主要有Na+、Mg2+、Cl-;第三个基向量

、Ca2+,从结果可以看出该方法进行矩阵分解并未得到可合理解释的源项结果,方法有待进一步研究及验证。

⑷ 矩阵分解在生活中有哪些应用

矩阵实际上是一种线性变换.矩阵分解相当于原来的线性变换可以由两次(或多次)线性变换来表示.
例如A=[1
1
1
α=(x
2
3
4
y
1
2
3]
z)
则Aα=(x+y+z
2x+3y+4z
x+2y+3z)
即矩阵实质上是一种线性变换算符.
A=[1
1
[1
0
-1
2
3
*
0
1
2]
1
2]
这里以及下面为了表示方便,引入符号*表示矩阵乘法,遵循矩阵乘法规则.
则Aα=[1
1
[1
0
-1
(x
2
3
*
0
1
2]
*
y
1
2]
z)
=[1
1
(x-z
2
3
*
y+2z)
1
2]
=(x+y+z
2x+3y+4z
x+2y+3z)
即矩阵分解实质上是将原来的线性变换等效为两次线性变换(或多次线性变换,如果分解后矩阵可以继续分解)

⑸ 矩阵的lu分解及应用

可以说是最简单的矩阵分解方法,将矩阵A分解成L(下三角)矩阵和U(上三角)矩阵的乘积。其实就是高斯消元法的体现,U矩阵就是利用高斯消元法得到的,而消元过程用到的初等变换矩阵乘积就是L矩阵。需要注意的是,L矩阵可以是置换过的矩阵,即一个下三角矩阵和一个置换矩阵的乘积(可以参考MATLAB中LU分解的函数lu)。

⑹ 什么是矩阵低秩逼近

矩阵低秩逼近就是对一个一般来说很大规模的矩阵,希望用一个秩比较低的矩阵。
矩阵:构成动态平衡的循环体系。
例子:可以把能量循环体系视为矩阵。聚能/平衡效应。人体可以视为矩阵,地球可以比喻视为矩阵,宇宙也比喻的视为矩阵。
在数学中,矩阵(Matrix)是指纵横排列的二维数据表格,最早来自于方程组的系数及常数所构成的方阵。这一概念由19世纪英国数学家凯利首先提出。
矩阵是高等代数学中的常见工具,也常见于统计分析等应用数学学科中。在物理学中,矩阵于电路学、力学、光学和量子物理中都有应用;计算机科学中,三维动画制作也需要用到矩阵。 矩阵的运算是数值分析领域的重要问题。将矩阵分解为简单矩阵的组合可以在理论和实际应用上简化矩阵的运算。对一些应用广泛而形式特殊的矩阵,例如稀疏矩阵和准对角矩阵,有特定的快速运算算法。关于矩阵相关理论的发展和应用,请参考矩阵理论。在天体物理、量子力学等领域,也会出现无穷维的矩阵,是矩阵的一种推广。

⑺ 简述稀疏矩阵的分类及各类特点

在数学中,矩阵(Matrix)是一个按照长方阵列排列的复数或实数集合[1],最早来自于方程组的系数及常数所构成的方阵。这一概念由19世纪英国数学家凯利首先提出。

矩阵是高等代数学中的常见工具,也常见于统计分析等应用数学学科中。[2]在物理学中,矩阵于电路学、力学、光学和量子物理中都有应用;计算机科学中,三维动画制作也需要用到矩阵。 矩阵的运算是数值分析领域的重要问题。将矩阵分解为简单矩阵的组合可以在理论和实际应用上简化矩阵的运算。对一些应用广泛而形式特殊的矩阵,例如稀疏矩阵和准对角矩阵,有特定的快速运算算法。关于矩阵相关理论的发展和应用,请参考《矩阵理论》。在天体物理、量子力学等领域,也会出现无穷维的矩阵,是矩阵的一种推广。

数值分析的主要分支致力于开发矩阵计算的有效算法,这是一个已持续几个世纪以来的课题,是一个不断扩大的研究领域。 矩阵分解方法简化了理论和实际的计算。 针对特定矩阵结构(如稀疏矩阵和近角矩阵)定制的算法在有限元方法和其他计算中加快了计算。 无限矩阵发生在行星理论和原子理论中。 无限矩阵的一个简单例子是代表一个函数的泰勒级数的导数算子的矩阵

由 m × n 个数aij排成的m行n列的数表称为m行n列的矩阵,简称m × n矩阵。记作:

矩阵的加减法和矩阵的数乘合称矩阵的线性运算。

希望我能帮助你解疑释惑。

⑻ 国内主要研究矩阵的秩的哪些方面

国内主要研究矩阵秩的变换和分解。
矩阵秩的求法很多,一般归结起来有以下几种:
1)通过对矩阵做初等变换(包括行变换以及列变换)化简为梯形矩阵求秩。此类求解一般适用于矩阵阶数不是很大的情况,可以精确确定矩阵的秩,而且求解快速比较容易掌握。
2)通过矩阵的行列式,由于行列式的概念仅仅适用于方阵的概念。通过行列式是否为0则可以大致判断出矩阵是否是满秩。
3)对矩阵做分块处理,如果矩阵阶数较大时将矩阵分块通过分块矩阵的性质来研究原矩阵的秩也是重要的研究方法。此类情况一般也是可以确定原矩阵秩的。
4)对矩阵分解,此处区别与上面对矩阵分块。例如n阶方阵A,R分解(Q为正交阵,R为上三角阵)以及Jordan分解等。通过对矩阵分解,将矩阵化繁为简来求矩阵的秩也会有应用。
5)对矩阵整体做初等变换(行变换为左乘初等矩阵,列变换为右乘初等矩阵)。此类情况多在证明秩的不等式过程有应用,技巧很高与前面提到的分块矩阵联系密切。

⑼ 矩阵论中low-rank matrix是什么东西呢

low-rank matrix是低秩矩阵。
矩阵的秩,需要引入矩阵的SVD分解:X=USV',U,V正交阵,S是对角阵。如果是完全SVD分解的话,那S对角线上非零元的个数就是这个矩阵的秩了(这些对角线元素叫做奇异值),还有些零元,这些零元对秩没有贡献。
1.
把矩阵当做样本集合,每一行(或每一列,这个无所谓)是一个样本,那么矩阵的秩就是这些样本所张成的线性子空间维数。如果矩阵秩远小于样本维数(即矩阵列数),那么这些样本相当于只生活在外围空间中的一个低维子空间,这样就能实施降维操作。举个例子,同一个人在不同光照下采得的正脸图像,假设每一张都是
192x168的,且采集了50张,那构成的数据矩阵就为50行192x168列的,但是如果你做SVD分解就会发现,大概只有前10个奇异值比较大,其
他的奇异值都接近零,因此实际上可以将接近零的奇异值所对应的那些维度丢掉,只保留前10个奇异值对应的子空间,从而将数据降维到10维的子空间了。
2.
把矩阵当做一个映射,既然是映射,那就得考虑它作用在向量x上的效果Ax。注意Ax相当于A的列的某个线性组合,如果矩阵是低秩的,这意味着这些列所张成
的空间是外围空间的一个低维子空间,这个空间由Ax表达(其中x任意)。换句话说,这个矩阵把R^n空间映射到R^m空间,但是其映射的像只在R^m空间
的一个低维子空间内生活。从SVD理解的话,Ax=USV'x,因此有三个变换:第一是V'x,相当于在原始的R^n空间旋转了一下坐标轴,这样只是坐标
的变化,不改变向量本身(例如长度不变);第二是S(V'x),这相当于沿着各个坐标轴做拉伸,并且如果S的对角线上某些元素为零,那么这些元素所对应的
那些坐标轴就相当于直接丢掉了;最后再U(SV'x),还是一个坐标轴旋转。总的来看,Ax就相当于把一个向量x沿着某些特定的方向做不同程度的拉伸(附带上一些不关乎本质的旋转),甚至丢弃,那些没被丢弃的方向个数就是秩了。

阅读全文

与矩阵低秩稀疏分解方法与应用研究相关的资料

热点内容
毛衣鸡心领大了改小的简单方法视频 浏览:431
物理中减小摩擦力的方法有哪些 浏览:893
常用的有机物分析方法 浏览:332
人类有什么打斗方法 浏览:804
人物分析描写方法 浏览:789
皂角刺如何食用方法 浏览:564
研究问卷的方法 浏览:828
古筝琴码的安装方法 浏览:579
国外大学研究方法有哪些 浏览:424
手上鸡眼的图片症状和处理方法 浏览:70
栀子的种植方法和图片 浏览:604
癣的症状和治疗方法 浏览:422
黛珂白檀乳液使用方法 浏览:849
考科二坡道定点停车方法视频 浏览:542
独词式标题选材常用方法 浏览:750
一天解决一本书的方法 浏览:239
沂蒙山楂的食用方法 浏览:179
系统思维的训练方法 浏览:41
组合数计算方法高中数学例题 浏览:306
如何用物理方法卷发 浏览:195