1. 科学研究中的基本方法有哪些科学研究中的基本方法
1、科学研究中的基本方法有:历史法、比较法、分类法、观察法、实验法、数学方法、系统法。
2、相对通用的研究方法而言,科学研究的具体方法具有较强的针对性。这就是说,通用研究方法在所有学科和所有类型的研究工作或论文写作中都会用到,而具体的研究方法只适用于特定学科专业或特定类型的研究和论文写作,或者有些方法即使是普遍的方法,如分类法、比较法、观察法等,但在研究工作和论文撰写中也只是在特别需要时被用到。它们的应用应针对不同的研究对象、内容、范围和目的。
2. 科学研究的基本方法有哪3种
一、经验方法
一般说来,科学研究就是追求知识或解决问题的一项系统活动;有待解决的问题都是与研究对象的本质和规律有关的问题,而本质和规律是隐藏在现象中的,即在经验材料的背后.只有在关于对象的经验材料十分完备、准确可靠时,才能在这些材料的基础上建立正确的概念和理论,揭示对象的本质和规律,才能解决科研课题,即解决科学的问题.获得经验材料的方法就是经验方法,通常包括如下四个方面:
1、文献研究法
教育技术学的发展有很强的历史继承性,文献研究就是为了对所要解决的问题有个全面的历史的了解.有了这种了解,才能站在前人的肩膀上,把前人和当代的成果作为进一步前进的起点,不重复前人已经做过的工作,避免前人已经走过的弯路,把精力放在创造性的研究上.
文献研究法就是有关专业文摘、索引、工具书、光盘以及Internet教育信息资源等文献的检索方法以及鉴别文献真伪、发挥文献价值与创造性地利用文献的方法.
2、社会调查法
社会调查法就是人们有目的、有意识地对社会现象进行考察,从中获得来自社会系统中各种要素和结构的直接资料的一种方法.根据调查目的、调查对象和调查内容的不同,社会调查法可分为访问调查、问卷调查、个案调查等多种方法.在教育技术学研究中,经常使用问卷调查法.
3、实地观察法
实地观察法是研究者有目的、有计划地运用自己的感觉器官或借助科学观察仪器,直接了解当前正在发生的、处于自然状态下的社会现象的方法.
4、实验研究法
实验作为一种科学认识方法,开始是应用于自然科学领域,以后逐渐移植到社会科学领域.实验研究法是实验者有目的、有意识的通过改变某些社会环境的实践活动,来认识实验对象的本质及其规律的方法.实验研究法的基本要素是实验者,即实验研究中有目的、有意识的活动主体;实验对象,即实验研究所要认识的客体;实验环境和手段,即实验对象所处的社会条件.在教育技术实验研究中,实验环境就是利用现代信息技术进行教与学活动的特定社会条件;其实验手段就是借助现代信息技术进行刺激、干预、控制、检测实验对象的活动.实验研究的过程,就是这些要素相互作用、相互影响的过程.
二、理论方法
要达到完整的科学认识,仅仅运用经验方法是不够的,还必须运用科学认识的理论方法对调查、观察、实验等所获得的感性材料进行整理、分析,把原来属于零散的、片面的和表面的感性材料进行加工,使之上升为本质的、深刻的和系统的理性认识.科学研究法中的理论方法就是提供这种从感性认识向理性认识飞跃的切实可行的、具体的思考方法与加工处理的步骤的方法.它主要包括两个方面:
1、数学方法
所谓数学方法,就是在撇开研究对象的其他一切特性的情况下,用数学工具对研究对象进行一系列量的处理,从而作出正确的说明和判断,得到以数字形式表述的成果.
科学研究的对象是质和量的统一体,它们的质和量是紧密联系,质变和量变是互相制约的.要达到真正的科学认识,不仅要研究质的规定性,还必须重视对它们的量进行考察和分析,以便更准确地认识研究对象的本质特性.在教育技术学研究中,数学方法主要是运用统计处理和模糊数学分析方法.
2、思维方法
科学的思维方法是人们正确进行思维和准确表达思想的重要工具,在科学研究中最常用的科学思维方法包括归纳演绎、类比推理、抽象概括、思辩想象、分析综合等,它对于一切科学研究都具有普遍的指导意义.
三、系统科学方法
20世纪,系统论、控制论、信息论等横向科学的迅猛发展,为发展综合思维方式提供了有力的手段,使科学研究方法不断地完善.而以系统论方法、控制论方法和信息论方法为代表的系统科学方法,又为人类的科学认识提供了强有力的主观手段.它不仅突破了传统方法的局限性,而且深刻地改变了科学方法论的体系.这些新的方法,既可以作为经验方法,作为获得感性材料的方法来使用,也可以作为理论方法,作为分析感性材料上升到理性认识的方法来使用,而且作为后者的作用比前者更加明显.它们适用于科学认识的各个阶段,因此,我们称其为系统科学方法.
3. 科学研究方法有哪些
1、探索性研究
对研究对象或问题进行初步了解,以获得初步印象和感性认识,并为日后周密而深入的研究提供基础和方向。
2、描述性研究
正确描述某些总体或某种现象的特征或全貌的研究,任务是收集资料、发现情况、提供信息,描述主要规律和特征。
3、解释性研究
探索某种假设与条件因素之间的因果关系,探寻现象背后的原因,揭示现象发生或变化的内在规律。
(3)科学研究数学的方法扩展阅读:
科学研究的起源:
一类是经验问题,关注的是经验事实与理论的相容性,即经验事实对理论的支持或否证,以及理论对观察的渗透,理论预测新的实验事实的能力等问题;
另一类是概念问题,关注的是理论本身的自洽性,洞察力,精确度,统一性以及与其他理论的相容程度和理论竞争等问题。
科学研究提供的对自然界作出统一理解的实在图景,解释性范式或模型就是“自然秩序理想”,它使分散的经验事实互相联系起来,构成理论体系的基本公理和原则,是整个科学理论的基础和核心。
参考资料来源:网络—科学研究
4. 数学方法包括哪些
所谓方法,是指人们为了达到某种目的而采取的手段、途径和行为方式中所包含的可操作的规则或模式.人们通过长期的实践,发现了许多运用数学思想的手段、门路或程序.同一手段、门路或程序被重复运用了多次,并且都达到了预期的目的,就成为数学方法.数学方法是以数学为工具进行科学研究的方法,即用数学语言表达事物的状态、关系和过程,经过推导、运算与分析,以形成解释、判断和预言的方法.
数学方法具有以下三个基本特征:一是高度的抽象性和概括性;二是精确性,即逻辑的严密性及结论的确定性;三是应用的普遍性和可操作性.
数学方法在科学技术研究中具有举足轻重的地位和作用:一是提供简洁精确的形式化语言,二是提供数量分析及计算的方法,三是提供逻辑推理的工具.现代科学技术特别是电子计算机的发展,与数学方法的地位和作用的强化正好是相辅相成.
在中学数学中经常用到的基本数学方法,大致可以分为以下三类:
(1)逻辑学中的方法.例如分析法(包括逆证法)、综合法、反证法、归纳法、穷举法(要求分类讨论)等.这些方法既要遵从逻辑学中的基本规律和法则,又因为运用于数学之中而具有数学的特色.
(2)数学中的一般方法.例如建模法、消元法、降次法、代入法、图象法(也称坐标法,在代数中常称图象法,在我们今后要学习的解析几何中常称坐标法)、比较法(数学中主要是指比较大小,这与逻辑学中的多方位比较不同)、放缩法,以及将来要学习的向量法、数学归纳法(这与逻辑学中的不完全归纳法不同)等.这些方法极为重要,应用也很广泛.
(3)数学中的特殊方法.例如配方法、待定系数法、加减(消元)法、公式法、换元法(也称之为中间变量法)、拆项补项法(含有添加辅助元素实现化归的数学思想)、因式分解诸方法,以及平行移动法、翻折法等.这些方法在解决某些数学问题时也起着重要作用,我们不可等闲视之.
5. 数学的研究方法
学数学研究方法有哪些
一、学生的数学学习过程研究
1、小学数学命题改革的趋势与策略研究
2、小学数学“解决问题”评价内容与方式的研究
3、学生视角中的“好”数学教师标准的调查与研究
4、学生视角中的“好”数学课标准的调查与研究
5、 数学教师所需要哪些更高层次的知识?的本体性知识?
6、课堂教学常规研究
7、数学教师数学观的调查与分析
8、如何在校本教研中增强教师
二、教学资源研究
1、数学课堂合理利用教学资源的研究.
2、小学数学教学中有效情境的创设与利用研究
三、教学设计研究
1、小学数学概念教学的一般策略与关键因素的研究
2、关于“算”、“用”结合教学策略的研究
3、关于数学教学中动手实践有效性的研究
4、关于数学欣赏课的研究
5、关于新课程背景下口算教学的研究
四、教学过程研究
1、学生数学学习心理体验的研究
2、数学课堂教学有效性研究1、有效运用学生的学习起点实践研究
2、关注数学习困难生的实践研究
3、小学数学课前基础调查的作业设计研究
4、学生数学学习过程的优化研究.教学评价研究五、
6. 数学的方法
数学方法 - 基本概况
所谓方法,是指人们为了达到某种目的而采取的手段、途径和行为方式中所包含的可操 作的规则或模式.人们通过长期的实践,发现了许多运用数学思想的手段、门路或程
数学方法运用
序.同一手段、门路或程序被重复运用了多次,并且都达到了预期的目的,就成为数学方法.数学方法是以数学为工具进行科学研究的方法,即用数学语言表达事物的状态、关系和过程,经过推导、运算与分析,以形成解释、判断和预言的方法.用数学语言表述事物的状态、关系和过程,并加以推导、演算和分析,以形成对问题的解释、判断和预言的方法。无论自然科学、技术科学或社会科学,为了要对所研究的对象的质获得比较深刻的认识,都需要对之作出量的方面的刻画,这就需要借助于数学方法。对不同性质和不同复杂程度的事物,运用数学方法的要求和可能性是不同的。总的看,一门科学只有当它达到了能够运用数学时,才算真正成熟了。在现代科学中,运用数学的程度,已成为衡量一门科学的发展程度,特别是衡量其理论成熟与否的重要标志。
在科学研究中成功地运用数学方法的关键,就在于针对所要研究的问题提炼出一个合适的数学模型,这个模型既能反映问题的本质,又能使问题得到必要的简化,以利于展开数学推导。
建立数学模型是对问题进行具体分析的科学抽象过程,因而要善于抓住主要矛盾,突出主要因素和关系,撇开那些次要因素和关系。建立模型的过程还是一个“化繁为简”、“化难为易”的过程。当然,简化不是无条件的,合理的简化必须考虑到实际问题所能允许的误差范围和所用的数学方法要求的前提条件。对于同一个问题可以建立不同的数学模型,同时在研究过程中不断检验、比较,逐渐筛选出最优的模型,并在应用过程中继续加以检验和修正,使之逐步完善。从一个特殊问题抽象出来的数学模型常常具有某种程度的普遍性,这是因为一个特殊的数学模型可以发展成为描述同一类现象的共同的数学模型。已经获得广泛应用并且卓有成效的数学模型大体上有两类:一类称为确定性模型,即用各种数学方程如代数方程、微分方程、积分方程、差分方程等描述和研究各种必然性现象,在这类模型中事物的变化发展遵从确定的力学规律性;另一类称为随机性模型,即用概率论和数理统计方法描述和研究各种或然性现象,事物的发展变化在这类模型中表现为随机性过程,并遵从统计规律,而且具有多种可能的结果。客观世界的必然性现象和或然性现象并不是截然分开的。有些事物主要地表现为必然性现象,但是当随机因素的影响不可忽视时,则有必要在确定性模型中引入随机因素,从而形成随机微分方程这样一类数学模型。20世纪70年代以来,还陆续发现在一些确定性模型中,如某些描述保守系统或耗散结构的非线性方程,并不附加随机因素,但却在一定的参数范围内表现出“内在的随机性”,即出现分岔和混沌的随机行为。这类现象的机制及其数学问题已引起数学家和科学家的重视,目前正在研究中。
数学本身是不断发展的,对各种量、量之间以及量的变化之间关系的研究也在日益深入,新的数学概念、新的数学分支在不断出现,新的数学方法同样在相应地孕育和萌生。随着数学日益广泛地向各门科学渗透,与各种对象和各种问题相结合,人们正在从中提炼出各种新的数学模型,创建各种新的数学工具。尤其是电子计算机的运用使数学方法显示出新的生机,出现了所谓“数学实验方法”。这种方法的实质是不在实际客体上实验,而在其数学模型上“实验”,这种“实验”的操作就是在电子计算机上实现大量的数值运算和逻辑运算。这就使以往由于工作量大而难以进行的试算课题有可能完成。数学方法在这方面的发展前景是可观的。
数学方法 - 基本特征
数学方法具有以下三个基本特征:一是高度的抽象性和概括性;二是精确性,即逻辑的严密性及结论的确定性;三是应用的普遍性和可操作性.
数学方法
数学方法 - 种类
在中学数学中经常用到的基本数学方法,大致可以分为以下三类:(1)逻辑学中的方法.例如分析法(包括逆证法)、综合法、反证法、归纳法、穷举法(要求分类讨论)等.这些方法既要遵从逻辑学中的基本规律和法则,又因为运用于数学之中而具有数学的特色.。(2)数学中的一般方法.例如建模法、消元法、降次法、代入法、图象法(也称坐标法,在代数中常称图象法,在我们今后要学习的解析几何中常称坐标法)、比较法(数学中主要是指比较大小,这与逻辑学中的多方位比较不同)、放缩法,以及将来要学习的向量法、数学归纳法(这与逻辑学中的不完全归纳法不同)等.这些方法极为重要,应用也很广泛。(3)数学中的特殊方法.例如配方法、待定系数法、加减(消元)法、公式法、换元法(也称之为中间变量法)、拆项补项法(含有添加辅助元素实现化归的数学思想)、因式分解诸方法,以及平行移动法、翻折法等.这些方法在解决某些数学问题时也起着重要作用,我们不可等闲视之.
数学方法 - 作用
数学方法在科学技术研究中具有举足轻重的地位和作用:一是提供简洁精确的形式化语言,二是提供数量分析及计算的方法,三是提供逻辑推理的工具.现代科学技术特别是电子计算机的发展,与数学方法的地位和作用的强化正好是相辅相成.
数学方法 - 发展前景
无论自然科学、技术科学或社会科学,为了要对所研究的对象的质获得比较深刻的认识,都需要对之作出量的方面的刻画,这就需要借助于数学方法。对不同性质和不同复杂程度的事物,运用数学方法的要求和可能性是不同的。总的看,一门科学只有当它达到了能够运用数学时,才算真正成熟了。在现代科学中,运用数学的程度,已成为衡量一门科学的发展程度,特别是衡量其理论成熟与否的重要标志。在科学研究中成功地运用数学方法的关键,就在于针对所要研究的问题提炼出一个合适的数学模型,这个模型既能反映问题的本质,又能使问题得到必要的简化,以利于展开数学推导。建立数学模型是对问题进行具体分析的科学抽象过程,因而要善于抓住主要矛盾,突出主要因素和关系,撇开那些次要因素和关系。建立模型的过程还是一个“化繁为简”、“化难为易”的过程。当然,简化不是无条件的,合理的简化必须考虑到实际问题所能允许的误差范围和所用的数学方法要求的前提条件。对于同一个问题可以建立不同的数学模型,同时在研究过程中不断检验、比较,逐渐筛选出最优的模型,并在应用过程中继续加以检验和修正,使之逐步完善。从一个特殊问题抽象出来的数学模型常常具有某种程度的普遍性,这是因为一个特殊的数学模型可以发展成为描述同一类现象的共同的数学模型。已经获得广泛应用并且卓有成效的数学模型大体上有两类:一类称为确定性模型,即用各种数学方程如代数方程、微分方程、积分方程、差分方程等描述和研究各种必然性现象,在这类模型中事物的变化发展遵从确定的力学规律性;另一类称为随机性模型,即用概率论和数理统计方法描述和研究各种或然性现象,事物的发展变化在这类模型中表现为随机性过程,并遵从统计规律,而且具有多种可能的结果。客观世界的必然性现象和或然性现象并不是截然分开的。有些事物主要地表现为必然性现象,但是当随机因素的影响不可忽视时,则有必要在确定性模型中引入随机因素,从而形成随机微分方程这样一类数学模型。20世纪70年代以来,还陆续发现在一些确定性模型中,如某些描述保守系统或耗散结构的非线性方程,并不附加随机因素,但却在一定的参数范围内表现出“内在的随机性”,即出现分岔和混沌的随机行为。这类现象的机制及其数学问题已引起数学家和科学家的重视,目前正在研究中。数学本身是不断发展的,对各种量、量之间以及量的变化之间关系的研究也在日益深入,新的数学概念、新的数学分支在不断出现,新的数学方法同样在相应地孕育和萌生。随着数学日益广泛地向各门科学渗透,与各种对象和各种问题相结合,人们正在从中提炼出各种新的数学模型,创建各种新的数学工具。尤其是电子计算机的运用使数学方法显示出新的生机,出现了所谓“数学实验方法”。这种方法的实质是不在实际客体上实验,而在其数学模型上“实验”,这种“实验”的操作就是在电子计算机上实现大量的数值运算和逻辑运算。这就使以往由于工作量大而难以进行的试算课题有可能完成。数学方法在这方面的发展前景是可观的。
数学方法论
主要是研究和讨论数学的发展规律,数学的思想方法以及数学中的发现、发明与创新等法则的一门学问。
数学是一门工具性很强的科学,它和别的科学比较起来还具有较高的抽象性等特征,为了有效地发展它、改进它、应用它或者把它很好地传授给学生们,就要求对这门科学的发展规律、研究方法、发现与发明等法则有所掌握,因此,数学研究工作者、数学教师、科技工作者,以及高年级大学生、研究生等都需要知道一些数学方法论”。
数学方法对于数学的发展起着关键性的推动作用,许多比较困难的重大问题的解决,往往取决于数学概念和数学方法上的突破,如历史上古希腊三大尺规作图难题,就是笛卡尔创立解析几何之后,数学家们借助解析几何,采用了RMI(关系——映射——反演)方法,才得到彻底的解决;这又启发了后来的数学家们采用类似的办法解决了欧氏几何与实数理论的相对相容性问题。又如,代数方程的根式解的问题,也是在伽罗瓦群论思想方法的指导下,才得以圆满解决;不仅如此,群论的思想方法还使得代数学的研究发生了巨大的变革,从古典的局部性研究转向了近代的系统结构整体性的研究。
对数学方法论的早期研究,十七世纪就已经开始了,法国数学家笛卡尔和德国数学家莱布尼兹都曾做过这方面的探讨,并出版过专着,历史上不少着名的大数学家,如欧拉,高斯、庞加莱、希尔伯特等人也曾就数学方法沦的问题发表过许多精辟的见解,但是,对数学方法论进行系统地研究,还是最近几十年间的事,在这方面做了突出的贡献,当首推美国数学家和数学教育家波利亚,最近几十年来.由于现代电子计算机技术已经进入了人工智能和摸拟思维的阶段,就更加促使数学方法论蓬勃发展起来;信息论,控制论、认知科学和人工智能的最新研究成果相继引进了数学方法论的领域。而徐利治先生正式提出“数学方法论”这一名称,并使其成为一门独立的学科,迄今仅二十来年。
数学科学和数学史料是数学方法论的源泉,同时,数学方法论还涉及到哲学、思维科学,心理学、一般科学方法论、系统科学等众多的领域。
数学方法论分为宏观数学方法论与微观数学方法论。
数学宏观方法论所研究的是整个数学的产生、形成和发展的规律,数学理论的构造,以及数学与其它科学之间的关系。研究宏观方法论的主要途径之一是研究数学史。研究宏观方法论的另一条主要途径是研究数学理论体系的构造。
数学微观方法论所研究的是一些比较具体数学方法,特别是数学发现和数学创造的方法。包括数学思维方法、数学解题心理与数学解题理论等等。
7. 科学研究有哪些方法
所谓科学的研究方法,很明显就是科学工作者在从事某
项科学发现时所采用的方法。但是。这个过于简单的说明对
我们没有多大帮助。能不能对这个问题作出更详细的说明呢?
好吧!我们可以描述一下这个问题的一个理想答案。
(1)在进行科学研究时,应当首先认识到问题的存在。
例如,在研究物体的运动时,首先应当注意到物体为什么会
像它所发生的那样进行运动,亦即物体为什么在某种条件下
会运动得越来越快(加速运动),而在另一种条件下则会运
行得越来越慢(减速运动)。
(2)要把问题的非本质方面找出来,加以剔除。例如,
一个物体的味道对物体的运动是不起任何作用的。
(3)要把你能够找到的、同这个问题有关的全部数据
都收集起来。在古代和中世纪,这一点仅仅意味着如实地对
自然现象进行敏锐观察。但是进入近代以后,情况就有所不
同了,因为人们从那时起已经学会去模仿各种自然现象,也
就是说,人们已经能够有意地设计出种种不同的条件来迫使
物体按一定的方式运动,以便取得与该问题有关的各种数据。
例如,可以有意地让一些球从一些斜面上滚下来;这样做时,
既可以用各种大小不同的球,也可以改变球的表面性质或者
改变斜面的倾斜度,等等。这种有意设计出来的情况就是实
验,而实验对近代科学起的作用是如此之大,以致人们常常
把它称为“实验科学”,以区别于古希腊的科学。
(4)有了这些收集起来的数据,就可以作出某种初步
的概括,以便尽可能简明地对它们加以说明,亦即用某种简
明扼要的语言或者某种数学关系式来加以概括。这也就是假
设或假说。
(5)有了假说以后,你就可以对你以前未打算进行的
实验的结果作出推测。下一步,你便可以着手进行这些实验,
看看你的假说是否成立。
(6)如果实验获得了预期的结果,那么,你的假说便
得到了强有力的事实依据,并可能成为一种理论,甚至成为
一条“自然定律”。
当然,任何理论或自然定律都不是最后定论。这一过程
会一次又一次地重复下去。新的数据,新的观察和新的实验
结果将不断出现,旧的自然定律将不断为更普遍的自然定律
所替代,因为这些新的定律不但能说明旧定律所能解释的各
种现象,而且还能说明旧定律所不能解释的一些现象。
以上这些,正如我已经说过的,是一种理想的科学研究
方法。但是在真正的实践中,科学工作者并不需要像做一套
柔软体操那样一步一步地进行下去,而且他们通常也不这样
做。
比起旁的事情来,像直觉、洞察力甚至运气这一类因素
常常更起作用。在整部科学史中充满了这样的例子。有不少
科学家仅仅根据很不充分的数据和很少一点实验结果(有时
甚至一点实验结果也没有),便突然灵机一动,得出了有用
的、合乎事实的论断。这样的论断,如果按部就班地通过上
述理想的科学研究方法进行,就可能要用好几年的时间才能
得到。
例如,凯库勒就是在邮车上打瞌睡的时候,突然领悟到
苯的化学结构的。洛维则在半夜醒来的时候,突然得到了关
于神经刺激的化学传导问题的答案。格拉泽却由于无聊地凝
视着一杯啤酒,才得到了气泡室的想法。
然而这是不是说,一切都是凭好运气得来的,根本不需
要动脑筋去思考呢?不,绝对不是的。这样的“好运气”只
有那些具有最好领悟力的人才会碰上,换句话说,有些人之
所以会碰上这样的“好运气”,只是因为他们具有十分敏锐
的直觉,而这种敏锐的直觉则是依靠他们丰富的经验、深刻
的理解力和平时爱动脑筋换来的。
阿西莫夫《你知道吗?--现代科学中的一百个问题》
科学普及出版社
1984年
8. 科学研究方法有哪些 有哪些研究是科学研究
常用的科学研究方法是:(1)假设与理论;(2)实验与观察(3)科学抽象.包括:非逻辑方法(理想化方法,模型方法,类比方法)和逻辑方法(分析与综合,演绎与归纳)(4)数学方法(5)"三论"(控制论,信息论,系统论)与系统科学方法(耗散结构论,协同学理论,突变论).
9. 数学方法有哪些
一、抓住课堂
理科学习重在平日功夫,不适于突击复习。平日学习最重要的是课堂45分钟,听讲要聚精会神,思维紧跟老师。同时要说明一点,许多同学容易忽略老师所讲的数学思想、数学方法,而注重题目的解答,其实诸如\"化归\"、\"数形结合\"等思想方法远远重要于某道题目的解答。
二、高质量完成作业
所谓高质量是指高正确率和高速度。写作业时,有时同一类型的题重复练习,这时就要有意识的考查速度和准确率,并且在每做完一次时能够对此类题目有更深层的思考,诸如它考查的内容,运用的数学思想方法,解题的规律、技巧等。另外对于老师布置的思考题,也要认真完成。如果不会决不能轻易放弃,要发扬\"钉子\"精神,一有空就静心思考,灵感总是突然来到你身边的。最重要的是,这是一次挑战自我的机会。成功会带来自信,而自信对于学习理科十分重要;即使失败,这道题也会给你留下深刻的印象。
三、勤思考,多提问
首先对于老师给出的规律、定理,不仅要知\"其然\"还要\"知其所以然\",做到刨根问底,这便是理解的最佳途径。其次,学习任何学科都应抱着怀疑的态度,尤其是理科。对于老师的讲解,课本的内容,有疑问应尽管提出,与老师讨论。总之,思考、提问是清除学习隐患的最佳途径。
四、总结比较,理清思绪
(1)知识点的总结比较。每学完一章都应将本章内容做一个框架图或在脑中过一遍,整理出它们的关系。对于相似易混淆的知识点应分项归纳比较,有时可用联想法将其区分开 。
(2)题目的总结比较。同学们可以建立自己的题库。我就有两本题集。一本是错题,一本是精题。对于平时作业,考试出现的错题,有选择地记下来,并用红笔在一侧批注注意事项,考试前只需翻看红笔写的内容即可。我还把见到的一些极其巧妙或难度高的题记下来,也用红笔批注此题所用方法和思想。时间长了,自己就可总结出一些类型的解题规律,也用红笔记下这些规律。最终它们会成为你宝贵的财富,对你的数学学习有极大的帮助。
五、有选择地做课外练习
课余时间对我们中学生来说是十分珍贵的,所以在做课外练习时要少而精,只要每天做两三道题,天长日久,你的思路就会开阔许多。
学习数学方法固然重要,但刻苦钻研,精益求精的精神更为重要。只要你坚持不懈地努力,就一定可以学好数学。相信自己,数学会使你智慧的光芒更加耀眼夺目!
所谓方法,是指人们为了达到某种目的而采取的手段、途径和行为方式中所包含的可操《数学方法论在数学教学教育中的应用》封面
作的规则或模式.人们通过长期的实践,发现了许多运用数学思想的手段、门路或程序.同一手段、门路或程序被重复运用了多次,并且都达到了预期的目的,就成为数学方法.数学方法是以数学为工具进行科学研究的方法,即用数学语言表达事物的状态、关系和过程,经过推导、运算与分析,以形成解释、判断和预言的方法.
编辑本段特征
数学方法具有以下三个基本特征:一是高度的抽象性和概括性;二是精确性,即逻辑的严密性及结论的确定性;三是应用的普遍性和可操作性.
编辑本段作用
数学方法在科学技术研究中具有举足轻重的地位和作用:一是提供简洁精确的形式化语言,二是提供数量分析及计算的方法,三是提供逻辑推理的工具.现代科学技术特别是电子计算机的发展,与数学方法的地位和作用的强化正好是相辅相成.
编辑本段分类
在中学数学中经常用到的基本数学方法,大致可以分为以下三类: (1)逻辑学中的方法.例如分析法(包括逆证法)、综合法、反证法、归纳法、穷举法(要求分类讨论)等.这些方法既要遵从逻辑学中的基本规律和法则,又因为运用于数学之中而具有数学的特色. (2)数学中的一般方法.例如建模法、消元法、降次法、代入法、图象法(也称坐标法,在代数中常称图象法,在我们今后要学习的解析几何中常称坐标法)、比较法(数学中主要是指比较大小,这与逻辑学中的多方位比较不同)、放缩法,以及将来要学习的向量法、数学归纳法(这与逻辑学中的不完全归纳法不同)等.这些方法极为重要,应用也很广泛. (3)数学中的特殊方法.例如配方法、待定系数法、加减(消元)法、公式法、换元法(也称之为中间变量法)、拆项补项法(含有添加辅助元素实现化归的数学思想)、因式分解诸方法,以及平行移动法、翻折法等.这些方法在解决某些数学问题时也起着重要作用,我们不可等闲视之.
编辑本段相关
无论自然科学、技术科学或社会科学,为了要对所研究的对象的质获得比较深刻的认识,都需要对之作出量的方面的刻画,这就需要借助于数学方法。对不同性质和不同复杂程度的事物,运用数学方法的要求和可能性是不同的。总的看,一门科学只有当它达到了能够运用数学时,才算真正成熟了。在现代科学中,运用数学的程度,已成为衡量一门科学的发展程度,特别是衡量其理论成熟与否的重要标志。 在科学研究中成功地运用数学方法的关键,就在于针对所要研究的问题提炼出一个合适的数学模型,这个模型既能反映问题的本质,又能使问题得到必要的简化,以利于展开数学推导。数学方法
建立数学模型是对问题进行具体分析的科学抽象过程,因而要善于抓住主要矛盾,突出主要因素和关系,撇开那些次要因素和关系。建立模型的过程还是一个“化繁为简”、“化难为易”的过程。当然,简化不是无条件的,合理的简化必须考虑到实际问题所能允许的误差范围和所用的数学方法要求的前提条件。对于同一个问题可以建立不同的数学模型,同时在研究过程中不断检验、比较,逐渐筛选出最优的模型,并在应用过程中继续加以检验和修正,使之逐步完善。从一个特殊问题抽象出来的数学模型常常具有某种程度的普遍性,这是因为一个特殊的数学模型可以发展成为描述同一类现象的共同的数学模型。已经获得广泛应用并且卓有成效的数学模型大体上有两类:一类称为确定性模型,即用各种数学方程如代数方程、微分方程、积分方程、差分方程等描述和研究各种必然性现象,在这类模型中事物的变化发展遵从确定的力学规律性;另一类称为随机性模型,即用概率论和数理统计方法描述和研究各种或然性现象,事物的发展变化在这类模型中表现为随机性过程,并遵从统计规律,而且具有多种可能的结果。客观世界的必然性现象和或然性现象并不是截然分开的。有些事物主要地表现为必然性现象,但是当随机因素的影响不可忽视时,则有必要在确定性模型中引入随机因素,从而形成随机微分方程这样一类数学模型。20世纪70年代以来,还陆续发现在一些确定性模型中,如某些描述保守系统或耗散结构的非线性方程,并不附加随机因素,但却在一定的参数范围内表现出“内在的随机性”,即出现分岔和混沌的随机行为。这类现象的机制及其数学问题已引起数学家和科学家的重视,目前正在研究中。