① 岩心图像扫描分析技术及其应用
刘宁安明泉陈攀峰郑胜利王艳琴
摘要该文系统介绍了岩心图像扫描分析技术,阐述了图像处理和相关沉积构造参数计算方法;并以车古201井为例,通过岩心观察与岩心扫描分析相结合,对该井早古生代奥陶纪碳酸盐岩储集层储集空间发育特征及含油性进行了综合分析。
关键词岩心图像扫描图像分析储集层裂缝溶蚀孔洞
一、引言
岩心是油气田勘探开发研究工作中最重要的基础地质资料之一,岩心的观察描述在确定岩性,推断沉积环境以及生储盖组合综合研究中,具有不可替代的作用[1]。以往常规岩心观察描述的劳动强度较大,加之频繁的采样、自然风化等因素造成的岩心缺失、错乱和破坏,使其准确性和完整性受到影响,不利于研究工作的深入。岩心图像扫描分析是近年发展起来的一项岩心分析新技术,通过对岩心进行扫描观察分析,并结合钻井、测井、地质分析化验等多方面地质资料,开展综合研究,极大地提高了岩心观察描述的效率和岩心资料的利用率,该技术对于单井基础资料的补充完善,以及相应综合研究工作的开展,都具有重要意义。
二、岩心图像扫描分析技术简介
岩心图像扫描分析技术主要包括岩心图像扫描、岩心图像处理和岩心图像地质分析。
1.岩心图像扫描
岩心图像扫描是岩心图像扫描分析技术的基础。它是利用彩色岩心扫描仪对岩心表面图像信息进行采集、传输和存储的技术。所形成的岩心图像,分辨率为5000像素/m2,频谱范围400~700nm(可见光频谱范围380~780nm)。岩心图像文件以BMP格式保存。
根据岩心保存状况和地质分析需要,岩心图像扫描有两种工作模式,圆周展开式扫描和平面式扫描(图1)。
(1)圆周展开式扫描
该模式是圆柱状岩心在扫描仪机械装置驱动下,绕中心轴线缓慢转动,同时扫描头连续采集岩心表面图像信息的扫描工作方式。扫描形成的岩心图像是360°岩心圆周表面图像,可完整地记录岩心表面所有的图像信息。
圆周展开式扫描技术要求:岩心直径范围≤150mm,一次扫描长度≤1000mm。该模式适用于形状规则、成形较好的岩心。
图1岩心图像扫描示意图
(2)平面式扫描
该模式是扫描头沿岩心轴向移动并同时采集岩心图像信息的扫描工作方式。扫描形成的岩心图像是岩心剖面图像。
平面式扫描技术要求:岩心直径≤300mm,一次扫描长度≤950mm。该模式主要适用于那些破碎、形状不规则、胶结疏松和剖切后的岩心。
2.岩心图像处理
岩心图像处理是把单幅的岩心图像,按照岩心出筒自然顺序根据深度从顶到底进行拼接,形成岩心各筒次的纵向柱状岩心图像,再按照深度标记分段,把岩心精细描述分别粘贴到对应位置,制成图文并茂的岩心图件。
(1)岩心图像拼接
岩心图像拼接可实现岩心图像以取心筒次为单位,根据岩心深度拼接为纵向岩心柱状图像,并沿深度标尺展现岩心宏观整体状况。岩心图像最大拼接长度可达12m。单幅岩心图像通过拼接,可使研究人员对不同层段岩心宏观岩性、沉积构造、孔缝发育情况等有更清楚的认识。
(2)岩心图件制作
岩心图像扫描、拼接过程中,地质技术人员可结合现场录井岩心描述、岩心综合录井图和相关岩心分析化验等资料,对扫描过的岩心进行精细描述,制成图文并茂的岩心图件。这为科研人员充分利用岩心资料提供了便利。
3.岩心图像地质分析
岩心图像地质分析是基于岩心拼接图像资料,定量分析图像所反映的沉积构造和裂缝的技术。它包括沉积构造、裂缝产状分析和裂缝参数分析。
(1)沉积构造、裂缝产状分析
沉积构造和裂缝是岩心观察描述的重要内容。通过沉积构造和裂缝的识别、统计和研究,可以判断碎屑岩的沉积水动力条件、沉积环境,研究裂缝性油藏的古地应力方向、强度和储集层物性等。
在对沉积构造和裂缝进行定性分析的基础上,利用岩心圆周展开图像,对于某些沉积构造和裂缝进行产状分析,可以获得其深度、倾向、倾角等参数,并以矢量图显示出来。
沉积构造、裂缝产状分析的数学模型公式为:
胜利油区勘探开发论文集
从图2中可以看出,D点为岩心圆周面沉积构造、裂缝轨迹线的最低点,E点为其最高点。截面 DEF过岩心圆柱体的中轴线,DF=d,EF=2a0。
图2沉积构造产状分析数学模型示意图
通过人机交互操作,在岩心圆周展开图上,沿沉积构造、裂缝的图像轨迹任意选取三个点,A(xa,ya)、B(xb,yb)、C(xc,yc)。把三个点的坐标代入数学模型公式,建立三元一次方程组,可求解出y0、a0、x0。则
胜利油区勘探开发论文集
式中:h——沉积构造、裂缝的平均深度,m;
α——沉积构造、裂缝的视倾向,(°);
β——沉积构造、裂缝的倾角,(°);
d——岩心直径,m。
(2)岩心裂缝参数分析与计算
裂缝的发育状况是裂缝性油藏储集层研究的核心,对岩心平面图像裂缝分析,可实现裂缝识别,计算裂缝的长度、开启度、面密度和体积密度等参数,从而分析裂缝的连通性和有效性。
三、应用实例分析
车古201井位于济阳坳陷车镇凹陷车西洼陷车3鼻状构造带,完钻井深4697m。该井在下古生界试油后获得日产220t的高产。应用彩色岩心扫描仪及其配套软件对车古201井岩心进行了图像扫描分析,结合观察岩心及岩矿鉴定和常规物性及其他分析资料,对车古201井早古生代奥陶纪碳酸盐岩储集层岩心孔洞裂缝特征及含油性进行了分析研究。
1.岩性及孔缝特征
车古201井下古生界奥陶系岩心(3267.00~3946.30m)为灰岩和白云岩,根据油气显示情况,自上而下可分为以下三部分(图3)。
图3车古201井奥陶纪碳酸盐岩岩心柱状图
(1)上部
取心井段3267.00~3293.60m。主要岩性为褐灰色油斑灰岩和灰黄色白云岩,致密坚硬。镜下薄片观察隐晶质结构为主,较多见砂屑、球团粒等,顶部见凝块状黄铁矿。岩心观察该段较破碎,垂直或高角度裂缝较发育,缝宽一般为1~5mm,多被方解石充填,局部裂缝呈树枝状。岩心溶蚀孔洞发育,多被棕褐色原油浸染,微染手或染手,含油性较好,含油级别为油斑。溶蚀孔洞多分布于裂缝面上,主要为充填裂缝的结晶方解石晶间孔受溶蚀而成,孔径一般为2~5mm,最大可见24mm×12mm×8mm的大洞(3281.0m处),面孔率最大可达25%。
常规物性分析,该段岩心岩石孔隙度一般2%左右,局部可达6%~12%;裂缝发育,岩心水平渗透率一般在1×10-3μm2以上,局部可达77.8×10-3μm2(3271.00~3279.20m井段)。
(2)中部
非连续取心,取心井段3355.00~3508.70m,含油性较差,主要岩性为褐灰色灰质白云岩、白云质灰岩,少量为灰白色硬石膏质白云岩等。
3355.00~3362.10m井段,较多见构造成因的高角度垂直缝、近垂直缝等,低角度斜交缝、水平缝较少。裂缝多被充填,充填物主要为方解石。镜下观察可见充填裂缝的方解石晶间孔被溶蚀。岩心观察裂缝宽度为0.5~8mm,以2~5mm居多,裂缝线密度为16~110条/m,以20~45条/m为多,面密度10~21m/m2。
3401.00~3408.50m井段,以硬石膏质白云岩为特征。裂缝充填物主要为硬石膏。岩心硬石膏为透镜状、雪花状,镜下观察多呈板状、纤维状集合体。硬石膏充填裂缝宽度为0.5~10mm,一般2~7mm,裂缝发育段线密度一般为30~50条/m,面密度一般为10~16m/m2。
3484.30~3508.70m井段,岩性主要为白云质灰岩。裂缝充填物为方解石。裂缝规模较小,缝宽一般为0.5~2mm,裂缝线密度一般为9~28条/m,面密度一般为6~20m/m2。
(3)下部
取心井段3942.50~3946.30m主要岩性为灰色油斑燧石白云岩,镜下见硅质充填白云石晶间孔。岩心观察孔缝发育,多见未充填、半充填微裂缝,均为有效张开裂缝,缝面含油。裂缝充填物主要为方解石。孔洞顺裂缝发育,分布不均,含油,连通性好,孔径一般在1mm左右,孔长1~5mm,最大可达5mm,孔洞面密度约2个/cm2。部分岩心破碎严重,多见小裂缝面和充填的方解石矿物晶体,溶孔呈蜂窝状,孔径为0.3~2mm。
2.岩心孔缝分类及含油性分析
车古201井3267.00~3946.30m段岩心主要为碳酸盐岩,孔缝发育,不同井段孔缝发育特征存在一定差异。这与岩性、构造背景和溶蚀作用改造等因素有密切关系。
(1)裂缝分类
岩心图像及薄片观察车古201井储集层岩心裂缝发育状况,据成因可分为构造缝、溶蚀缝、缝合线三大类。因构造活动而产生的构造缝在车古201井发育最普遍。从构造应力作用方式看,主要有两种成因类型:构造拉张作用形成的裂缝,主要为垂直缝和高角度斜交缝,规模一般较大,居主导地位;构造挤压作用形成的裂缝,主要为低角度斜交缝,规模相对较小,以小于2mm的微裂缝为主。
(2)裂缝成因期次及有效性分析
岩心及图像观察,该井下古生界奥陶系中发育裂缝多为垂直缝和高角度缝,裂缝间距为10~30mm,多数裂缝为构造成因,部分溶蚀现象较为明显,可能为构造缝后期溶蚀作用改造而成。从裂缝切割关系判断,明显存在两期以上裂缝形成期次。总体看,早期成因的构造裂缝,由于受后期成岩作用和挤压影响较大,多为低角度斜交缝,规模一般较小,溶蚀孔洞一般不发育;而晚期形成的构造裂缝,受拉张作用影响较大,多为高角度缝斜交和垂直缝,发育规模较大,缝宽一般大于2mm,方解石充填物易被溶蚀,受后期成岩作用影响小,溶蚀孔洞亦较发育。岩心观察裂缝宽度差异很大,既有微细裂缝,也有10mm以上的大缝,缝宽一般为0.5~3mm。
镜下观察微裂缝小于1mm,一般为0.02~0.3mm;根据充填情况可分为全充填、半充填、未充填等。以全充填缝最多,半充填缝次之,未充填缝则较少见。
根据图像扫描分析,与微细裂缝伴生的大裂缝或微细裂缝,呈枝状或网状,溶蚀孔洞发育,裂缝连通性及有效性较好。
从裂缝充填物成分看,灰岩中的裂缝充填物主要为方解石,白云岩中的裂缝充填物主要为方解石或石膏。岩心常规物性分析表明,裂缝发育的岩心,渗透率高低主要取决于充填物成分:方解石充填缝,水平渗透率较基质渗透率高10~100倍,一般为1×10-3~10×10-3μm2,尤其是发育孔洞的方解石充填缝,孔、渗值则更高,最大可达77.8×10-3μm2,是油气主要的储集空间与渗流通道;硬石膏充填缝,溶蚀孔洞一般不发育,水平渗透率都在1×10-3μm2以下,储集性与渗透性较差。
(3)溶蚀孔洞与裂缝关系
岩心及图像扫描观察,溶蚀孔洞的发育与裂缝有密切关系。
充填裂缝的方解石,一般结晶较好,缝面方解石晶间孔发育,易受后期溶蚀作用改造,形成溶蚀孔洞[2]。岩心剖面上可见溶蚀孔洞主要顺较宽的裂缝不均匀分布,多呈串珠状、蜂窝状。
溶蚀孔洞是否发育还与裂缝形成期次及裂缝充填物成分有关。早期裂缝由于受后期成岩作用影响较大,溶蚀孔洞多不发育,而晚期裂缝受后期成岩作用影响较小,溶蚀孔洞较发育。灰岩、白云岩中的方解石充填缝,溶蚀孔洞发育,而硬石膏充填缝,孔洞不发育,这是因为充填物硬石膏成分(CaSO4)与方解石(CaCO3)相比,不易被溶解[2]。
车古201井取心层段上部地层由于临近古潜山风化壳,裂缝充填物主要为方解石,受溶蚀作用改造较强,溶蚀孔洞与裂缝最发育;下部地层溶蚀作用较弱,孔洞和裂缝发育较次;而中部地层裂缝虽较发育,但由于充填物主要为硬石膏,不易被溶蚀,故孔洞不发育。总体看,溶蚀孔洞的形成普遍要晚于裂缝,孔洞沿缝分布,是缝的扩大和延伸,二者相辅相成,互为促进。裂缝溶蚀作用发育层段,溶蚀孔洞发育;裂缝溶蚀作用不发育,溶蚀孔洞就减少甚至消失。
(4)孔缝发育影响因素分析
车古201井碳酸盐岩储集层孔缝发育受岩性、构造运动、充填物、岩溶作用等因素影响。
岩性不同岩性储集层裂缝发育程度不同。灰岩层段破碎程度大,裂缝发育程度较白云岩层段强;薄层质纯的灰岩、白云岩,脆性相对较大,抗张、抗压强度较小,易产生裂缝;而泥质含量高的灰岩、白云岩脆性减弱,抗张、抗压强度增大,不易产生裂缝。
充填物岩心及薄片观察,裂缝充填物主要为方解石、硬石膏、高岭石、硅质等。方解石充填最常见,广泛发育,尤其是后期形成的方解石充填缝,易溶蚀,进而产生溶蚀孔缝,对于储集空间有效性来说最有意义;硬石膏充填裂缝局部发育,集中于膏质白云岩中,但由于硬石膏不易被溶解,充填缝基本为全充填,溶蚀孔缝不发育,对于油气聚集无意义;高岭石、硅质充填物个别可见,发育少,但由于高岭石晶间微孔发育,硅质一般为半充填,因此形成的裂缝具一定意义。
构造运动构造运动是控制裂缝形成的重要因素,表现为构造应力和断裂带的发育对裂缝影响。一般而言,构造应力场高值区构造裂缝相对较发育。从灰岩、白云岩抗张、抗压强度分析,白云岩抗压强度低于灰岩,在挤压应力下最易破裂;而灰岩的抗张强度值较低,在张应力环境中更易形成破裂[3]。断层的发育与裂缝发育程度之间关系密切。断层发育带往往是破裂带,也是裂缝发育带。距断层越近,裂缝越发育,沿主断层方向,裂缝最发育。从构造部位看,构造应力多沿褶皱轴部集中发育,此处多为裂缝发育带。构造运动的多期性,决定了多期次、多组系裂缝的形成[3]。
溶蚀作用溶蚀作用是影响裂缝(尤其是有效裂缝)发育的主要地质因素之一,它对裂缝(尤其是充填缝)具有明显的改善作用。裂缝是储集体的主要渗滤通道,而溶蚀孔是主要的储集空间,对于油气的运移与聚集,二者缺一不可。
(5)溶蚀孔缝及其含油性分析
根据岩心观察和图像扫描分析,车古201井下古生界奥陶系碳酸盐岩多个层段见油气显示(表1)。含油段岩心缝洞发育,溶孔多为晶间孔溶蚀而成。含油孔缝周边普遍被原油浸染,呈棕褐色,油味浓,多微染手或染手,具油脂感。根据物性分析,含油段岩心孔、渗参数普遍好于非含油段。
表1车古201井下古生界孔缝发育与含油井段常规物性统计表
总体来看,具油气显示的岩心层段主要分布在孔洞缝发育带。溶蚀孔洞及其相连裂缝发育处,多数含油,油气显示一般较好。溶蚀孔洞大小分布不均,孔径为2~5mm。孔洞发育处多呈蜂窝状,面孔率可达25%,连通性好。溶蚀孔洞是良好的储集空间,而与其相连的裂缝则是主要的油气运移通道,二者相辅相成,互为促进,极大地提高了储集层的储集性能。
因此,溶蚀孔缝是否发育决定油气显示好坏,油气的生成、运移与聚集明显是在孔洞缝(尤其是溶蚀孔缝)形成之后,为典型的“新生古储”型。其储集层类型主要为裂缝—孔洞型。具体表现为取心井段上部、下部溶蚀孔洞、裂缝均较发育,孔缝含油性相对好;中部取心井段,裂缝虽也较发育,但由于其充填物全为硬石膏,溶蚀孔洞与裂缝不发育,基本不含油。
根据试油资料,早古生代奥陶纪碳酸盐岩储集层产能较好。3265.23~3314.5m井段测试结果折合日产油77.9t;3321.08~3408.5m井段测试结果折合日产油14.3t/d;3905.95~3959.5m井段测试结果折合日产油222.8t,产能最大。产油层段与岩心观察溶蚀孔洞缝发育段基本一致。
3.认识与结论
经岩心观察和图像扫描分析,对车古201井早古生代奥陶纪碳酸盐岩储集层岩心孔缝及含油特征的综合研究,可得出以下认识与结论。
第一,车古201井深层奥陶纪古潜山碳酸盐岩储集层孔洞缝极发育,可为油气聚集与运移提供较好的储集空间和运移通道。储集层发育裂缝主要为构造成因的高角度缝和垂直缝,部分经溶蚀作用改造,而孔洞主要为溶蚀成因。
第二,根据裂缝形成期次早晚和所受应力方向不同,可将裂缝分为早期挤压成因裂缝和晚期拉张成因裂缝两大类。早期裂缝,以挤压成因为主,现所见一般规模相对较小,多为低角度斜交缝;晚期裂缝,以拉张成因为主,现所见一般规模较大,主要为高角度缝和垂直缝。车古201井碳酸盐岩储集层裂缝发育情况看,明显以晚期拉张成因的高角度斜交缝和垂直缝居主导地位。
第三,车古201井深层碳酸盐岩溶蚀孔洞的发育与否,同裂缝发育规模以及充填物成分关系密切。主要表现为一定规模裂缝中的方解石充填物后期被溶蚀而产生大量溶蚀孔洞;而以硬石膏为充填物的裂缝,即使具一定规模,溶蚀孔洞亦不发育。
第四,从岩心观察油气显示情况看,车古201井下古生界碳酸盐岩储集层主要为裂缝—孔洞含油,为典型裂缝—孔洞型储集层,孔洞缝发育与否与油气显示关系极为密切。储集层岩心上部和下部经过溶蚀作用改造,溶蚀孔洞与裂缝发育,含油性好;中部膏质白云岩段未经溶蚀作用改造,溶蚀孔缝不发育,则基本不含油。
四、结束语
彩色岩心图像扫描分析系统的应用,为岩心观察描述工作提供了新方法、新手段,对于岩心资料的保存和研究工作的拓展应用具有重要意义,具体表现在以下几个方面:①岩心出筒后通过岩心图像扫描,能最大限度地保持岩心原始资料的完整性,一定程度上避免了后期由于取样分析对原始岩心破坏造成的损失;②彩色岩心图像扫描分析技术,可提供高质量的岩心图像资料,提高科研工作效率;③通过对岩心图像的处理和地质分析,可实现岩心图像信息的精细描述与定量分析研究,结合录井、测井以及相应的分析化验资料,可针对不同类型岩心开展相应的研究工作,如储集层评价、沉积相分析等;④随着计算机网络技术的发展,彩色岩心图像扫描分析技术的开发和应用使岩心图像资料实现了数字化、网络化管理,便于岩心资料的进一步交流和使用。随着数字化岩心库建设,将极大提高岩心资料的利用率。
主要参考文献
[1]许运新,蒋承藻,萧得铭编着.岩心描述与用途.哈尔滨:黑龙江科学技术出版社,1994.
[2]强子同主编.碳酸盐岩储集层地质学.东营:石油大学出版社,1998.
[3]吴元燕,徐龙,张昌明等编.油气储集层地质.北京:石油工业出版社,1996.
② 储层评价常规分析项目
储层评价的常规分析项目包括薄片鉴定,孔、渗、饱测定,粒度分析和重矿分析等。它们是储层评价中必不可少的基本测试项目。相对应的石油天然气行业标准为:SY/T5913—2004“岩石制片方法”、SY/T5368—2000“岩石薄片鉴定”、SY/T5336—2000“岩心常规分析方法”、SY/T5434—1999“砂岩粒度分析方法”,以及SY/T6336—1997“沉积岩重矿物分离与鉴定方法”。
72.9.1.1 薄片鉴定
方法提要
试样经切片、胶固,和粗、细、精磨平面以后,粘在载物片上,然后再进行粗、细、精磨片。盖好盖片,置于岩石偏光显微镜下,观察鉴定,进行分类和命名。
仪器和设备
切片机、自动磨片机、磨片机、抛光机。
偏光显微镜:配备机械台、主数器、照相系统。
电炉、低温(45~100℃)电烘箱、热水器。
Ф25mm聚乙烯模具。
试剂和材料
黏合剂“501”、不发光的“502”、固体冷杉胶、环氧树脂。
染色剂茜素红、铁氰化钾、氢氟酸、亚硝酸钴钠,氯化钡、玫棕酸钾盐。
岩石薄片制片
每块试样至少切取25mm×25mm×5mm或Ф25mm×5mm的岩样两块,一块磨制薄片,另一块做手工标本。岩屑试样必须选取3个以上岩样。将需要胶固的岩样用电炉在温度50~60℃加热,除掉轻质油及水分。将胶固好的岩样在磨片机上用100号碳化硅金刚砂与水混合粗磨,然后进行第二次胶固。第二次固前的岩样,放在磨片机上用W28号碳化硅金刚砂与水混合细磨,磨至平面光滑。然后将细磨好平面的岩样用W7号白色刚玉金刚砂与水混合在玻璃板上精磨,磨至平面光亮为止。将固体冷杉胶涂在载物片的中尖部位和岩样平面上,使岩样与载物片胶合。将粘好在载物片上的岩样,在磨片机或调好厚度的自动磨片机上粗磨,至厚度为0.28~0.40mm,岩片不脱胶,将粗磨好的岩片,在磨片机上磨至0.12~0.18mm,岩片保持完整。将细磨好的岩片,在玻璃板上用W20号白色刚玉金刚砂与水混合精磨,至0.04~0.05mm。偏光显微镜下,石英干涉色为一级黄色,无掉砂现象。然后用W7号白色刚玉金刚砂与水混合在玻璃板上磨至0.03mm。偏光显微镜下,石英干涉色为一级灰白色。如为碳酸盐岩,则磨至0.04mm,偏光显微镜下,结构清晰,干涉色为高级白。
镜下观察和鉴定内容
在手标本肉眼观察鉴定的基础上,制好的岩薄片都要置于偏光显微镜下观察,系统描述鉴定岩石薄片鉴定内容,视不同岩性而有差异。
1)砂岩。
a.矿物成分及含量。碎屑颗粒,杂质和胶结物的成分及含量。
b.结构。是指各组分的形态特征,包括碎屑颗粒本身的特点、胶结物的特点,以及碎屑与胶结物之间的关系。
c.显微构造。描述镜下可见的构造,如颗粒排列方式、结核构造、显微粒序层理、微细纹理、微冲刷面、同生变形及生物扰动构造等。
d.储集空间类型。按大小形态分为孔、洞、缝3大类,并按成因分类13个亚类,见表72.23。
表72.23 孔隙类型表
e.岩石定名。采用颜色+构造+粒度+成分方式进行岩石定名,如灰白色块状中粒石英砂岩。一般砂岩类型可分为纯石英砂岩、石英砂岩、次岩屑长石砂岩或次长石岩屑砂岩、长石岩屑砂岩或岩屑长石砂岩、长石砂岩、岩屑砂岩等,见表72.24。
表72.24 砂岩分类表(SY/T5368—2000)
2)碳酸盐岩。
a.矿物成分及含量。
碳酸盐矿物主要是方解石、白云石,其次是铁白云石、铁方解石、菱铁矿和菱镁矿等。还有自生的非碳酸盐矿物,如石膏; 以及陆源碎屑混合物,如黏土矿物等。
矿物含量镜下面积百分比统计。凡属交代矿物,都应计入矿物百分比中,但裂缝或空洞内的任何填充物,均不计入。
b.结构组分和结构类型。
碳酸盐岩的结构在一定程度上反映了岩石的成因,它是岩石的重要鉴定标志,也是岩石分类命名的依据。
① 具颗粒结构的碳酸盐岩。颗粒类型包括内碎屑、鲕粒、生物颗粒、球粒、藻粒等;填隙物由化学沉淀物 (亮晶胶结物) 、泥晶基质及少量陆原杂基及渗流粉砂组成; 注意它们的胶结类型。② 具晶粒结构的碳酸盐岩。注意晶粒的大小,自形程度。③ 具生物格架的碳酸盐岩。描述造礁生物种类、骨架的显微结构、矿物成分,大小分布等特点。
c.沉积构造。包括显微层理、微型冲刷、充填构造、结核构造、缝合线及成岩收缩缝等,乌眼及示底构造、生物钻孔、潜穴生物扰动等。
d.成岩作用。主要有溶解作用、矿物的转化作用和重结晶作用、胶结作用、交代作用、压实作用和压溶作用。注意观察这些成岩阶段 (同生期、早成岩期、晚成岩期、表生期) 、不同成岩环境 (海底成岩环境和大气淡水成岩环境,浅—中埋藏成岩环境、深埋藏成岩环境、表生成岩环境) 中的特点和识别标志。
e.孔隙和裂缝。用铸体薄片观察原生及次生孔隙,以次生孔隙发育为特征的储层还包括构造裂缝描述与观察。从孔隙结构类型来讲,主要有粒内、粒间、晶间、生物格架、遮蔽、鸟眼、铸模等孔隙,还有溶孔、溶缝、溶沟、溶洞等。
f.岩石综合定名 (表72.25) 。附加岩石名称 (颜色 + 成岩作用类型 + 特殊矿物 + 特殊结构) + 岩石基本名称 (结构命名 + 矿物成分) 命名,主要岩石类型有: 泥晶灰岩或白云岩、粒屑泥晶灰岩或白云岩、泥晶粒屑灰岩或白云岩、亮晶粒屑灰岩或白云岩。表72.25 碳酸盐岩组构分类命名
岩石矿物分析第四分册资源与环境调查分析技术
3) 岩浆岩。
a.结构。① 岩浆岩结构按晶粒大小可分粗粒大于 5mm、中粒 1~ 5mm、细粒 0.1~1mm。② 按结晶程度可分全晶质、隐晶质。③ 按矿物关系可分花岗结构、交织结构、辉绿结构等。
b.构造。有流纹构造、气孔构造、杏仁构造及珍珠构造等。
c.岩浆岩岩石类型。见表72.26。
表72.26 岩浆岩岩石类型及特征
d.命名原则。岩浆岩的名称包括基本名和附加名称两部分,基本名称在后,附加名称在前。基本名称根据主要造岩矿物确定,附加名称要反映岩石的特殊性,可以是次生变化、结构或构造等。
4) 变质岩。
a.矿物成分。
主要矿物,石英、方解石、钾长石、角闪石、辉石、磷灰石等。次要矿物,绿泥石、白云母、钠长石、刚玉等。特征矿物,红柱石、矽线石、董青石、蓝晶石、符山石等。
b.岩石类型。变质岩所分类型见表72.27。
表72.27 变质岩岩石类型及特征
① 区域变质岩,板岩、千枚岩、片岩、片麻岩、长英质粒岩类、角闪质岩类、麻粒岩类、榴辉岩类和大理岩类。② 混合岩类,注入混合岩、混合片麻岩、混合花岗岩。③ 接触变质岩。④ 动力变质岩,包括构造角砾岩、压碎岩、糜棱岩、构造片状岩类等。
c.命名原则。特征矿物加主要的片状或柱状矿物 (长石种类) 加片麻岩。
5) 火山碎屑岩。火山碎屑岩是火山作用产生的各种碎屑物,沉积后,经熔结、压结、水化学胶结等作用形成的岩石。
成分、主要类型特征。火山碎屑岩主要由火山碎屑物和火山填隙物两部分物质组成。根据成因、组分含量、成岩方式及碎屑粒度可将火山碎屑岩分为 3 大类 5 个亚类,见表72.28。
表72.28 火山碎屑岩分类
72.9.1.2 流体饱和度、孔隙率和渗透率测定
流体饱和度、孔隙率和渗透率是储层孔隙特征的 3 个最基本的参数,它对储层的认识与评价、油气层产能的预测、油水在油层中的运动、水驱油效率以及提高采收率均具有实际意义。我国目前采用的测定方法是 SY/T 5336—2000 “常规岩心分析方法”。
(1) 常规岩心分析试样的取样与保存
选择时,要根据储层岩性变化、非均质特性及其代表的深度,选取有代表性的岩样,并及时快速包装,使岩样中的流体尽可能保持原状。
井场取样与保存
井场取样主要是取分析油水饱和度的岩样或有特殊性要求的岩样。凡为其他分析项目所用的岩样,可在岩心送到实验室后再取。
进场取样顺序是: 岩心出筒,清除岩心表面钻井液,立即按顺序排列好,进行岩心描述,标明井号、深度、筒次和块号。
井场取样每米最少应取 3 块样,取样长度 10cm 左右。井场取得的试样,根据测试项目要求,储存时间长短及岩性的不同,选用不同包装和保存方式。分析油水饱和度的岩样,采用避免液体蒸发及防止流体在岩样内移动的保存方式,常用容器密封法; 对于疏松或胶结差的岩样,采用内径与岩样外径相近的容器或铝箔加适当支撑措施的保存方法。
实验室取样
将从岩心中心部位取来的岩样分作 2 份,一份供取孔隙率、渗透率试样; 另一份取40 左右,打成碎块,放入已称重的烧杯中,再将烧杯及岩样一起称重,供测定岩样中水量样。作渗透率测定的试样,是用金刚石取心钻头及锯片把岩心钻切成圆柱形。对疏松岩心,冷冻的可用钻床取样,未冷冻的则用手工或专用工具取样。小圆柱岩样的外径为1.9~ 3.8cm,最小长度与直径比为 1。作孔隙度测定试样的取样方式与作渗透率试样的取样方式相同,也可与测渗透率试样共用 1 块岩样。
(2) 常规岩心流体饱和度测定
方法提要
将称重的岩样放油水饱和度测定仪的岩心室中。利用沸点高于水的溶剂蒸馏出岩样中的水分,并将岩样清洗干净,供干瓶称重。用抽提前后岩样的质量差减去水量,即得到含油量。
仪器设备
油水饱和度测定仪见图72.16。
测定步骤
在抽提岩样前,先将所用溶剂预蒸一遍,至少连续蒸 8h,保证其中无水分。把称量后的岩样放入抽提器的岩心杯中,加热抽提到水量不再增加为止。规定每小时读取 1 次水量,连续3 次,读数变化不超过 0.1mL 即可。疏松砂岩需抽提 2~3h; 胶结好的需6~8h; 致密而又含高黏度原油的岩样,需更长时间。抽提及烘样完毕后称量岩样。用岩样抽提前后的质量之差减去水量 (设水的密度为1g/cm3) ,可得到油的质量,再除以油密度,得到油体积。
计算公式
岩石矿物分析第四分册资源与环境调查分析技术
式中:So为油饱和度,%;Sw为水饱和度,%;Vo为油体积,cm3;Vw为水体积,蒸出水量的读数,mL;m1为岩心杯重+岩样重,g;m2为岩心杯重+干岩样重,g;m3为岩心杯重,g;ρo为油密度,g/cm3;ρw为水密度,g/cm3;ρa为岩样视密度,g/cm3;!o为岩样的有效孔隙度。
(3)常规岩心孔隙度测定(液体饱和法)
方法提要
将用液体(已知密度)饱和了的岩样,悬挂于饱和用的液体中称量。再将岩样表面上的液体擦掉,在空气中称量。岩样在空气中与液体中两次称量之差,除以液体的密度就得到岩样的总体积。孔隙体积与总体积之比即为岩样的孔隙度。
仪器设备
液体饱和仪装置。
图72.16 油水饱和度测定仪
测定步骤
将抽提烘干的已知质量的岩样放入真空干燥器中,抽空 2~8h,真空度低于 133.3Pa(1mmHg) 。对渗透率很低的岩样,抽真空时间需要 18~ 24h。将事先经过滤和抽空处理饱和用的液体引入真空干燥器中,继续抽空 1h。随后在常压下浸泡 4h 以上。岩样饱和后,将岩样悬挂在盛有饱和液体的烧杯中,使岩样全部浸入液体中称量。迅速擦去岩样表面的液体并称量。岩样在空气中与液体中两次称量之差,除以液体的密度就得到岩样的总体积。岩样中油、气、水体积可由流体饱和度测定法测得。岩样中油、气、水体积之和即为孔隙体积。由此可计算得到岩样的孔隙度。计算中的颗粒体积可用氦孔隙计法测得。
孔隙度计算公式:
岩石矿物分析第四分册资源与环境调查分析技术
式中:!为孔隙度;Vp为孔隙体积,cm3;VG为颗粒体积,cm3;Vt为总体积,cm3。
(4)常规岩心气体渗透率测定
渗透率是衡量流体在压力差下通过多孔隙岩石能力的一种度量,单位常用10-3μm2。
方法提要
待测试样用游标卡尺和其他方法相结合,测得其平均横截面积。将此干净岩样置于气体渗透率测定仪的岩心夹持器中。开通干燥气体使之通过岩样,测量气体的流速,通过调节气体的流速来调节岩样两端的压差,记录进出口压力及气体流速。根据气体一维稳定渗滤达西定律计算渗透率。
仪器设备
气体渗透率测定仪。
测定流程
测定流程有2个,分别如图72.17和图72.18所示。
图72.17 测定气体渗透率流程之一
图72.18 测定气体渗透率流程之二
测定步骤
对形状规则的岩样,可用游标卡尺测量其尺寸;如岩样需用其他材料包封的,则应在包封前测定岩样尺寸,包封后再次测量。对两端平行而形状不规则的岩样,用游标尺测其长度,用其他方法测其总体积,用总体积除以长度就可得到岩样的平均横截面积。将所测干净的岩样置于合适的岩心夹持器中,调整好气体渗透率测定仪。干燥气体通过岩样时,测量气体的流速,通过调节气体的流速来调节岩样两端的压差。记录进出口压力及气体流速。计算岩样的气体渗透率。
渗透率计算
气体在岩样中流动时,由气体一维稳定渗滤达西定律可得到下列计算渗透率的公式:
流程之一:
岩石矿物分析第四分册资源与环境调查分析技术
或流程之二:
岩石矿物分析第四分册资源与环境调查分析技术
式中:k为渗透率,10-3μm2;Q0为绝对大气压时气体流量,cm3/s;pa为大气压力,MPa;μ为气体黏度,mPa·s;L为岩样长度,cm;A为岩样截面积,cm2;p1为进口压力,MPa;p2为出口压力,MPa;C为仪器上直读出的换算系数 ;Q为节流器的流量值,cm3/s;hw为节流器水柱高度,mm。
72.9.1.3 砂岩粒度分析
测定碎屑沉积物中不同粗细颗粒含量的方法称粒度分析。粒度是碎屑沉积物的重要结构特征,是其分类命名(如砾、砂、粉砂、黏土等)的基础,是用来研究其储油性能的重要参数(如粒度中值、分选系数等),有时也可用粒度资料作为地层对比的辅助手段。粒度分析更广泛地应用于沉积学的研究,近几年来已成为沉积环境研究的重要标志。
方法提要
粒度分析一般有3种分析方法,即筛析法、沉降法和薄片粒度分析法。
a.筛析法。有机械筛析及音波振动式全自动筛分粒度仪自动筛析,用1/3~1/4#间距的不同孔径的筛网将碎屑颗粒从粗至细逐级过筛分开,求得各粒级的质量分数(%)。
b.沉降法。利用颗粒在水中沉降速度来划分粒级。
c.薄片粒度分析。对于固结紧密,难于松散的砂岩或粉砂岩只能用薄片进行粒度分析。测得的是一定粒度的颗粒百分数,要把这数值换算成各粒级的质量分数,与其他方法所得数据一致,以便对比与绘图应用。目前已发展成图像法及颗粒计数法来取代人工薄片颗粒计数法。
本文仅涉及前两种方法,相对应的行业标准为SY/T5434/T1999“砂岩粒度分析方法”。
仪器和装置
电烘箱。
电动振筛机。
分析天平感量10mg。
分析天平感量0.1mg。
远红外干燥箱。
标准套筛。
湿筛0.053mm或0.034mm。
研钵或研磨机。
烧杯1000mL。
量筒1000mL。
蒸发皿50mL。
试剂
盐酸。
硝酸。
乙醇。
六偏磷酸钠。
分析步骤
1)岩样处理。将岩样粉碎或小于5mm的小块,用溶剂抽提法和热解法除去岩样中的原油。不同类岩样采取下列处理方法。
方解石胶结物,先将岩样放入容器中,注入!=10%~15%的HCl,搅拌,至反应完全,倒出残酸,用水反复冲洗至中性为止;在酸洗过程中,防止倒掉极细的颗粒,将酸洗后的岩样置于烘箱内烘干。
白云石胶结物,用!=10%~15%的热HCl溶解。
赤铁矿、褐铁矿胶结物,用(1+4)HCl煮沸。
黄铁矿胶结物,用!=50%~10%的HNO3煮沸。
黏土矿物胶结物,用水浸泡,置于水浴锅稍加热。
膏盐胶结物,用水浸泡并加热,如为硬石膏胶结,可用盐酸加热处理。
2)盐酸加热处理。处理好的岩样用四分法或均分器取样。称取10~50g(精确至0.1g)试样,放入烧杯内,加适量清水,再加20mL0.0833mol/L六偏磷酸钠溶液,浸泡12h,使岩石颗粒全部分散开,不破坏颗粒大小及形状,然后用小于0.063nm的筛网,置于1000mL量筒上的漏斗中,用细而急的蒸馏水反复冲洗,至细颗粒全部冲入量筒内。此悬浮液留作沉降分析,用水量不能超过95mL,留在湿筛上的试样,用水冲洗到原先盛样的烧杯里,放入干燥箱内烘干,作筛析分析用。
3)筛析分析。粒径大于0.0625mm的试样作筛析分析。用分析天平称样,按!0.25组成的套筛,依序套好,振筛10min,将筛后的砂粒分别倒入器皿内,逐个称量,底盘中的砂粒倒入该样的悬浮液中,作沉降分析。
4)沉降分析。将盛有悬浮液的量筒,加1000mL水,根据当天的水温及采样深度,列出各颗粒级的采样时间表,用搅拌器在量筒内均匀搅拌1min(60次)。在某粒级的采样时间到达前30s,平稳地将吸液管放下至预定深度处,准时吸取25mL,放入已编号并称量的蒸发皿内,吸液时间控制在20s左右。在烘箱中烘干悬浮液,再移入干燥箱,在105℃下恒温2h,取出放入干燥器中,冷却后称量。
5)计算。筛析结果计算:
岩石矿物分析第四分册资源与环境调查分析技术
式中:k1为校正系数;m1为筛前砂粒总质量,g;m2为筛后各粒级总质量,g;m3为各粒级砂质量,g;m4为校正后各粒级砂质量,g;x1为各粒级含量,%;m5为称取试样质量,g。
沉降分析结果计算:
岩石矿物分析第四分册资源与环境调查分析技术
式中:m6为某粒级干砂质量,g;m7为器皿质量,g;m8为分散剂溶质质量,g;m9为器皿与分散剂溶质及干砂的总质量,g;V为量筒内悬浮液总体积,mL;V1为吸液体积,mL;x2为占试样含量,%;x3为大于某粒级含量,%;x″3、x'3为大于某粗、细粒级含量,%;x4为各粒级含量,%;∑x为累积含量,%。
72.9.1.4 重矿物分析
重矿物是指砂岩中密度大于2.86g/cm3的矿物。
方法提要
试样置于相对密度大于2.86的重液中。利用重液和矿物相对密度差,使矿物沉浮而分离,在偏光显微镜下进行各种重矿物的鉴定和颗粒统计。计算各种重矿物的含量。
仪器和装置
偏光显微镜。
双目实体显微镜。
阿贝折射仪。
投射照明仪灯12V,50W。
岩石破碎机。
电热干燥箱。
分析天平感量1mg和10mg。
标准分析筛孔径0.25mm、0.063mm。
量杯1000mL。
烧杯1000mL。
蒸发皿50mL。
分液漏斗1000mL。
瓷研钵。
密度瓶。
棕色磨口瓶2500mL。
试剂和材料
三溴甲烷(ρ2.86~2.89g/mL)。
无水乙醇。
液体石蜡。
Α-溴代萘。
盐酸。
二碘甲烷。
鉴定步骤
1)试样的分离。经过粗碎的试样,放入1000mL烧杯中,加入500mL(5+95)HCl浸泡。每隔1h搅拌1次。若碳酸盐胶结物多时,需要再加酸。试样一般用盐酸浸泡8h。浸泡后的试样,用瓷研磨锤将试样磨成单独颗粒,倒入1000mL量杯中,放水冲泥,大于0.01mm的颗粒不要被冲走,每隔30min搅拌1次,直至量杯内溶液全部透明为止。烘干试样,用孔径0.063mm和0.25mm的筛子过筛,取0.063~0.25mm的颗粒作重矿物分离。
用三溴甲烷配置密度2.86~2.89g/cm3的重液进行重矿物分离。称取5g干燥的试样,倒入装有重液的分液漏斗,每隔15min用玻璃棒搅拌一次,共4次。最后一次搅拌后静置30min。分出重矿物,用无水乙醇洗净,放入烘箱中在105℃恒温1h,取出,放在干燥器中30min后,用感量0.1mg的分析天平称量,待用。
2)镜下鉴定。置样片于显微镜下,观察一遍,大致了解重矿物种类和分布情况。然后从载玻片一端开始,按顺序向另一端移动,选取有代表性的视域进行各种重矿物鉴定和颗粒统计,分别填入原始记录表中。透明重矿物在透光下鉴定统计。不透明重矿物在反射光下鉴定统计。统计矿物时,要求陆源矿物总数在400颗以上,不足者,将矿物全部数完。自生矿物大于70%时,应数出全部陆源矿物,自生矿物含量可数出一个或部分视域按统计陆源矿物的视域数加倍即可。矿物统计完后,将片子全面检查一遍,补充遗漏矿物并记录。
3)含量统计。将各视域的相同矿物颗粒相加,得出各矿物累计颗粒数,将各陆源矿物累计颗粒数相加,得出陆源矿区颗粒总数,将各自生矿物累计颗粒数相加,得出自生矿物颗粒总数。将陆源矿物颗粒总数和自生矿物颗粒总数相加,得出矿物颗粒总数。
岩石矿物分析第四分册资源与环境调查分析技术
③ 食盐的化学分析方法...
成分主要是NaCl 和 KIO3 首先将其配成溶液 1 钠离子: 铂丝蘸去溶液在酒精灯上烤 若火焰为黄色 则有钠离子(原理是焰色反应 钾离子在焰色反应中是紫色 看不出来 不影响) 2 氯离子 用硝酸银 产生白色沉淀 3 碘元素 主要以碘酸根形式存在 可以找个还原性离子(如亚硫酸根) 将其还原成I2 再加淀粉 若变蓝就说明含碘 第一次回答问题 是根据我所了解的说的 希望有所帮助
④ 怎样用化学方法鉴别氯化钠(也就是盐)
NaCl检验分两部分。
Cl-的检验:取少量样品于试管中,加入足量的水溶解,再加入用硝酸酸化的AgNO3溶液,有白色沉淀生成,说明有Cl-的存在。
Na+的检验:用铂丝蘸取少量样品,在煤气灯上灼烧,发现有黄色火焰,说明有Na+的存在。
⑤ 实验材料和方法
四块全直径岩心的取心资料见表4-1。具体实验步骤和方法如下:
1)岩心烘干。将4块全直径岩心置于真空干燥器中65℃恒温条件下真空干燥24小时,称岩心干重。
2)岩心常规渗透率测量。以空气作为渗流介质,用皂沫法测量岩心空气渗透率。
3)岩心抽真空饱和水。将岩心抽真空12小时饱和矿化度为5000mg/L的标准盐水溶液(NaCl∶ CaCl2∶ MgCl2·6H2O=7∶ 0.6∶ 0.4),称岩心湿重,利用岩心湿重与干重的差值计算岩心孔隙度。
4)岩心100%饱和水状态下的核磁共振T2测量。分别进行四个不同回波时间(回波时间TE分别取0.6ms、1.2ms、2.4ms和4.8ms,此时等待时间TW 取8000ms)和四个不同恢复时间(等待时间TW 分别取8000ms、4000ms、2000ms和500ms,此时回波时间TE 取0.6ms)条件下的测量。其它主要测量参数如下:脉冲序列CPMG,回波个数1024,信噪比大于100,仪器共振频率2.6MHz。该状态下每块岩心可测得7个T2弛豫时间谱。
5)岩心饱和油束缚水状态下的核磁共振T2测量。首先用原油(1号油样、凝析油)驱替水,充分驱替至饱和油束缚水状态,然后进行该状态下的核磁共振T2测量,测量方法和测量参数与100%饱和水状态下相同。该状态下每块岩心同样可测得7个T2弛豫时间谱。
6)岩心剩余油状态下的核磁共振T2测量。首先进行水驱油实验,充分驱替至剩余油状态,然后进行该状态下的核磁共振T2测量。主要测量参数如下:脉冲序列CPMG,回波时间0.6ms,等待时间8000ms,回波个数1024,信噪比大于100,仪器共振频率2.6MHz。该状态下每块岩心可测得1个T2弛豫时间谱。
7)岩心横截面高分辨CT成像。岩心重新烘干后,对每块岩心均进行3~4个横截面(等距离选取)上的高分辨CT成像,图像分辨率约200μm,截面厚度0.5mm。
8)原油的T1、T2弛豫时间测量。对1号油样(凝析油)和2号油样(高凝油)均分别进行不同温度(对应于不同粘度)条件下的T1、T2弛豫时间测量。
⑥ 怎么在岩心上分辨碳酸盐岩岩
新地层有砂层是含水层,粘土层是隔水层;煤系地层有砂岩、粉砂岩、泥岩、碳酸盐岩,看颜色知道风氧化程度,看砂岩、粉砂岩有无裂隙,有无充填物,可知含水程度,泥岩层内有无化石,颜色深浅度,金属矿物含量,一般看岩心颜色、结构、构造、矿物成分、化石、裂隙、滑面、坚硬程度、破碎程度等。
不同岩性、不同深度、不同年代、不同区域会有不同的构造发育特点,看岩心是可以看出一些内容的。
碳酸盐易于溶于水,鼓起孔隙度较大、较明显
⑦ 岩心、岩屑清理
库房中的岩心、岩屑等实物资料,需要定期进行清理。
(一)岩心、岩屑清理的目的
检查实物资料账物是否相符,保持实物资料的清洁和有序管理,对保管期限届满的、无保存价值的实物资料作剔除处理,腾挪出空间来保存更新、更珍贵的实物资料。
(二)岩心、岩屑清理工作的内容
岩心、岩屑因为日常需要接待地质技术人员观察分析、采样化验、付样回归,顺序是否会被打乱?实物是否短缺?回次票等标注是否因时间久远而字迹褪色需要更新?实物资料不断入库,库容压力增大是否需要采取压缩措施?相同区块和构造上是否有多余井的岩心、岩屑可以缩减?有哪些管理期限到期等。
2011年国土资源部结合委托“代理资质”审查,部署了一次全国性范围内的实物资料清理活动,提出清理程序的标准,要求清理单位在清理工作完成后,提供实物资料目录清单,提交清理报告,从而摸清实物资料了家底,不但规范了实物资料管理,提升了管理水准,也促进了企业为馆藏单位增加了管理设施,更换了岩心、岩屑装具。
(三)清理依据
岩心、岩屑的清理依据有:
岩心(岩屑)录井记录。
岩心岩屑采样和岩心岩屑缩减记录。
岩心(岩屑)馆藏目录。
岩心库存数量=岩心录井数量-岩心采样量-缩减量
岩屑库存数量=岩屑录井数量-岩屑采样量-缩减量
采样是指因实际研究分析需要,对库存的岩心、岩屑选择性采集的行为。岩心或岩屑被“采样”后,是会送到实验分析部门进行化验分析,其结果是有化验分析报告的。链接化验分析数据库就该看到相应的化验分析报告。
岩心或岩屑的“缩减”,除了保管期限到期的实物资料不需要继续保存的外,有时还因为同一构造有多口井取了心,显得多余而裁减的岩心岩屑;还有如“盐心”潮解、固态“气化”则属于自然“缩减”。前者是人为缩减,后者非人为缩减,对非人为的潮解和气化,在岩心管理中,往往会采取一定的措施,如蜡封、固化等方法进行保全,但这也是相对保全,无绝对保全之法。人为的缩减有具体缩减清单和填埋具体位置记录,根据需要是可发掘出来重新利用的。
(四)岩心(岩屑)的清理要求
(1)核对目录清单,审计实物资料库存总体情况。
(2)清除尘埃(干性除尘),还其实物本来面目。
(3)检查回次和标注,更换标签或补救标注,保证标注准确、清晰和可识别。
(4)建立健全数据库管理模式。
(5)清理出无保存价值的实物资料并按程序规范处理。
(6)馆藏单位所属单位给予资金保证。
(7)清理时间截止日期。
(8)上报清单目录和清理情况报告。
以上是2011年国家对实物资料清理的要求。其中的时间要求、资金保证、上报要求仅对这一次适用,而其他技术性要求应该作为我们以后清理参考。
⑧ 碎屑岩岩心描述沉积微相的方法
裘怿楠、陈子琪[21]总结了国内外的经验,提出了以下的方法:
3.3.2.1 岩心观察和描述
(1)资料收集和准备
现代岩心管理一般有现场地质人员完成的岩心综合柱状图和连续岩心照片,岩心已经过井深校正归位于测井曲线(放射性测井归位),标有正确的取样位置及样品编号,以及钻取岩心过程中机械原因引起的破碎、磨损和缺少等情况,因此储层沉积微相研究人员在岩心观察描述以前,应收集这些资料,并以此为基础进行工作。
(2)岩心描述的顺序及尺寸
按地层年代由老而新,即自下而上进行观察描述,尺寸应细到厘米级。
(3)岩石学描述
包括:颜色、岩性、粒度、含油气产状、碎屑矿物成分、胶结程度、含有砾石时的砾石成分及大小、特殊岩性等内容,并据此作出基本定名。
(4)沉积学描述
包括:层面接触关系、层理类型及规模、层系厚度、层系倾角、细层组成、细层厚度、层面构造,如干裂、雨痕、沟槽等;其他原生沉积构造;肉眼可见的古生物及生物扰动构造;其他含有物,如结核、鲕粒、碳化植物碎屑等;古土壤;砂岩韵律性及层段旋回性;照相或素描等。
3.3.2.2 岩心的沉积学实验室分析鉴定
在系统观察描述岩心全貌后,根据微相分析需要及岩心条件决定实验室分析鉴定内容,并进行选样。在选样时应尽可能与已钻取的常规孔渗分析样品相结合,取样应有样品描述和标明具体位置及目的。
(1)需要进行的常规沉积学实验分析内容
包括:薄片和铸体薄片鉴定、粒度分析、粘土矿物鉴定、微量元素分析、同位素测定、重矿物及古生物鉴定等。目前主要是做前三项工作。
(2)特殊的沉积学实验分析项目
包括:泥岩地化指标——用以确定泥岩沉积时水介质的氧化还原等地化环境;以及层理现象的X光显示或CT层析检查——用以确定是否存在层理构造及层理现象。
3.3.2.3 沉积微相分析
(1)划分岩石相
在岩心观察和实验分析的基础上首先进行岩石相分类;在划分岩石相时不仅要区分岩石类型,而且要反映沉积时水动力、地化及生物作用条件,碎屑岩储层水动力条件和能量与储层质量好坏一般有紧密联系,因此,储层碎屑岩的岩石相尽可能与能量单元统一起来。在划分岩石相后,应对每种岩石相作出沉积作用或沉积环境意义上的解释。表3.3列出了岩石相代码、岩石相、沉积构造及解释的结果。
表3.3 岩石相代码(以河流沉积为例[21] )
(2)垂向层序分析
垂向层序是重要的相标志之一,它以自下而上岩石相的组合序列来表示,以最基本的沉积旋回为单元进行组合。垂向层序的分类和描述要满足划分微相和各微相作用沉积学解释的要求,即每类垂向层序都要作出微相判别,并对其沉积过程作出分析和解释。陆相盆地碎屑岩储层常见的微相可见表3.4。每类垂向层序应选择代表性取心井段分别作出单井沉积微相剖面图,内容除沉积微相柱子外,还应包括反映储层物性及典型的测井曲线(图3.17)。
表3.4 陆相沉积盆地碎屑岩储层常见微相
(3)沉积旋回分析
分析的目的是弄清垂向上的微相变化,进一步确认亚相(大相),并从相组合上检验微相,要应用全剖面全部可用的相标志进行综合分析;沉积旋回分级是个相对概念,各级沉积旋回反映盆地的构造活动;反映气候变化、碎屑物供应量的变化、水进水退、沉积体的废弃转移、各次沉积事件间能量的差异以及每次沉积事件本身能量的变化过程。应根据各油田实际情况确定级次及成因意义;沉积旋回分析应从小到大、从大到小反复进行,从各级旋回的岩相组合和演化规律上互相检验相分析的合理性;沉积旋回的界线应是确定性的时间界线。有条件时应与区域性层序地层分析统一。岩心井单井划分的沉积旋回有待全区平面上对比后修正确认。
(4)实验分析资料的应用
最主要的是粒度分析资料的应用,图3.18是常用粒度分布概率图;其次是微量元素分析,用以判别水介质盐度和地化条件等;孢粉古气候分析——优势植物属种结合蒸发盐类矿物分析,泥岩地化指标是判别古气候条件及演变的常用手段;以及古生物分布分析——优势古生物的生长环境是判别共生沉积物环境的旁证。
3.3.2.4 建立全剖面标准沉积微相柱状图
在综合上述微相分析工作的基础上,编制所要研究的含油气层系的全剖面标准微相柱状图(图3.19)。编图时须注意两点:①资料来源必须是岩心;②可以以典型井连续取心为代表,也可以从多井岩心中选取典型段相拼接。
图3.17 塔里木盆地柯坪印干村西志留系综合柱状剖面图[22]
1—砂岩;2—泥岩;3—泥质砂岩;4—泥质粉砂岩;5—粉砂质泥岩;6—波状、脉状层理;7—透镜状层理;8—底冲刷;9—平行层理;10—水平层理;11—板状交错层理;12—槽状交错层理;13—沙纹层理;14—鱼类;15—双壳类;16—腹足类;17—腕足类;18—鲎类;19—三叶虫;20—笔石;21—垂直生物钻孔;22—水平虫迹;23—生物扰动坑
图3.18 搬运方式与粒度分布总体和载点位置的关系[21]
全剖面标准沉积微相柱状图应包括:自然电位和电阻率测井曲线;岩性剖面、层位、深度;岩心分析资料——粒度中值、孔隙度、渗透率;沉积微相;亚相及大相。在条件具备的情况下,还应包括层理构造及含有物、沉积韵律性以及沉积旋回的划分等。
⑨ 怎样用物理方法分辨稀盐酸和氯化钠
1.操作方法:用2根玻璃棒分别沾一下2个溶液,再用酒精灯把玻璃棒上的水烤干。
判断方法:如果玻璃棒上有白色残留物的为氯化钠溶液,无残留痕迹的为盐酸(如果2溶液浓度低,就重复操作几下)。
2.原理:氯化钠为金属化合物,为固体熔点高,不挥发;盐酸为氯化氢气体的水溶液,水蒸干后,HCL挥发。