导航:首页 > 研究方法 > 3s空间分析方法

3s空间分析方法

发布时间:2022-08-27 13:53:07

A. “3S”技术简介

“3S”技术是全球导航卫星系统(Global Navigation Satellite System,GNSS)、地理信息系统(Geographical Information System,GIS)和遥感(Remote Sensing,RS)的统称。因这三个技术的英文中都含一个S而得名。

1.全球导航卫星系统

全球导航卫星系统是一种空间无线电定位系统,包括一个或多个卫星星座,为支持预定的活动视需要而加以扩大,可为地球表面和地球外空任意地点用户提供24小时三维位置、速率和时间信息。GNSS核心组成部分目前主要有:美国的全球定位系统、俄罗斯的全球轨道导航卫星系统(即轨道导航系统),以及伽利略定位系统和我国的北斗卫星定位系统。

全球定位系统(Global Position System,GPS)是20世纪70年代由美国国防部批准,陆海空三军联合研制的新一代空间卫星导航定位系统。其目的是为海、陆、空三大领域,提供实时、全天候和全球性的导航服务,并用于情报收集、核爆监测和应急通信等一些军事目的,是美国全球战略的重要组成部分。20世纪80年代,尤其是90年代以来,GPS卫星定位和导航技术与现代通信技术相结合,在空间定位技术方面引起了革命性的变化。用GPS同时测定三维坐标的方法将测绘定位技术,从陆地和近海扩展到整个海洋和外层空间,从静态扩展到动态,从单点定位扩展到局部与广域差分,从事后处理扩展到实时(准实时)定位与导航,绝对和相对精度扩展到米级、厘米级乃至毫米级,从而大大拓宽它的应用领域范围。

全球轨道导航卫星系统(GLONASS),又称“格洛纳斯”系统。最早开发于前苏联时期,1993年俄罗斯开始独自建立本国的轨道导航系统。该系统主要服务内容包括确定陆地、海上及空中目标的坐标及运动速度信息等。GLONASS系统的卫星星座由24颗卫星组成,均匀分布在3个近圆形的轨道平面上,每个轨道面8 颗卫星,轨道高度19100km,运行周期11 小时15分,轨道倾角64.8°。

伽利略定位系统(Galileo Positioning System)是欧盟正在建造中的一个卫星定位系统,有“欧洲版GPS”之称,也是继美、俄外,第三个可供民用的定位系统。伽利略定位系统的建立已于2007年底之前完成,2008年投入使用,总共发射30颗卫星,其中27颗卫星为工作卫星,3颗为候补卫星,还有2个地面控制中心。伽利略定位系统将为欧盟成员国和中国的公路、铁路、空中和海洋运输甚至徒步旅行者有保障地提供精度为1m的定位导航服务,预计将于2010年开始运作。

北斗卫星定位系统(BD System)是由中国建立的区域导航定位系统。该系统由4颗(2颗工作卫星、2颗备用卫星)北斗定位卫星(北斗一号)、地面控制中心为主的地面部分、北斗用户终端三部分组成。北斗定位系统可向用户提供全天候、24小时的即时定位服务,授时精度可达数l0ns(纳秒)的同步精度,北斗导航系统三维定位精度约几十米,授时精度约100ns。北斗一号导航定位卫星由中国空间技术研究院研究制造。4颗导航定位卫星的发射时间分别为:2000年10月31日,2000年12月21日,2003年5月25日,2007年4月14日,第三、四颗是备用卫星。2008年北京奥运会期间,它在交通、场馆安全的定位监控方面和已有的GPS卫星定位系统一起,发挥“双保险”作用。北斗一号系统的基本功能包括:定位、通信(短消息)和授时。北斗二代卫星定位系统的英文为Compass(即指南针),在ITU登记的无线电频段为L波段,其功能与GPS相同,即定位与授时。北斗系统可广泛应用于交通运输、海上作业、环境监测等行业单位。

目前,地质行业使用的全球导航卫星系统GNSS是美国的全球定位系统GPS。

2.遥感技术

遥感技术包括航空和航天遥感。遥感是指从远距离高空及外层空间的各种平台上利用可见光、红外、微波等电磁波谱控测仪器,通过摄影和扫描、信息感应、传输和处理,从而查明地面物体的形状、大小、位置及其和环境相互作用机理的现代科学技术。随着遥感技术的发展和传感器光谱分辨率和空间分辨率的提高,遥感技术将在国土地质大调查中以及构造解译和岩性辨识、甄别蚀变、圈定地质异常、检测烃类微渗漏方向等方面有重大突破。当代遥感的发展主要表现在它的多传感器、高分辨率和多时相特征。遥感信息的应用分析已从单一遥感资料向多时相、多数据源的融合与分析,从静态分析向动态监测过渡,从对资源与环境的定性调查向计算机辅助的定量自动制图过渡,从对各种现象的表面描述向软件分析和计量探索过渡。近年来,由于航空遥感具有的快速机动性和高分辨率的显着特点使之成为遥感发展的重要方面。

3.地理信息系统

地理信息系统是集计算机、地理、测绘、遥感、环境、城市、空间、信息、管理等科学为一体的新兴边缘学科,是采集、存储、管理、分析和描述空间数据的空间分析系统。

随着“数字地球”这一概念的提出和人们对它的认识的不断加深,从二维向多维动态以及网络方向发展是地理信息系统发展的主要方向,也是地理信息系统理论发展和诸多领域(资源、环境、城市等)的迫切需要。在技术发展方面,一个发展是基于Cljent/Server结构,即用户可在其终端上调用在服务器上的数据和程序;另一个发展是通过互联网络发展IntemetGIS或Web-GIS,可以实现远程寻找所需要的各种地理空间数据,包括图形和图像,而且可以进行各种地理空间分析,这种发展是通过现代通讯技术使GIS进一步与信息高速公路相接轨;还有一个发展方向,则是数据挖掘(Data Mining),从空间数据库中自动发现知识,用来支持遥感解译自动化和GIS空间分析的智能化。

目前区域地质调查中的数字填图技术就是基于GIS、GPS、RS技术为一体的区域地质调查野外数据和信息的数字化获取技术及其数字化成果的一体化的组织、一体化的管理、一体化处理和社会化服务的计算机科学技术。

B.  “3S”技术集成与应用

“3S”系统是GIS,RS,GPS的简称,即地理信息系统、遥感及全球定位系统的总称。作为空间信息处理的这三个技术系统,在空间信息管理中各具特色,均可独立完成自身的功能。同时,它们所能解决的问题之间又有很多关联性,在解决问题的功能上又各自存在着优点和不足。因此三者的结合和集成已成为空间信息系统的发展方向,也是空间科学发展的必然趋势。在“3S”系统中,GIS具有较强的空间查询、分析和综合处理能力,但获取数据困难;RS能高效地获取大面积的区域信息,但受光谱波段的限制,且数据定位及分类精度差;GPS能快速地给出目标的位置,对空间数据的确定具有特殊意义,但本身通常无法给出目标点的地理属性。因此,只有三者结合起来形成一个有机系统,实现各种技术的综合,才能发挥更大的作用。

一、全球定位系统(GPS)

GPS(Global Positioning System)是建立在无线电定位系统、导航系统和定时系统基础上的空间导航系统。它以距离为基本观测量,通过同时对多颗卫星进行伪距离测量来计算接收机的位置。由于测距是在极短时间内完成的,故可实现动态测量。GPS主要由空间导航卫星、地面监控站组和用户设备三部分组成。

1.GPS卫星

GPS卫星由21颗工作卫星和3颗备用卫星组成。工作卫星分布在6个轨道面内,卫星轨道面相对地球赤道面的倾角为55°,每个轨道平面配置3颗卫星,每隔一条轨道平面配备一颗备用卫星,轨道的平均高度约为20200km,卫星运行周期为11小时58分钟。因此,在同一测站上,每天出现的卫星分布图相同,只是每天提前几分钟。每颗卫星对地球的可见面积为地球总面积的38%,每颗卫星每天约有5小时在地平线上。同时位于地平面上的卫星数目最少为4颗,最多为11颗。这样的空间配置,可保证在地球上任何时间、任何地点至少可同时观测到4颗卫星,加上卫星信号的传播和接收不受天气的影响,因此,GPS是一种全球、全天候的连续实时导航定位系统。

2.地面控制系统

GPS的地面监控部分由5个监控站、3个注入站和1个主控站组成。监控站是数据自动采集中心,它包括双频GPS接收机、高精度原子钟、传感器及计算设备,它主要为主控站提供各种观察数据。主控站是系统管理和数据处理的中心,其主要任务是用监控站和本站提供的观测数据计算卫星的星历、卫星钟差和大气延迟修正参数,提供全球定位系统时间基准,并将这些数据传到注入站,调整卫星运行轨道,启动备用卫星等。注入站将主控站推算出的卫星星历、钟差、导航电文等控制指令注入到相应卫星的存储系统,并监测注入信息的正确性。

3.用户设备系统

用户设备系统包括GPS接收机、天线、计算设备和相关软件。用户设备的核心是GPS接收机,以利用定位卫星提供信号来得到位置、时间、运动方向、速度等信息。接收机按功能分为GPS导航接收机和GPS接收机两种,按接收信号方式分并行和串行接收机。并行接收机具有多个信道,每个信道追踪一颗卫星,并解调各信道信号;串行接收机只有一个信道,利用内部切换逐步处理各个卫星信号。

二、“3S”技术

1.GIS与RS的结合

遥感与地理信息系统是近年来迅速发展起来的空间信息获取和处理的新技术,已广泛应用于资源与环境管理各个领域。遥感信息具有周期性、动态性、信息丰富、获取效益高,可直接以数字方式记录传送等特点;GIS(地理信息系统)则是具有高效的空间数据管理和灵活的空间数据综合分析能力的计算机技术系统,二者相结合,既可保证GIS具有高效稳定的信息源,也可以对遥感信息进行实时处理、科学管理和综合分析,实现监测、预测和决策的目的,这是空间技术发展的必然趋势。二者的结合主要有以下方面:

(1)从地理信息系统本身的角度出发,随着其应用领域的开拓和深入,首先要求存储大量的数据,通过不断的积累和延伸,从而具备反映自然历史过程和人为影响的趋势的能力,揭示事物发展的内在规律。但是,地理信息系统数据库几乎只是通过地图数字化建立起来的,用户不能接触到原始资料及其有关信息。

(2)地理信息系统为了保持系统的动态性和现势性,它还要求及时地更新系统中的数据。这是因为一切事物都处在发展变化之中,而地理信息系统中存储的信息只是现实世界的一个静态模型,需要及时、定时地更新。遥感作为一种获取和更新空间数据的强有力手段,能及时地提供准确、综合和大范围内进行动态监测的各种资源与环境数据,因此遥感信息就成为地理信息系统十分重要的信息源,尤其是大范围的以统计为主的地理信息系统。当前遥感的应用也正经历着一场质的转变,它正逐渐从单一的遥感数据的分析应用向多波段、多时相的分析应用过渡,从静态分布向动态过程预测过渡,从定性调查到定量分析过渡。

2.RS与GPS的结合

从GIS的角度看,GPS与RS都可看作为数据源获取系统。然而GPS和RS既分别具有独立的功能,又可以互相补充完善对方,这就是GPS和RS结合的基础。

(1)GPS的精选定位功能克服了RS定位困难的问题。在没有GPS以前,地面同步光谱测量、遥感的几何校正和定位等都是通过地面控制点进行大地测量才能确定,这不但费时费力,而且当无地面控制点时便无法实现,从而严重影响数据实时进入系统。而GPS的快速定位为RS数据实时、快速进入GIS系统提供了可能。也就是说,借助GPS可使RS迅速进入GIS分析系统,保证了RS数据及地面同步监测数据获取的动态配准。

(2)利用RS数据实现GPS定位遥感信息查询。

(3)利用GPS形成的新技术,如GPS气象遥感技术,利用GPS卫星和接收机之间无线电信号在大气电离层和对流层中的延迟时间,可了解电离层中电子浓度和对流层中温度湿度等大气参数及其变化情况。因而目前建立和正在建立的全球许多GPS观测网将是提供大气参数的一个重要新数据源,对天气预报尤其是短期天气预报将发挥巨大作用。

3.GPS与GIS的结合

GPS和GIS的结合,不仅能取长补短使各自的功能得到充分的发挥,而且还能产生许多更高级的功能,从而使GPS和GIS的功能都迈上一个新台阶。

通过GIS系统,可使GPS的定位信息在电子地图上获得实时的、准确的、形象的反映及漫游查询。通常GPS接收机所接收的信号无法输入底图。若从GPS接收机上获取定位信息后,再回到地形图或专题图上查找,核实周围地理属性,该工作十分复杂,而且花费时间长,在技术手段上也是不合理的。如果把GPS的接收机同电子地图相配合,利用实时差分定位技术,加上相应的通信手段组成各种电子导航和监控系统,可广泛用于交通、车船驾驶及科学种田等方面。

GPS可为GIS及时采集、更新或修正数据。例如在外业调查中通过GPS定位得到的数据,输入给电子地图或数据库,可对原有数据进行修正、核实,赋予专题图属性以生成专题图。

三、喀斯特资源与环境研究中的“3S”技术

喀斯特地区自然条件复杂,环境差异特殊,给开发、治理、保护的决策与实施造成极大困难。例如,喀斯特峰丛峡谷和峰丛洼地地区,由于地表破碎、切割幽深、可进入性差,使用遥感技术研究环境现状及其演化趋势甚为必要。高质量的信息能给我们提供资源优化开发、利用与环境保护的基础和依据。因此,提高决策科学化水平的关键在于掌握高质量的信息。利用遥感与地理信息系统这一高新技术建立资源环境信息系统,在知识经济与信息化时代的今天,不仅是在喀斯特地区通过建立人口、资源、环境、经济系统动态监测与评价运行模型,提出在具有喀斯特特色的多目标优化决策理论模式,其经验对全国同类喀斯特地区也有指导意义。

1.喀斯特资源与环境数据库建设

自从20世纪90年代以来,“3S”技术之间的密切结合,共同发展,在全球和区域资源与环境动态监测、趋势预报,重大自然灾害监测预报以及灾情评估与减灾对策,城市经济开发区的规划、开发与管理,全球环境变化等方面发挥了科技的先导作用。“3S”技术在喀斯特资源与环境数据库建设上主要体现在以下几方面:

(1)基本数据库建设,包含了行政区划、交通运输、地形地貌、碳酸盐岩、地势坡度、社会经济、区域人口、民族、交通、城镇以及区域外其他信息等基本数据库。

(2)资源与环境信息系统,首先涉及的内容是资源,在考虑喀斯特资源在自然界中的空间位置、资源的属性、用途、开发利用条件等,对喀斯特地区的不同类型资源建立相应的数据库,如土地资源信息数据库(土壤、水田、旱地、耕地、坡耕地等)、陆地水资源数据库(流域、水系、水量、水质等)、生物资源数据库(森林、灌丛、草地、陆生动物、水生动物等)、气候资源数据库(气温、降水、风力等)、旅游资源数据库(风景名胜区、自然保护区、客源市场等)、矿产资源信息数据库(煤炭、石油、天然气、黑色金属、有色金属、稀土元素及非金属等)。

(3)生态环境数据库建设,如环境条件数据库(地质构造、地貌类型、坡度、降水、气温等)、环境质量数据库(生态环境质量类型,如污染源等)、环境灾害数据库(水土流失、石漠化、滑坡、泥石流等)、环境污染数据库(污染源、污染监测、污染影响等)、环境保护与环境管理等数据库(环境规划、环境治理、生态恢复等)。

2.利用“3S”技术的分析与应用模型

(1)多年遥感数据分析:采用多时相、多波段的遥感数据对喀斯特地区遥感在资源及环境方面的应用与解译方法和模式研究。

(2)地理信息系统的建立与分析:GIS的设计模型、系统的建立、数据库的研究与建立、数据库的发展、计算机辅助制图研究及开放地理信息系统与互操作技术。

(3)“3S”技术的集成研究与应用:各种资源卫星、气象卫星与航空、地面观测、物探数据的复合和分析;解决RS数据、GPS数据与GIS的接口,增强遥感及GPS信息处理分析能力,并反馈用于地理信息系统的更新;向智能化方向发展,改进应用系统的数据管理,提高识别能力与解译水平。

(4)喀斯特资源环境评价预测规划模型:资源环境的控制系统模型、资源环境的数学规划模型、资源环境的开发与分配模型等。

(5)喀斯特资源环境空间决策支持系统:资源环境的空间分布模型、资源环境的持续利用策略、资源环境的总体态势与对策等。

3.“3S”技术在贵州典型喀斯特区域的研究及应用示范

(1)喀斯特地貌与洞穴信息系统研究。贵州喀斯特地貌与洞穴信息系统研究,以“3S”技术为基础的新型空间信息管理系统,将为喀斯特地貌与洞穴数据资料查询、发生分布规律、空间相关关系、潜在资源开发、部门辅助决策和把贵州的洞穴信息走向“信息高速公路”等方面作出重要的贡献,具有重大的理论意义和社会经济价值。该研究是将全贵州的喀斯特地貌与洞穴(群)从整个面上进行计算机统计分析,以1:5万地形图为基础,从发育分布规律方面建立相关信息库,其中包含了洞穴的洞口海拔高程、洞穴长度、发育方向、岩性、水洞的流量以及经纬度坐标等参数。以GIS技术为平台进行数据处理,并采用其相应的集成技术GPS和RS进行洞穴的地址纠正及匹配,提高信息的可靠性,建立一个动态的贵州喀斯特地貌与洞穴信息系统。此外,应用“3S”技术研究喀斯特地貌与洞穴,从统计的角度,从大量的信息资料上研究喀斯特地貌与洞穴的成因(洞穴的形成与水、岩石、地质构造运动有关),洞穴的形成蕴含有大量古气候、古水文地质及构造运动的信息,数理统计分析能更有效地揭示这些信息,为研究贵州地区地质构造运动、河流的下切、侵(溶)蚀喀斯特地貌与洞穴成因提供有力证据。在此基础上,得出洞穴的分布规律及要素间的相关关系,并为贵州喀斯特地貌与洞穴的开发、利用及保护等提出建议。

(2)喀斯特地区水土流失监测系统研究。土壤侵蚀是土地退化的根本原因,也是导致生态环境恶化的重要因素。中国是世界上水土流失最严重的国家之一。近几年来,水土流失状况仍呈加剧趋势,不断出现的洪涝灾害,对水土保持工作提出了更高的要求。在GIS支持下的遥感技术,同时结合GPS野外调查,是目前普遍采用的国内外最先进的大面积水土流失调查、评价方法,可用来了解、掌握水土流失现状,并完善相关的技术方法,为水土流失的防治提供可靠的技术资料。贵州省水土流失监测系统研究是在“3S”技术的支持下完成的贵州省多年水土流失空间分布及分地(市)、县(市)数据库,利用多时相的遥感TM影像对水土流失情况进行解译,可以得出不同年分的水土流失空间分布并预测其发展趋势,特别是在喀斯特地区,地形地貌复杂,水土流失破坏性大,生态环境趋于恶劣,与其他地区相比,在解译和监测上有着较大的特殊性,利用“3S”技术成功地解决了这一难题,为贵州省的水土保持规划及生态环境建设提出了相应的治理对策及合理建议。

(3)喀斯特土地石漠化研究。以完成空间定位的TM卫星影像数据为基础,进行TM卫星影像数据的多光谱信息提取,获得喀斯特地区石漠化的空间分布状况,结合喀斯特地貌分布,对典型区域的石漠化解译结果进行验证,完成喀斯特地貌与土地石漠化的空间分布数据库。喀斯特石漠化状况的研究在贵州已有较长时间,但迄今为止,由于研究条件所限,技术手段不统一等原因,石漠化状况面积、分布等数据不够统一。项目首次采用“3S”作为技术支持,利用多学科结合的优势进行综合性的相关分析,以统一的标准对贵州石漠化现象及成因、对策进行研究,技术方法严密、客观,避免了传统方法进行这类大面积研究中人力物力投入过大、标准难以控制等带来的弊病。对贵州喀斯特地区石漠化问题做专项研究,通过应用多时相(1959年、1979年、1995年)、多波段、多平台的遥感数据,在大量野外GPS技术调查验证的基础上编制研究区域不同年代的喀斯特土地石漠化图;利用GIS对数据资源进行分析、处理,旨在查明贵州喀斯特石漠化的现状、分布及发展趋势,分析土地石漠化的主要原因、发生机制和演变过程。本项研究采用目前最先进的监测、评价技术,以地理信息系统技术为支撑,以遥感资料为主要信息源,同时采用野外GPS调查验证,结合由地形图派生的坡度图,由区域地质图派生出喀斯特与非喀斯特及石山半石山的石漠化背景图。采用植被覆盖、土壤背景、地面坡度等决定石漠化的主要因素,参考降水量、降雨强度等有关因素建立石漠化定量分析模型,应用现代建模技术进行石漠化强度评价和调查制图;结合行政区划,得到全贵州省喀斯特地区各地(市)、县(市)石漠化空间分布图和数据。

(4)喀斯特地区国土资源综合调查与数据库建设:①喀斯特地区林业资源与生态信息数据库建设,以TM遥感影像数据、DEM数据、土地利用数据为基础,建立分布式与集中式相结合的林业资源与生态信息共享数据库,实现属性数据的空间化与网络化共享(数据资源内容包括:林业资源信息,森林资源数据,省级森林资源空间分布数据,森林灾害数据,森林生物多样性数据库,林产市场发展数据等;林业生态环境信息,省、县级生态环境背景数据,重点县生态环境现状数据,生态建设规划属性数据与空间数据,重点生态工程信息数据,资源与生态环境基础数据,常用树种、草种数据等); ②喀斯特典型地区国土资源环境信息平台建设及其应用,喀斯特典型地区国土资源环境空间数据库建设,以TM卫星遥感影像为数据源,以地形图为空间定位基础,对TM图像进行空间定位,由人工对定位遥感影像进行解译,获取全省土地利用状况分布空间数据,建立分布式与集中式相结合的国土资源信息共享数据库群;③喀斯特典型地区人口、社会经济数据的空间化及数据库建设,以喀斯特典型地区人口及社会经济统计数据为基础,建立该地区人口、社会经济数据库,利用相关空间数据处理手段,处理这些统计数据,使其能够与其他空间数据,如国土资源调查空间数据,在同一平台上实现有机集成。在此基础上,建立该地区的人口、社会经济数据库。

另外,还可进行自然保护区和风景名胜区信息系统及生物资源信息系统等工作。

C. RS、GIS和GPS集成——3S技术系统

当前,以地理信息系统为核心的三S技术(遥感技术RS、地理信息系统GIS、全球定位系统GPS)与多媒体(MM)技术有机结合一体化,以其强大的空间信息(数据)采集、处理、分析综合和表达与管理能力,为各行业实际应用部门提供了各种有用的决策信息,大大提高应用部门的生产力及其管理水平,已成为直接为国土资源勘查、生态环境和自然灾害调查、评价、监测与防治等工作及社会生产与管理部门服务的一种实用技术方法。

20.2.1 地理信息系统(GIS)

20.2.1.1 地理信息系统的概念及其作用

地理信息系统(Geographical Information System,简称GIS)集计算机科学、地理学、测绘、环境科学、空间科学、地质学、信息科学和管理科学等为一体的多学科结合的新兴边缘学科。它以空间数据为研究对象,以计算机为工具,通过人的参与进行一系列空间操作和分析,为地球科学、环境科学、灾害监测与评价、工程设计乃至企业经营等工作提供规划管理的决策科学信息。

地理信息系统已被广泛用于国土资源勘查和环境监测与评价等方面,特别在遥感制图、矿产资源定量预测、工程布置的点位优选、勘探靶区优选等等方面,已有相当的成功实例与经验。目前,地理信息系统已经作为一种主要的信息产业,取得了显着的社会与经济效益。实际上,地理信息系统所研究的对象及覆盖面远远超出了地理学的范畴。

地理信息系统是管理空间数据的计算机系统。空间数据是指不同来源的用遥感和非遥感手段所获取的数据,它有多种数据类型,包括地图、遥感影像、统计数据等,其共同特点是都有确定的空间位置——地理坐标参照系统。其工作过程主要是通过空间实体的空间位置与空间关系来进行的,当然也可以通过它们的属性来进行。它对空间数据除管理、检索、查询外,还必须进行各种运算和分析。其输出除表格、文字、数据外,主要的形式是图形。地理信息系统主要用来分析和管理在一定地理区域内分布的各种地学、社会现象和过程。它是地学、计算机、系统工程等学科知识的融合,是跨学科的技术系统。

遥感是地理信息系统重要的数据源和强有力的数据更新手段。遥感的多时相、量纲统一的、动态的全球范围内的快速监测数据,是其他手段所不能替代和比拟的,因而地理信息系统作为一种空间数据管理、分析的有效技术,可为遥感提供各种有用的辅助信息和分析手段。目前,地理信息系统的一个重要发展趋势,是加强空间信息管理系统与遥感图像处理系统的结合,以提高资源与环境信息系统在动态分析、监测与预报方面的能力,改善遥感分析的精度。

20.2.1.2 系统构成

地理信息系统主要是由GIS的硬件、软件、地理数据(库)和系统的管理操作人员四个部分组成。

GIS硬件主要是计算机,包括必备的外部设备如数字化仪、打印机及绘图仪。可选设备有扫描仪、激光绘图仪及打印机、磁带机等。

地理空间数据是指以地球表面空间位置作为参照系的各种景观数据(如自然的、社会的、人文经济的等)。这些数据可以是图形、图像、文字、表格和数字等形式,由系统的建立者通过有关的量化工具和介质输入GIS,是系统程序作用的对象,是GIS所表达的现实世界经过模型抽象的实质性内容。

早期的GIS一直是以各种类型的地图作为主要的数据源。随着遥感技术的兴起,遥感信息以其周期性、动态性、信息丰富、获取效率高并可直接以数字方式记录传送等优点成为重要的GIS信息源和数据更新手段。遥感与GIS的结合是空间技术发展的趋势。

系统开发、管理和使用人员是GIS的重要构成因素。因为GIS是一个动态的地理模型,光有系统软硬件和数据不能构成完整的GIS,需要由人进行系统的组织、管理、维护和数据更新,使系统不断得到完善,并合理使用地理分析模型提取多种信息,为研究和决策服务。

GIS软件是GIS技术的核心,它既是GIS技术的集中体现,又是这一技术的应用基础。一般商品化产品,如美国的ARC/INFO系统,中国的MAPGIS,主要由数据采集、数据管理、数据分析、数据转换和数据输出五部分构成。

(1)数据采集

其功能是完成地学数据采集与输入工作,可用扫描仪、数字化仪、图形终端或其他系统的磁盘数据文件输入。主要的信息源有:专题地图(包括地形图)、统计表格、遥感影像、实测数据以及其他系统的数据文件。

数据采集方式主要有以下几种:① 手工式,是早期和试验时采用的方法,效率和精度均低。② 手扶跟踪数字化,是当前最有效的地图数字化方式,在手扶跟踪数字化仪和数字化板支持下进行。通过这种方式可得到矢量格式的地图数字化数据。③ 自动扫描,是最有前途的数字化方式。由扫描仪进行,扫描仪可以每英寸300~600点(线)采集地图或影像的灰度或颜色,形成点阵像元数据或多波段数据。④ 数据通讯,是在联网方式下获取有关的其他信息系统的一种方式。无论用何种方式采集,其目的都是要把数据源变为GIS可以存贮管理和分析的形式。

(2)数据管理

其功能是实现空间(几何)数据和属性(非几何)数据的存储、检索、查询、编辑、修改。GIS与其他信息系统最大的不同之处是对空间数据的管理。如何实现空间数据与属性数据的统一存储、检索、查询、编辑和修改是评价GIS的一个重要方面。

一个功能强大的GIS产品能够提供一个统一的空间数据库管理系统,提供各种范围内的双向查询、编辑、建模功能,允许快速地修正并更新空间数据及有关的描述数据。例如,最新推出的许多GIS软件都使用了一个优化的、面向目标的数据库管理系统,可以快速地存取大型关系文件,它把现实物体的空间关系、特征和属性存储在同一个网络分布式关系数据库中,所以做图、拓扑数据结构是这种数据模型的特征。

(3)数据分析

数据分析部分借助地学模型(预置式模型或用户自定义模型),完成地理数据的分析和计算工作,是GIS的核心内容。目前比较成熟的分析功能有地面数字高程模型、网络分析模型、邻近分析模型、区域分析模型、拓扑分析模型以及空间距离搜索模型等。

数字地面模型(DTM)在自然地理、地貌、水利、工程设计、管道布线等领域有着广泛的应用。当地图被数字化后,利用等高线通过插值可以生成数字地面高程模型(DEM),并由DEM进一步产生坡度、坡向、沟谷、山脊、地表粗糙度等10多个地形要素,构成DTM数据。利用这些地表信息与植被、土壤、人文要素的相关性,可建立不同的地学应用模型。

网络分析模型在经济地理、市场分析、交通管理等领域有着广泛的应用。此模型根据网络拓扑性质,可以在两点间选择最短路径,并绘出其长度和有关信息,也可以比较各个市场中心服务范围和影响区域。

定距离空间搜索(Buffer)模型和邻近区域分析模型在区域规划、国土整治、土地管理等领域有着广泛的应用。通过指定空间搜索距离,用户可以方便地进行空间检索、查询,了解在一定范围内地理现象的空间分布;通过邻近区域分析模型,用户可方便地进行邻近区域检索、查询、了解区域周围的环境情况。由于用模式来定义表,表和空间数据联系在一起,这样用户能进行集成的空间和属性处理、报表生成、专栏处理、属性标记和相互作用的属性修改、更新等项内容。

点、线、多边形是GIS图形数据的基本单元,与之相应的拓扑分析模型在自然资源管理、生态评价、土地评价和规划等领域有着广泛的应用。它通过多幅专题图或专题图与图像合并办法,生成新的专题图及新的属性表,为运用不同评价和规划模型,完成地理信息的分析和地理数据的计算提供了极大方便。

上述系统底层通用分析模型仅提供了某些数据分析的工具。在具体应用领域还需结合专业知识和实际要求建立用户的应用模型。

(4)数据转换

是提供不同空间数据集的集成途径。空间数据都是用矢量和栅格格式进行采集、存贮和处理的。矢量结构的数据更能表达我们的空间想象,因此它最常用于手工的数据采集。但是,数据自动采集方式往往产生与计算机的规则结构相匹配的栅格结构数据。因此,现代GIS应兼容矢量和栅格两种数据格式,提供多种方法进行两种数据的相互转换,满足多源信息综合分析的需求。

(5)数据输出

数据输出部分将GIS信息或分析结果以可视的形式表示,如屏幕,绘图仪、打印机输出等。系统同时支持软硬件拷贝显示,使用户能够获得在屏幕上所见结果,即在地图成图之前,用户能预先看到硬拷贝输出的图形。用户还可以在图形窗口内编辑地图,包括彩色设计,图廓整饰、生成比例尺、注记、图例、表格、公里网格等,最后由绘图仪或打印机输出。

20.2.2 全球定位系统(GPS)

全球定位系统(GPS:Global Position System)是美军自20世纪70年代初期开始研制的新一代卫星导航和定位系统。它由21颗工作卫星和3颗备用卫星组成。工作卫星分布在6个轨道面内,卫星轨道面相对地球赤道面的倾角为55°,每个轨道平面配置3颗卫星,每隔一条轨道平面配备一颗备用卫星,轨道的平均高度约为20200 km,卫星运行周期为11小时58分。因此,在同一测站上,每天出现的卫星分布图相同,只是每天提前几分钟。每颗卫星对地球的可见面积为地球总表面积的38%,每颗卫星每天约有5小时在地平线上。同时位于地平线上的卫星数目最少为4颗,最多为11颗。这样的空间配置,可保证在地球上任何时间,任何地点至少可同时观测到4颗卫星,加上卫星信号的传播和接收不受天气的影响,因此GPS是一种全球、全天候的连续实时导航定位系统。GPS的出现,为大量的野外高精度定位工作提供了极大方便,使定位与导航在精度和速度上都产生了质的飞跃,进入了电子化和自动化时代。

GPS作为新一代卫星导航与定位系统。不仅具有全球性、全天候、连续的精密三维导航与定位能力,而且具有良好的抗干扰性和保密性等优点,现在已广泛地在全球应用。需要指出,全球定位系统的导航和定位在概念上是有所不同的,所谓定位是指运动载体,如汽车上安装GPS信号接收机,然后实地测出接收天线所在的位置,这称为GPS定位,也称GPS动态定位。动态的意思是指定位是在极短的时间内完成的。如果GPS接收机在测得运动载体实时位置的同时,还测得运动载体的速度,时间和方位等状态参数,进而可“引导”运动载体驶向预定的目标位置,这称为导航。由此可知,导航是一种广义的动态定位。

GPS是从军事方面发展起来的,出于军事目的,它提供两种服务即标准定位服务SPS(Standard Positioning Service)和精确定位服务PPS(Precise Positioning Service)。前者用于民用事业,后者为美国军方服务。美国政府为限制非军事用户和其他国家使用GPS的精度,分别在 1991年和 1994年实施了“SA(Selective Availability)”技术和“AS(Anti-spoofing)”技术,即“有选择可用性”技术和“反电子欺骗技术”。使SPS服务水平定位精度降低到100 m,而在密码保护下的PPS服务精度提高到1 m。

针对实施的“SA”技术,各国纷纷采用技术对策,出现了差分GPS即DGPS(Differential GPS)。“差分”的概念在无线电导航领域早就被采用,差分GPS的提出,使差分技术提高到过去从未有过的重要地位。采用差分GPS几乎可以完全消除“选择可用性”带来的误差。它利用某些地面发射站送出的已知精确位置的基准信号,将其与GPS的定位信号进行比较和修正。这样,通过建立基准通讯链方式,使GPS数据实现精确校正。目前利用差分技术可使定位精度超过单独使用PPS所得到精度。因此,美国比其他许多国家更快地将DGPS投入到实际使用中,目前其精度可达1 cm,用它可监视地球和冰川的微小运动。2001年美国取消了“SA”技术限制,GPS的定位精度大大提高。

全球卫星定位系统的迅速发展,引起了各国军事部门和广大民用部门的普遍关注。GPS定位技术的高度自动化及其所达到的高精度和具有的潜力,也引起了广大测量工作者的极大兴趣。特别是近十多年来,GPS定位技术在应用基础的研究、新应用领域的开拓、软件和硬件的开发等方面都取得了迅速发展。广泛的科学实验活动为这一新技术的应用展现了极为广阔的前景,经典的大地测量技术经历了一场意义深远的变革,从而进入一个崭新的时代。

目前,GPS精密定位技术已经广泛地渗透到了经济建设和科学技术的许多领域,尤其对经典大地测量学的各个方面产生了极其深刻的影响。它在大地测量学及其相关学科领域,如地球动力学、海洋大地测量学、天文学、地球物理勘探、资源勘察、航空与卫星遥感、工程变形监测、运动目标的测速以及精密时间传递等方面的广泛应用,充分地显示了这一卫星定位技术的高精度与高效益。

20.2.3 RS、GIS和GPS多功能综合

作为空间信息处理的3S技术系统,在空间信息管理中各具特色,均可独立完成自身的功能。同时,它们所能解决的问题之间又有很多关联性,在解决问题的功能上又各自存在着优点和不足:GIS具有较强的空间查询,分析和综合处理能力,但获取数据困难;RS能高效地获取大面积的区域信息,但受光谱波段的限制,且数据定位及分类精度差;GPS能快速地给出目标的位置,对空间数据的精确定位具有特殊意义,但它本身通常无法给出目标点的地理属性。因此,只有三者有机结合起形成一个多功能综合的技术系统,才能发挥更大的作用(图20-3)。在3S系统中,简单地说,GIS相当中枢神经,RS相当传感器,GPS相当定位器,三者的共同作用将使地球能实时感受到自身的变化,使其在资源环境和区域管理等众多领域中发挥巨大作用。RS,GIS和GPS三者的结合与集成已成为当今空间信息系统的发展方向,也是空间科学发展的必然趋势。

图20-3 3S技术系统

20.2.3.1 GIS与RS的结合

GIS和RS都是独立发展起来的支撑现代地学的空间科学技术,其中GIS是管理与分析空间数据的有效工具,RS是空间数据采集和分类的有效工具,它们的研究对象都是空间实体,二者关系十分密切。

GIS和RS的结合主要表现在RS对GIS动态地提供和更新各种数据,而GIS作为空数据处理分析的技术工具,可大大提高RS空间数据的分析能力及分析精度。在实践中,RS和GIS结合的主要形式是利用遥感图像经过计算机图像处理、信息提取、目视解译等方式,编制各种专题图,而后通过数字化仪等输入设备将专题图上所需信息输入到地理信息系统中,或者遥感数据经图像处理、分类和模式识别等方式提取有关信息直接进入地理信息系统数据库。这种结合方式的实质是用遥感形成专题系列数据库(包括遥感图像库)提供给地理信息系统。数据库中各专题要素因来自同一信息源,保证了时相和图幅位置配准,所以很适合在地理信息系统中进行多重信息的综合与复合分析,从而派生出综合性数据及图件,最大限度地发挥有关数据的作用。例如,在流域综合治理中,根据单要素的坡度图、土壤类型图、地貌类型图及植被类型图,通过地理信息系统中的有关模型分析可得到土地利用评价图及土地利用规划图等。

20.2.3.2 RS与GPS的结合

GPS和RS都可看作为GIS的数据源的获取系统,而且,GPS和RS既分别具有独立的功能,又可以互相弥补其不足。

首先,GPS的精确定位功能解决了RS获取目标信息定位困难的问题。在GPS问世以前,地面同步光谱测量、遥感的几何校正和定位等都是通过地面控制点进行大地测量才能确定的,这不但费时费力,而且当无地面控制点时更无法实现,从而严重影响数据实时进入系统。GPS的快速定位为RS数据实时、快速进入GIS系统提供了可能。也就是说,借助GPS可使RS迅速进入GIS分析系统,保证了RS数据及地面同步监测数据获取的动态配准、动态地进入GIS数据库。

其次,利用RS数据实现GPS定位遥感信息查询。此外,利用GPS形成了一系列新技术,如GPS气象遥感技术,利用GPS卫星和接收机之间无线电讯号在大气电离层和对流层中的延迟时间,了解电离层中电子浓度和对流层中温度湿度获得大气参数及其变化情况。因而目前建立和正在建立的全球许多GPS观测网将是提供大气参数的一个重要新数据源。对天气预报尤其是短期天气预报发挥巨大作用。

20.2.3.3 GPS与GIS的结合

GPS和GIS的结合,不仅能取长补短使各自的功能得到充分的发挥,而且还能产生许多更高级功能,从而使GPS和GIS的功能都迈上一个新台阶。

通过GIS系统,可使GPS的定位信息在电子地图上获得实时的,准确的形象的反映及漫游查询。通常GPS接收机所接收信号无法输入底图。若从GPS接收机上获取定位信息后,再要回到地形图或专题图上查找,核实周围地理属性,该工作十分繁杂,而且花费时间长,在技术手段上也是不合理的。如果把GPS的接收机同电子地图相配合,利用实时差分定位技术,加上相应的通信手段组成各种电子导航和监控系统,可广泛用于交通、公安侦破、车船自动驾驶、科学种田和海上捕鱼等方面。

GPS为GIS及时采集、更新或修正数据,例如在外业调查中通过GPS定位得到的数据,输入给电子地图或数据库,可对原有数据进行修正、核实、赋予专题图属性以生成专题图。

D. 基于“3S”技术的土地利用规划环境影响评价——以三峡库区丰都县生态敏感性分区为例

敖A鳈 刘秀华

(西南大学资源环境学院,重庆,400715)

摘要:本文在介绍“3S”技术在土地利用规划应用的基础上,以三峡库区丰都县为例,并通过丰都县生态敏感性分区来进一步阐述“3S”技术在土地利用规划环境影响评价的应用,为合理地进行土地利用规划提供有益的参考。

关键词:土地利用规划;环境影响评价;“3S”技术;丰都县

《中华人民共和国环境影响评价法》自2003年9月1日起施行,该法中第2章第7条规定“国务院有关部门、设区的市级以上地方人民政府及其有关部门,对其组织编制的土地利用的有关规划,区域、流域、海域的建设、开发利用规划,应当在规划编制过程中组织进行环境影响评价,编写该规划有关环境影响的篇章或者说明”。该法规正式将规划的环境影响评价确立为我国的一种环境影响评价制度。以往我国开展的环境影响评价多是围绕建设项目进行的,土地利用规划的环境影响评价研究在国内仍属空白。当前我国正在启动新一轮土地利用总体规划的编制工作,这就要求我们必须开展土地利用规划环境影响评价的研究,建立科学的环境影响评价体系与方法。

“3 S”技术指地理信息系统(Geographical Information Systems,GIS)、遥感(RemoteSensing,RS)和全球定位系统(Global Positioning System,GPS)一体化技术。20 世纪90年代以来,“3 S”技术发展迅速并得到广泛应用。“3 S”技术是实现土地利用规划工作信息化,土地利用规划管理工作的现代化的主要手段。然而,由于技术和人才等方面的原因,过去在规划编制过程中,仅在图件编制等方面采用“3S”的部分技术,离国土资源信息化工作要求差得很远,因此,规划工作完成后又开始建立土地利用规划管理信息系统。本文旨在思考新一轮土地利用规划工作开展时应充分利用“3S”技术,提高土地利用规划的信息化水平,充分适应新形势对土地利用规划的需求。

1 区域概况

丰都县地处三峡库区腹心地带和重庆直辖市版图中心。县境内地貌为一系列褶皱山系构成,长江横贯中部。全县面积2904.07 km2,其中丘陵占 31.7%,低山占 39.4%,中山占28.9%。气候隶属于中亚热带湿润季风气候,常年气候温和,雨量充沛,四季分明,热量丰富,立体气候明显,年均气温 18.5℃,年均降水量为 1123.4mm,无霜期为318天,日照时数1311.8 h。丰都县位于长江三峡旅游热线上,旅游发展为先导的经济战略的实施,使全县社会经济得以快速发展,城乡居民生活水平显着提高。随着三峡工程的完工,丰都县的自然生态环境和经济社会地位都将发生重大的变化。由于特定的地质构造和县境内的公路建设、中小型水利工程、移民城镇建设、采石采矿等人类工程活动,使区内地质环境受到不同程度的改造和破坏,地质环境条件日益恶化,土地利用发生较大的变化。同时成库后,水体自净能力将大大减弱,易造成泥沙淤积和水体污染,对库区广大人民生命财产带来不利的影响。丰都县地处三峡库区腹心地带,长江流经境内47km,其环境状况直接关系到三峡工程长治久安和整个库区人民的生命财产安全。

2 基于 “3S” 技术的土地利用规划环境影响评价分析

本轮土地利用规划环境影响评价的主要任务是:①调查区域生态环境问题,分析资源供给状况和环境容量。调查区域的主要生态环境问题,特别是土地生态环境问题,分析重要生态环境问题的严重程度、分布、范围和危害;调查区域主要限制资源的供给状况;调查区域环境容量。②分析区域土地利用与生态环境关系。分析区域土地利用规模、结构与布局、基础设施建设、土地开发整理、生态建设工程等土地利用活动对生态环境的影响。③提出有利于区域环境保护和生态建设的土地利用调控指标和空间管制措施。根据区域生态环境、土地利用等条件和特点,提出环境友好型土地利用模式;从环境保护和生态改善的角度出发,提出合理布局;根据区域生态环境问题及自然、经济、社会条件,提出合理地生态建设原则、标准、目标、用地安排和政策保障建议。基于此,在进行此轮土地利用规划环评时,考虑使用生态敏感性分区来合理地规划土地利用空间布局,以期为保护生态环境提供有益的参考。而这一部分的细化主要是通过“3S”技术来实现的,主要包括遥感技术,即多光谱卫星遥感数据、雷达遥感数据、航测遥感数据,全球定位系统与野外实地观测,以及地理信息系统,从而客观、准确地提供土地类型、土地利用、地貌类型、植被覆盖、城镇分布等数据,对规划范围进行生态分区。

2.1 基于 “3S” 的土地利用规划

土地利用规划是一种空间规划,借助“3S”技术不仅能够进行基本的数据处理工作,而且还能在空间分析模型的支持下,建立土地适宜性评价空间数据模型,辅助编制土地时空最优利用方案。

2.1.1 土地利用总体规划空间分析模型

(1)基于GIS 的土地适宜性评价 土地适宜性评价是评定土地在一定的经营管理水平下对确定利用类型适宜状况的过程。通过评价土地单元对不同利用类型的适宜程度,可以明确土地对每一种利用类型的适宜程度及适宜程度的数量、质量和结构特征,揭示出影响确定利用类型的限制性因子及其限制程度,从而为土地利用总体规划提供依据。传统的土地适宜性评价是评价者根据收集到的有关数据,利用自己的经验,依据一定的原则进行定性评价,因此,评价结果带有很大的主观性,且评价成果图件均需手工绘制,相关的面积计算、统计分析等工作也费时、费力又容易出现误差,利用GIS技术进行土地适宜性评价可以克服上述问题。借助GIS技术,依据一定的数学模型,充分利用已有的数据资源,对土地适宜性进行单因素评价和多因素综合评价,实现评价区土地适宜性的分等定级。它具有相关的统计、分析、规划和管理功能,集数据管理、土地评价、办公自动化于一体,有力地促进了土地适宜性工作的规范化、系统化和现代化。

(2)空间预测模型 土地利用规划具有战略性,需要较准确地预测一段时间内的土地供需状况。科学的预测模型和方法是进行成功预测的前提。传统预测多选用经济数学模型,如回归、平滑、曲线拟合、灰色预测四大类近20 种。这些模型以行政单元为基本单位,把空间实体看成点状,计算结果与实际情况有所偏离。

(3)基于 GIS 的土地空间配置模型 利用 GIS 的空间分析功能,可以帮助在空间上最大效益地利用土地资源。有如下准则可以用来指导土地利用规划的土地配置:①在满足城市发展的同时,能兼顾到保护优质的农业用地;②城市发展用地的选择要有合理性,要先开发最具有发展适宜性的土地;③要妥善地解决各种不同用地类型之间的矛盾;④土地开发要有规划,要防止出现零乱的空间布局。上面的最大空间效益准则就是为了要节省土地资源,首先通过土地资源的评价来获得研究地区的农业适宜性以及城市发展适宜性的空间分布情况。土地适宜性的计算考虑了土壤、地形、交通和土地利用等要素,如果不考虑其他制约因素,土地利用方式应该与土地适宜性是一致的。在土地规划中,最常碰到的难题就是如何解决城市用地与农业用地的冲突,适合于城市开发的土地往往也是最适合于农业生产。根据土地的适宜性,可以利用GIS来合理地解决城市发展与农田保护的矛盾,这是一个多目标空间决策问题,解决这个问题可采用Eastman 等提出的一种线性分割的方法。

2.1.2 基于 GIS 制定规划方案

GIS 支持下的土地规划方案编制具有模型化、定量化、多元化、动态化等特点,编制出来的规划方案更科学。规划方案的确定总是涉及到不同方案的模拟、评价与比较。GIS 可以根据已有信息、规划模型、上轮规划情况等自动生成不同参数条件下的规划方案,采用图形、表格等形式将不同的方案表现出来,并可模拟执行不同方案的结果。值得提出的是,土地利用规划涉及到每个公民的切身利益,也关系到社会可持续发展大计,公众参与对规划方案的科学性和最终方案的实施都十分重要,有鉴于此,规划方案通过Web GIS、电子地图、虚拟地理环境等可视化手段表达,让不同用户群深入了解方案,提出修改建议。土地利用规划专家和管理、决策部门可以在GIS等技术支持下进行协同规划。在协同规划环境下,不仅规划方案可视化,而且提供研讨环境,设置修编规划方案的操作工具。

2.1.3 编制规划图件

按国家有关规程,土地利用总体规划主要图件成果的基本图件有土地利用现状图、土地利用规划图、基本农田保护图和城市用地规模图。GIS 具有强大的制图能力,可按照规划方案,输出所需要的图件。由于GIS的制图功能在图形符号、颜色分配等方面与土地利用规划图的要求不适应,因此必须按照土地利用规划图的有关规程对GIS的制图模块进行完善,或将相应的制图软件与GIS数据库相连接,从GIS中获取有关的信息进行制图,输出要求的各种规划图件。GIS 和RS 结合可以编制可视化程度更高的图件,遥感数据比地图数据具有更强的现势性和可视性,把遥感数据作为土地利用规划图的背景数据更容易让一般使用图件成果的用户理解规划成果。基于“3S”的土地利用规划还有许多中间成果,这些成果多数以图形形式表达,尽管规程把这些作为必要的成果,但是,它们是土地利用规划重要的资源和依据。GIS 也提供制这些图的工具和符号库,可以方便地编制这些成果。

2.2 生态敏感性分区实例

为保证自然资源的永续利用、协调开发与保护的矛盾,基于“3S”技术,根据景观价值、饮用水保护、坡度和用地使用状况等四项因子(见表1),经单因素图层加权叠加、聚类、数据处理,把丰都县的土地分为最敏感区、敏感区、低敏感区和不敏感区4个类型(图1)。

表1 丰都县用地生态敏感性分析

图1 丰都县生态敏感性分区

2.2.1 最敏感区

一般为河流及其影响区和坡度大于 20%、生态价值高的成片林地,主要分布在方斗山东南一带,高家镇、兴义镇地区。该区域对城市开发建设极为敏感,一旦出现破坏性干扰,不仅会影响该区域,而且还会给整个区域生态系统带来严重的后果,属于自然生态系统重点区域。

2.2.2 敏感区

一般为平缓区域上的林地等,对人类活动敏感性较高,生态恢复难、对维持最敏感区的良好功能及气候环境等方面起到重要的作用,开发时要慎重。它主要分布在长江以南的中山区域和长江以北的十直镇以及丘陵低山地区的高产田如社坛镇、保合乡等长江西北各镇。

2.2.3 低敏感区

一般为有荒山灌草林等经济作物分布的区域,能承受一定的人类干扰,但严重干扰会产生水土流失及相关自然灾害,生态恢复慢;低敏感区分布在许多乡镇,但不合理开发很容易向敏感区过渡。

2.2.4 不敏感区

主要是旱地荒废农田等,能承受一定强度的开发建设,土地可作多种用途开发,主要分布在长江东北以及城区附近。

3 结语

一段时间以来,落后的土地信息技术手段一直是制约我国土地利用规划环境影响评价发展的重要因素,特别是缺少实时动态信息,不能适时进行土地利用信息变更和规划方案调整。“3S”技术是土地利用规划环境影响评价的理想技术支撑手段,并能有效地进行土地利用规划分析。

参考文献

吴次芳,叶艳妹.20 世纪国际土地利用规划的发展及其新世纪展望[J].中国土地科学,2000,14 (1):15~20

张正福.应用遥感技术辅助更新县级土地利用基础图件的方法研究[J].遥感技术与应用,2002,17 (6):381~384

李相一,赵继成.遥感技术在我国土地管理中的应用[J].遥感信息,2003 (1):25~27

张雅彬,孙在宏,吴长彬.基于GIS 的土地利用总体规划管理信息系统的开发与研究[J].南京师大学报(自然科学版),2004,27 (2):107~110

赵俊三,尹鸿俞,杨军等.土地利用规划管理信息系统技术方法研究[J].矿山测量,2003 (4):7~10

王迪云.土地利用规划信息系统——系统分析与框架设计[J].经济地理,2003,23 (6):808~812

李满春,陈刚,姚志军等.县级土地利用规划管理信息系统的分析与设计[J].国土资源遥感,2003 (1):65~69

E. 3S 技术的应用

森林是陆地上最大的生态系统,由于森林形成周期的长期性、资源与环境的动态性、森林成熟的不确定性、林区分布的广域性和空间结构复杂性,人们对其作用和功能的认识必须借助于一系列的森林信息。空间技术、计算机技术、信息技术、电子仪器技术的发展,使得森林监测仪器、技术及方法体系发生了革命性的变化。目前以遥感(航天遥感、航空遥感、地面近景摄影)、以全站仪、电子经纬仪、电子罗盘仪,配备电子测径仪、电子年轮仪等为地面量测技术代表,实现从宏观到中观、微观,从森林到小班、单木,从手工到自动化、集成化的现代森林监测技术体系,通过GIS管理与分析,从而使人类详细地认识森林资源及其生态环境(冯仲科,2002)。

(一)遥感(RS)

在森林景观研究中,遥感技术提供了从局部具体的林分生态研究跨越到景观层次计划和经营的桥梁(QuattrochiandPelletier,1991)。遥感具有快速、实时、大面积同步获得信息的特点,是获得丰富地面信息最方便、快捷的技术,因而它成为景观信息的载体。将遥感等计算机与空间技术运用到景观生态的研究中,为地物相关数据的快速获取与实时更新提供了有效的手段,通过对遥感影像的景观分类制图和比较,可以研究景观空间格局特征,这已经成为景观生态学中比较有效的实用工具(梅安新等,2001;刘建国,2000;张永生,2000)。

本研究主要利用美国宇航局第五号陆地卫星2000年所扫描的TM2、TM3,TM4图像,所采用的预处理主要有彩色合成、波段比值、主成分分析、缨帽变换和条纹消除等操作。在判读之前,对不同时期的遥感影像和林相图在空间上进行配准,对遥感数据进行了几何校正。

几何畸变是指图像上的地物几何位置、形状、尺寸、方位等特征与地面真实形态产生差异,这种差异是影像平移、缩放、旋转、偏扭、弯曲等综合作用的结果。发生畸变的遥感影像对影像位置配准、定量分析及信息提取产生严重的影响,应尽量予以消除,消除影像畸变的过程称为几何纠正。几何畸变的成因复杂,受多种内外因素影响,主要有遥感平台位置及其运动状态的变化、地形起伏、地球表面曲率、大气折射以及地球自转等(王桥,2006;党安荣,2002)。

在实践中一般选用多项式校正法。该方法的基本思想是不考虑成像空间的几何过程,直接对影像变形的本身进行数学模拟,将遥感影像的总体变形看成是平移、缩放、旋转、仿射、偏扭、弯曲等综合作用的结果。在应用中,多选择三次多项式进行纠正,其转换模式为:

森林景观格局与生态规划研究:以长白山地区白河林业局为例

合理选取控制点(GCP)是达到高精度几何校正的另一关键,应选取地物明显的点作为控制点,如桥头、公路交叉点、河流分叉处等,并尽可能满幅均匀分布,控制点的最小个数(n+1)×(n+2)/2,n为多项式次数,但实际应用中控制点(GCP)的数量应远远多于最低数,以提高影像校正精度。

图像的重采样是几何精纠正的一个重要步骤。影像重采样常用方法有最邻近像元(Nearest Interpolate)、双线性内插法(Bilinear Interpolate)和三次卷积法(Cubic convolu-tion)。

在1∶5万地形图上选取地面控制点(20个),利用地理信息系统软件Arc/Info找出各控制点的高斯-克吕格投影坐标,然后运用遥感图像处理软件ERDAS8.6对2000年的影像数据进行几何校正(误差小于0.5个像元),使它们具有统一的投影坐标和像元大小,便于以后进行空间分析。再结合地形图、土壤图和林相图等辅助数据,进行实地调查校验,以保证对遥感图像具有较高的判读精度和解译。

为了对遥感影像数据进行监督分类,首先对研究区进行了详细的地面调查,选取853个复位样地,详细记录了30个指标,利用统计软件和吉林省森林资源数据库代码表,并借鉴前人研究成果的基础上,建立了景观分类系统。其次,采用最大似然法对2000年的遥感影像进行计算机监督分类。第三,采用3×3过滤器对“噪音”进行了消除;第四,为了满足空间分析的需要,对分类结果图进行了矢量化,并将其转换为Arc/Info格式;第五,由于计算机监督分类形成的景观类型图的正确率平均只有75%左右,有许多斑块的分类结果是错误的,为此,我们把遥感影像图(4、3、2波段合成的假彩色影像图)作背景,在ArcView3.2的支持下,进行人机交互解译,对错误的分类斑块进行纠正;最后,将结果图件转换成Arc/Info格式,并将保护区范围切割下来,供空间分析使用。见图2-4。

图2-42000年白河林业局遥感影像图

(二)地理信息系统(GIS)

地理信息系统(GIS)是一项以计算机为基础的新兴技术,围绕着这项技术的研究、开发和应用形成了一门交叉性、边缘性的学科,是管理和研究空间数据的技术系统,在计算机软硬件支持下,它可以对空间数据按地理坐标或空间位置进行各种处理、对数据的有效管理、研究各种空间实体及相互关系。通过对多因素的综合分析,它可以迅速地获取满足应用需要的信息,提供决策支持、动态模拟、统计分析、预测预报等服务,并能以地图、图形或数据的形式表示处理的结果。GIS的空间分析功能主要有:数字地形分析、空间统计分析、空间叠置分析、缓冲区分析、空间扩展分析、网络分析和三维分析等方法(陈俊等,1998;李琦等,2004;汤国安等,2002)。

本研究应用GIS软件与景观生态学原理,以白河林业局有林地为景观基质应用丰富度、多样性、优势度和破碎度指标,进行景观空间格局及其变化分析,通过建立数字高程模型,分析景观格局与地形因子的关系,通过建立景观动态模型,进行动态模拟,为森林经营管理提供理论依据,为景观规划提供方法。

(三)全球定位系统(GPS)

GPS主要用于定位,获取地理坐标,获取森林样地的空间数据(表2-4)。

表2-4 GPS获取的样地空间坐标

F. 什么是3s技术

3S技术是遥感、地理信息系统的统称。因这三个概念的相应英文中都分别含一个S而得名。
一、遥感
遥感,顾名思义,就是遥远地感知。传说中的“千里眼”、“顺风耳”就具有这样的能力。人类通过大量的实践,发现地球上每一个物体都在不停地吸收、发射和反射信息和能量,其中有一种人类已经认识到的形式-电磁波,并且发现不同物体的电磁波特性是不同的。遥感就是根据这个原理来探测地表物体对电磁波的反射和其发射的电磁波,从而提取这些物体的信息,完成远距离识别物体。
由于遥感在地表资源环境监测、农作物估产、灾害监测、全球变化等等许多方面具有显而易见的优势,它正处于飞速发展中。更理想的平台、更先进的传感器和影像处理技术正在不断地发展,以促进遥感在更广泛的领域里发挥更大的作用。当你旅游或野外考察时,为了不迷失方向,你可能会自备一个指南针或罗盘帮助你定位,确定行走路线,并在地图上作标记,而达到定位的目标。不过用这种方法定位时,要求你具备一定的技术,特别是判别周围目标相对位置的能力。那么,能否发现一种简单的仪器,直接告诉我们所处的准确位置呢?有,那就是全球定位系统。
地理信息系统
二、地理信息系统
是利用现代计算机图形技术和数据库技术,用以输入、存储、编辑、分析、显示空间信息及其属性信息的地理资料系统。在地理信息系统中储存和处理的数据可以分成两大类:第一类是反映事物地理空间位置的信息,称空间信息或空间数据(也称地图数据,图形数据);第二类是与地理位置有关的反映事物其它特征的信息,称属性信息或属性数据(也可称为文字数据,非图形数据)。通过系统对这两类信息的特有管理方式,在它们之间建立双向对应关系

G. 什么是空间分析方法哪些

空间分析是为了解决 地理空间问题而进行的数据分析与 数据挖掘,是从GIS目标之间的 空间关系中获取派生的信息和新的知识,是从一个或多个空间数据图层中获取信息的过程。空间分析是GIS的核心和灵魂,是GIS区别于一般的信息系统、CAD或者电子地图系统的主要标志之一。

当前空间分析研究主要有3个主要专业研究: 地理学、测绘学和建筑学。

空间分析的基本方法有:空间信息量算、空间信息分类、缓冲区分析、叠加分析、网络分析、空间统计分析。最常用的就是缓冲区分析,空间查询,路径分析。具体怎么用,建议看看Arcgis的教程,或者推荐你去华夏论坛学习

H. 什么是3S技术

3S技术 是遥感(RS)、地理信息系统(GIS)、全球定位系统(GPS)的统称,因这三个概念的相应英文中都分别含一个S而得名,它是将遥感技术、地理信息系统技术和全球定位系统技术进行综合集成的一种技术。简单说,在3S技术中,RS负责采集信息,GPS负责各类信息的空间定位,GIS则对各类信息进行分析处理,构成完整的地理信息管理系统。
3S技术是目前对地观测系统中空间信息获取、存储、管理、更新、分析和应用的三大技术支撑体系,它们都各自有着独立、平行的发展和成就。但是,随着应用的发展,单独运用其中某一种技术往往难以满足综合性工程应用对信息采集、处理、分析等的要求。所以,3S技术的研究和应用向集成(或一体化)方向发展。在3S集成系统中,GPS主要用于实时、快速提供目标、各类传感器和运载平台(车、船、飞机、卫星等)的空间位置,RS用于实时或准实时提供目标及其环境的语义或非语义信息,发现地球表面上的各种变化,及时地对GIS数据进行更新;GIS则对多种来源的时空数据进行综合处理、集成管理和动态存取,作为新的集成系统的基本平台,并为智能化数据采集提供地学知识。

I. 一 、“3S”技术概述

“3S”技术即指遥感技术 ( RS )、地理信息系统技术 ( GIS ) 和全球定位系统技术 ( GPS ) 的集成,是目前对地观测系统中空间信息获取、存贮、管理、更新、分析和应用的三大支撑技术。RS 用于实时地或准时地提供目标及其环境的语义或非语义信息,发现地球表面的各种变化,及时地对 GIS 进行数据库更新;GIS 则是对多种来源的时空数据采集提供地学知识;GPS主要用于实时、快速地提供目标,包括各类传感器和地面目标的空间位置。

“3S”技术问世以来,由于其快速高效的数据获取、强大的空间数据处理分析、直观生动的地图数据表达显示能力,在空间信息采集、处理、应用中的优势很快显现出来,推动了相关技术迅猛发展,并被广泛地应用于国土、水利、交通、农业、林业、军事等领域。从 20 世纪 90年代开始,特别是随着国土资源大调查项目的实施,“3S”技术已全面地应用到土地资源调查评价领域,如利用 GPS 进行土地资源外业测量,通过 RS 进行土地利用动态变化监测,利用 GIS建立土地资源空间数据库并进行土地资源利用变化的空间分析与制图等,为土地资源现状调查、变化监测、宏观调控等提供了有力的技术支撑。

阅读全文

与3s空间分析方法相关的资料

热点内容
重车调整方法有哪些 浏览:791
电脑护肤方法 浏览:499
负温度系数热敏电阻的测量方法 浏览:904
新奥德赛抖动解决方法 浏览:929
辣椒缺铜施什么肥施肥方法 浏览:112
电脑调试摄像头方法 浏览:781
帕萨特18t发电机涨紧器安装方法 浏览:934
笔记本电脑耳机设置在哪里设置方法 浏览:19
win7恢复语言设置在哪里设置方法 浏览:309
无资料地区水文研究方法 浏览:689
肺部内膜结合临床治疗方法 浏览:710
挽回方法是什么 浏览:206
充电线电阻测量方法 浏览:186
如何用简单方法制作皮冻 浏览:854
在家快速止咳缓解的方法 浏览:457
牛的注射方法有哪些 浏览:569
笔记本爱奇艺全屏卡顿解决方法 浏览:862
如何养好赛鸽的方法 浏览:856
qq电脑皮肤设置在哪里设置方法 浏览:549
案例有什么分析方法 浏览:786