A. 测定vc有哪几种方法,每种方法的使用范围是什么
维生素C不同的测定方法
目前研究维生素C测定方法的报道较多,有关维生素C的测定方法如荧光法、2,6-二氯靛酚滴定法、2,4-二硝基苯肼法、光度分析法、化学发光法、电化学分析法及色谱法等,各种方法对实际样品的测定均有满意的效果.
为了解国内VC含量测定方法及其应用方面的现状及发展态势.方法以"维生素C或抗坏血酸和测定"为检索词对1994~2002年中国期刊网全文数据库(CNKI)中的理工A、B和医药卫生专辑进行篇名检索,对所得有关维生素C含量测定的文献数据分别以年代、作者区域、载刊等级、样品类型、测定方法等进行计量分析.结果核心期刊载刊文献占文献总量的45.06%,其中光度法占65.69%,电化法占18.63%,色谱法占12.75%;复杂被测样品文献占文献总量的45.06%,其中光度法占60.92%,色谱法占19.54%,电化法占10.34%.结论目前国内维生素C含量测定仍以光度法为主流,但近年来色谱法,特别是HPLC法上升趋势尤为明显.
一.荧光法
1.原理
样品中还原型抗坏血酸经活性炭氧化成脱氢型抗坏血酸后,与邻苯二胺(OPDA)反应生成具有荧光的喹喔啉(quinoxaline),其荧光强度与脱氢抗坏血酸的浓度在一定条件下成正比,以此测定食物中抗坏血酸和脱氢抗坏血酸的总量。
脱氢抗坏血酸与硼酸可形成复合物而不与OPDA反应,以此排除样品中荧光杂质所产生的干扰。本方法的最小检出限为0.022 g/ml。
2.适用范围
本方法适用于蔬菜、水果及其制品中总抗坏血酸的测定
3. 注意事项
3.1 大多数植物组织内含有一种能破坏抗坏血酸的氧化酶,因此,抗坏血酸的测定应采用新鲜样品并尽快用偏磷酸-醋酸提取液将样品制成匀浆以保存维生C。
3.2 某些果胶含量高的样品不易过滤,可采用抽滤的方法,也可先离心,再取上清液过滤。
3.3活性炭可将抗坏血酸氧化为脱氢抗坏血酸,但它也有吸附抗坏血酸的作用,故活性炭用量应适当与准确,所以,应用天平称量。我们的实验结果证明,用2g活性炭能使测定样品中还原型抗坏血酸完全氧化为脱氢型,其吸附影响不明显。
二、2,6-二氯靛酚滴定法(还原型VC)
1、原理:
还原型抗坏血酸还原染料2,6-二氯靛酚,该染料在酸性中呈红色,被还原后红色消失。还原型抗坏血酸还原2,6-二氯靛酚后,本身被氧化成脱氢抗坏血酸。在没有杂质干扰时,一定量的样品提取液还原标准2,6-二氯靛酚的量与样品中所含维生素C的量成正比。本法用于测定还原型抗坏血酸,总抗坏血酸的量常用2,4-二硝基苯肼法和荧光分光光度法测定。
2、注意事项
⑴ 所有试剂的配制最好都用重蒸馏水;
⑵ 滴定时,可同时吸二个样品。一个滴定,另一个作为观察颜色变化的参考;
⑶ 样品进入实验室后,应浸泡在已知量的2%草酸液中,以防氧化,损失维生素C;
⑷ 贮存过久的罐头食品,可能含有大量的低铁离子(Fe2+),要用8%的醋酸代替2%草酸。这时如用草酸,低铁离子可以还原2,6-二氯靛酚,使测定数字增高,使用醋酸可以避免这种情况的发生;
⑸ 整个操作过程中要迅速,避免还原型抗坏血酸被氧化;
⑹ 在处理各种样品时,如遇有泡沫产生,可加入数滴辛醇消除;
⑺ 测定样液时,需做空白对照,样液滴定体积扣除空白体积。
3优点:它具有简便、快速、比较准确等优点,适用于许多不同类型样品的分析。缺点是不能直接测定样品中的脱氢抗坏血酸及结合抗坏血酸的含量,易受其他还原物质的干扰。如果样品中含有色素类物质,将给滴定终点的观察造成困难。在酸性环境中,抗坏血酸(还原型)能将染料2,6—DCIP还原成无色的还原型2,6—DCIP,而抗坏血酸则被氧化成脱氢抗坏血酸。氧化型2,6—DCIP在中性或碱性溶液中呈蓝色,但在酸性溶液中则呈粉红色。因此,当用2,6—DICP滴定含有抗坏血酸的酸性溶液时,在抗坏血酸未被全部氧化前,滴下的2,6—DCIP 立即被还原成无色,一旦溶液中的抗坏血酸全部被氧化时,则滴下微量过剩的2,6—DCIP 便立即使溶液显示淡粉红色或微红色,此时即为滴定终点,表示溶液中的抗坏血酸刚刚全部被氧化。依据滴定时2,6—DCIP 标准溶液的消耗量 (ml),可以计算出被测样品中抗坏血酸的含量。氧化型2,6—DCIP与还原型抗坏血酸常在稀草酸或偏磷酸溶液中进行反应。即先将样品溶于一定浓度的酸性溶液中或经抽提后,再用2,6—DCIP标准溶液滴定至终点。
食物和生物材料中常含有其他还原物质,其中有些还原物质可使2,6—DCIP还原脱色。为了消除这些还原物质对定量测定的干扰,可用抗坏血酸氧化酶处理,破坏样品中还原型抗坏血酸后,再用2,6—DCIP 滴定样品中其他还原物质。然后从滴定未经酶处理样品时2,6—DCIP标准溶液的总消耗量中,减去滴定非抗坏血酸还原物质2,6—DCIP 标准溶液的消耗量,即为滴定抗坏血酸实际所消耗的2,6—DCIP标准溶液的体积,由此可以计算出样品中抗坏血酸的含量。另外,还可利用抗坏血酸和其他还原物质与2,6—DCIP反应速度的差别,并通过控制样品溶液在pH1 — 3 范围内,进行快速滴定,可以消除或减少其他还原物质的作用,一般在这样的条件下,干扰物质与2,6—DCIP的反应是很慢的或受到抑制。生物体液(如血液、尿等)中的抗坏血酸的测定比较困难,因为这些样品中抗坏血酸的含量很低,并且存在许多还原物质的干扰,同时还必须预先进行脱蛋白处理。在生物体液中含有巯其、亚硫酸盐及硫代硫酸盐等物质,它们都能与DCIP反应,但反应速度比抗坏血酸慢得多。样品中巯基物质对定量测定的干扰,通常可以藉加入对—氯汞苯甲酸(简称PCMB)而得到消除。
三、2,4-二硝基苯肼法
1.原理
总抗坏血酸包括还原型、脱氢型和二酮古乐糖酸。样品中还原型抗坏血酸经活性炭氧化为脱氢抗坏血酸,再与2,4-二硝基苯肼作用生成红色脎,脎的含量与总抗坏血酸含量成正比,进行比色测定。
2.适用范围
本方法适用于蔬菜、水果及其制品中总抗坏血酸的测定。
这是脎比色法,单独评价是因为目前它作为Vc测定的国标法之一,是一种全量测定法,它跟以前的苯肼法原理相近。首先将样品中的还原型V氧化为脱氢型V,然后与2,4—二硝基苯肼作用,生成红色的脎,将脎溶于硫酸后进行比色。最近国标中该法强调空白,每个样品及标准系列均需作对应空白,这样消除色泽、背景不一的误差。在实际杨梅汁Vc测定中,操作时间长,操作要求较严格,试剂较多,就一般实验室而言是目前可以采用的方法。
四 碘量法
1、维生素C的原理
维生素C包括氧化型、还原型和二酮古乐糖酸三种。当用碘滴定维生素C时,所滴定的碘被维生素C还原为碘离子。随着滴定过程中维生素C全被氧化,所滴入的碘将以碘分子形式出现。碘分子可以使含指示剂(淀粉)的溶液产生蓝色,即为滴定终点。
2、注意事项
(1)看到红棕色出现时要放慢滴定的速度。
(2)以显蓝色在30s内不褪色为滴定终点。
五L-抗坏血酸(维生素C)测定试剂盒(酶学方法)
1.应用于食品,饮料及生物制品检测
2.比色方法
此方法用于检测水果和蔬菜(如马铃薯),水果和蔬菜产品(如西红柿酱、泡菜、果酱、果汁),婴儿食品,啤酒,饮料,流食,粉状和烘烤剂,肉产品,奶制品,葡萄酒,还有动物饲料,医药品(如维生素配制、阵痛药、退烧药)和生物样品中的L-抗坏血酸(维生素C),
3.分析物
L-抗坏血酸不定量的分布于动物和植物中。人类不能自身生产L-抗坏血酸,因此必须由外源(vitamin C)提供。一般情况下来源于水果和蔬菜中,出于技术原因,L-抗坏血酸曾被用于食品工业中的抗氧化剂。它是一种相对敏感的物质,L-抗坏血酸的检测非常适用于从原始水果和蔬菜中加工食品的质量评定。
L-抗坏血酸用于医药品生产中的组成部分,如维生素产品和阵痛药,另外,它还用于动物饲料添加剂中。
4.原理
L-抗坏血酸 (x-H2) + MTT+ PMS—> dehydroascorbate (x) + MTT-formazan + H+X
L-抗坏血酸 + ½ O2 AAO——> dehydroascorbate + H2OX
5.特异性
在给定的条件下,此方法特别针对于L-抗坏血酸。合成的D-阿拉伯抗坏血酸/阿拉伯糖型抗坏血酸能作为抗氧化剂,也能反应,但反应速度较慢。
6.灵敏度
测定灵敏度为0.005个吸光度单位,样品体积为1.600ml,此相当于0.1mg/l样品溶液中的L-抗坏血酸浓度。0.015个吸光度单位的差异能造成0.3 mg/l检测限,样品最大体积为1.600 ml.。
7.线性
测定的线性范围为0.5 ugL-抗坏血酸(0.3mgL-抗坏血酸/l样品溶液体积为1.600ml)到20 ugL-抗坏血酸(0.2gL-抗坏血酸/l样品溶液体积为0.100ml)
8.精密度
在用一个样品做重复实验时,可能会产生0.005-0.010个吸光度单位的差异。标准的相对偏差(变异系数)大约为1-3%。当分析检测数据时,要考虑到L-抗坏血酸的水溶液稳定性较差,尤其是重金属离子或氧存在时。
9.干扰及错误来源
粮食的成分不经常干扰实验。高浓度的酒精和D-山梨酸醇能降低反应速度,大量的亚硫酸盐必须通过添加甲醛来去除。醋酸抑制酶AAO。金属和 亚硫酸盐离子可以导致L-抗坏血酸的自发分解。
10.试剂盒包括内容
1.磷酸盐/柠檬酸缓冲液 ———— pH值大约3.5;MTT
2.AAO(坑坏血酸-氧化酶)—— 每板约17 U AAO
3. PMS 溶液
六.磷钼蓝分光光度法测定维生素C
基于在一定的反应条件下,维生素C可以定量地将磷钼酸锭还原成磷钼蓝,提出了一种新的测定维生素C的分光光度法。该方法很方便、快速地测定生物、药物等试样中的维生素C,准确度和重复性均达到令人满意的程度。
1 适用范围
本标准适用于果品、蔬菜及其加工制品中还原型抗坏血酸的测定(不含二价铁、二价锡、一价铜、二氧化硫、亚硫酸盐或硫代硫酸盐),不适用于深色样品。
2 测定原理
染料2,6-二氯靛酚的颜色反应表现两种特性,一是取决于其氧化还原状态,氧化态为深蓝色,还原态变为无色;二是受其介质的酸度影响,在碱性溶液中呈深蓝色,在酸性介质中呈浅红色。
用蓝色的碱性染料标准溶液,对含维生素 C的酸性浸出液进行氧化还原滴定,染料被还原为无色,当到达滴定终点时,多余的染料在酸性介质中则表现为浅红色,由染料用量计算样品中还原型抗坏血酸的含量。
七.二甲苯-二氯靛酚比色法
1 适用范围
测定深色样品中还原型抗坏血酸。
2 测定原理
用定量的 2,6-二氯靛酚染料与试样中的维生素 C进行氧化还原反应,多余的染料在酸性环境中呈红色,用二甲苯萃取后比色,在一定范围内,吸光度与染料浓度呈线性相关,收剩余染料浓度用差减法计算维生素 C含量。
八.近红外漫反射光谱分析法(NIRDRSA)
自1965年首次应用于复杂农业样品分析后,因其具 有样品处理简单、分析速度快等优点,逐渐受到分析界的重视。此法已广泛应用于石油、纺 织、农业、食品、药物分析等领域[1,2]。在药物分析中,NIRDRSA可以进行定性 鉴别、定量分析等工作。
维生素C是一种不稳定的二烯醇化合物,其药典[3]含量测定方法为碘量法。我 们采用近红外漫反射光谱技术直接测定维生素C含量,样品无需预处理,方法简便,结果可 靠。
这是因为,近红外谱区光的频率与有机分子中C-H,O-H,N-H等振动的合频与各级倍频的 频率一致,因此通过有机物的近红外光谱可以取得分子中C-H,O-H,N-H的特征振动信息 。由于近红外光谱的谱带较宽,谱图重叠严重,不能用特征峰等简单方法分析,需要运用计 算机技术与化学计量学方法。本实验应用的是偏最小二乘法(PLS)[4],首先利用 定标集建立预测模型,然后将预测集作为未知样本,根据预测模型进行预测。
对所选择的谱区范围,采用对反射吸光度的MSC(散射校正)预处理,对25个样品进行交叉 验证,即选择一个样品,从校正集中除去该样品对应的光谱和浓度数据,并设光谱主成分数 为1,循环迭代样品数和主成分数,计算预测残差平方和,确定所需主成分数。若主成分选择 过小,会丢失样品信息,过大会造成过度拟合。当主因子为2时,预测残差平方和值最小, 为2.029,故选择主因子数为2,建立最佳PLS校正数学模型。
九 电位滴定法
1.原理:根据滴定过程中电池电动势的变化来确定反应终点.
Pt为指示电极,甘汞作参比电极
E池=E+-E-+E液接电位=EI2/I-+k(常数)
2.原理(具体来说:)
随着滴定剂的加入,由于发生化学反应,待测离子浓度将不断变化;从而指示电极电位发生相应变化;导致电池电动势发生相应变化;计量点附近离子浓度发生突变;引起电位的突变,因此由测量工作电池电动势的变化就能确定终点。
3.计算式:(与碘量法相同) Wvc=C(I2)V(I2)M(vc)/m(vc ) *100%
4.优点:
解决了滴定分析中遇到有色或浑浊溶液时无法指示终点的问题
用线性电位滴定法分析抗坏血酸,抗坏血酸回收率为99.80%~101.5%,相对标准偏差为0.61%;分析维生素C片中的抗坏血酸,相当标示量为98.90%~100.5%,相对标准偏差不大于0.48%,说明线性电位滴定法分析维生素C片中的抗坏血酸含量是可行的.
十 .分光光度法
1. 原理:
维生素C在空气中尤其在碱性介质中极易被氧化成脱氢抗坏血酸,pH>5,脱氢抗坏血酸内环开裂,形成二酮古洛糖酸。脱氢抗坏血酸,二酮古洛糖酸均能和2,4-二硝基苯肼生成可溶于硫酸的脎
脎在500nm波长有最大吸收
根据样品溶液吸光度,由工作曲线查出VC的浓度,即可求出VC的含量
十一 库仑滴定法
1.原理:库仑滴定法属于恒电流库仑分析。
是在特定的电解液中,以电极反应产物为滴定剂(电生滴定剂,相当于化学滴定中的标准浓液)与待测物质定量作用,借助指示剂或电位法确定滴定终点。
2.基本依据--法拉第电解定律:电解时,电极上发身化学反应的物质质量与通过电解池的电量Q成正比
即: m=MQ/zF = MI t /zF
3..化学反应:阴极反应: 2H+2e-=H2 阳极反应: 2I-=I2+2e-
4.终点指示:多种方法
(1)化学指示剂--I2
(2)电位法
(3)双铂极电流指示法
5.计算式:Wvc=MvcQ/zFm样式中: F--- 法拉第常数(96487C)
Z---电极反应中转移的电子数注意:使电解效率100%
6.优点:
1)无需标准化的试剂溶液,免去了大量的标准物质的准备工作(配制,标定)
2)只需要一个高质量的供电器,计时器,小铂丝电极,且易于实现自动化控制
3)若电流维持一个定值,可大大缩短了电解时间
4)电量容易控制及准确测量;方法灵敏度,准确度较高
5)滴定剂来自电解时的电极产物,可实现容量分析中不易实现的滴定过程,如Cu+,Br2,Cl2产生后立即与待测物反应。
7.缺点(难点):
要求电解过程没有副反应和漏电现象,即使电解电极上只进行生成滴定剂的反应,且电流的效率是100%
8.注:电流效率=i样÷i总= i样÷( i样+ i容+i杂)
因为:实际电解过程中存在影响电流效率的因素,如,杂质,溶剂,电极自身在电极上的反应等
十二 紫外快速测定法
原理
维生素C的2,6—二氯酚靛酚容量法,操作步骤较繁琐,而且受其它还原性物质、样品色素颜色和测定时间的影响。紫外快速测定法,是根据维生素C具有对紫外产生吸收和对碱不稳定的特性,于243nm处测定样品液与碱处理样品液两者消光值之差,通过查标准曲线,即可计算样品中维生素C的含量。
十三 光电比浊法的原理
原理
在酸性介质中,抗坏铁酸与亚硒酸(H2SeO3)能定量地进行氧化还原反应.1mol的抗铁酸能将2mol的亚硒酸还原成硒.在一定条件下,生成的元素硒在溶液中形成稳定的悬浊液.当抗铁酸的浓度在0-4mg/25-50ml的范围内,该溶液生成的浊度与抗坏铁酸的含量成正比.将试液置分光光度计上测其浊度可以定量地测定抗坏铁酸.
十四荧光分析法的原理
原理
用酸洗活性炭将抗坏铁酸氧化为顺式脱氢抗坏铁酸,然后与邻苯二胺缩合成一种荧光性化合物.样品中其它荧光杂质的干扰可以通过向氧化后的样品中加入硼酸,使脱氢抗坏铁酸形成 硼酸脱氢抗坏铁酸的络合物,它不与邻二苯胺生成荧光化合物.这样可以测定其它荧光杂质的空白荧光强度而加以校正
十五 原子吸收间接测定法
原理
这是最近报导的一种Vc测定法,其原理是在酸性介质中还原型Vc可将Cu2+定量地还原为Cu+并与SCN—反应生成CuSCN沉淀,在高速离心机下有效地分离出沉淀,小心洗涤后再经浓硝酸溶解,用原子吸收法测定铜含量,即可推知样品中维生素C的含量。该法实验仪器较昂贵,主要问题是操作过程中反应完全与否,沉淀物洗涤、离心反复多次,极容易带来误差。该法优点是能不受果蔬自身颜色的干扰,有一定的发展前景。根据试验,发现此法结果偏低,还有待于进一步优化改善。
十六.金纳米微粒分光光度法测定维生素C的方法
本发明公开了一种用金纳米微粒分光光度法测定维生素C的方法。于5mL比色管中,依次加入0.1-2.0mL浓度为95.64μg/mL的HAuCl↓[4]溶液,0.02-0.50mL浓度为1%的柠檬酸三钠溶液,再加入0.001-2.0mL浓度为0.38mg/mL的维生素C溶液,混匀,加二次蒸馏水定容至刻度,再充分混匀,在分光光度计上,于520nm处测定吸收值,同时作空白试验。本发明测定方法简单、快捷,所用仪器价廉,试剂易得
十七 L-半胱氨酸修饰电极测定维生素C的方法
研究了L-半胱氨酸修饰电极的制备方法和其电化学行为,并用于维生素C的测定,发现该电极对VC有明显的电催化作用,在pH=10.0的NH4Cl-NH3·H2O缓冲溶液中,VC在L-半胱氨酸修饰电极上产生一灵敏的氧化峰,峰电流与VC的浓度在1.0×10-3~1.0×10-6mol/L的范围内呈良好的线形关系,相关系数为0.9962,其最低检测限可达1.0×10-6mol/L,与紫外光谱法测定的结果一致。
测定维生素C有多种方法,包括采用I2或二氯靛酚(DPI)进行氧化还原滴定。一般来说,滴定法是一种快速、简便、准确的技术,它通过滴定剂和被滴定物质的等当量反应,精确测定被测物质的含量。DPI对于维生素C具有良好的选择性,是一种理想的氧化剂。
十八 梅特勒-托利多仪器法
传统的滴定法是手工滴定,根据指示剂颜色的变化确定终点,通过测量滴定剂的消耗量,计算被测物质的含量。手工滴定有很多不足:手工控制误差较大,计算复杂,针对不同的反应需要特殊指示剂。梅特勒-托利多的自动电位滴定仪解决了这一问题,通过测量滴定反应中电位的变化确定终点,全自动操作、计算,测量快速,结果准确。梅特勒-托利多的滴定仪配有记忆卡软件包,存储有成熟滴定方法,可方便快速解决实际应用问题,并且稍作改动就能作为新的测定的实验方法。
除此之外,还有双光束剩余染料差减比色法,2_6_二氯靛酚钠动力学分光光度法、聚中性红修饰电极方法、示波溴量法、流动注射化学发光抑制法、磷钼钨杂多酸作显色剂快速检测方法、溶氧测定装置测定水果蔬菜中抗坏血酸含量的方法等。在此不做介绍。
B. 药品含量测定方法
滴定法,液相法,可见--紫外分光光度法,气相色谱,柱层析法,折光率测定法,试纸法,燃烧法等等。
每种测定法没有特定的适合种类,通常每种药物都可以用许多种方法来测定。另外,选用的方法和检测目的也有关系,定性、半定量和定量检验的要求和方法也都不尽相同,同一种测定方法可以用多种方法来操作。很难概括论述。只能按单种药品来讲
实际工作上测定含量都是依据《中国药典》
建议参考《药物分析》(人卫版)
每种药物的各种测定方法可以参考《中国药典》
C. hplc为什么成为 体内药物分析的主流方法
有两方面:一是分离,HPLC分离的效率仅次于CE,毛细管GC的分离效率虽然也很高,但对非挥发性成分比较麻烦——往往需要衍生化。
二是检测,HPLC最常用的UV检测,对大多数药物及其代谢产物都有较高的响应。
另外,由于柱切换、固相萃取等技术的普及,前处理也变得简单了
D. 体内药物分析的样品测定
体内样品分析常用的方法有免疫分析法和色谱分析法 。
免疫分析法是基于抗体与抗原或半抗原之间的高选择性反应而建立起来的一种生物化学分析法。具有很高的选择性和很低的检出限,可以应用于测定各种抗原、半抗原或抗体。免疫分析法分为荧光免疫法、发光免疫法、酶免疫法及电化学免疫法等非放射免疫法和放射免疫法,测定的量可以达到μg甚至ng的水平。这些分析方法多配有专用设备和试剂,操作相对简便,适合常规实验室使用,多应用临床治疗药物监测。
色谱分析包括:气相色谱(GC)、高效液相色谱(HPLC)和色谱-质谱联用(GC-MS、LC-MS)等,这些方法适用于复杂样品中微量药物的专属准确定量,多用于药代动力学研究。 由于体内样品取样量少、药物浓度低、内源性物质的干扰(如无机盐、脂质、蛋白质、代谢物)及个体差异等多种因素影响体内样品测定,为了保证方法的可靠性,必须在建立体内样品分析方法的同时对方法进行验证。
(一)特异性
必须证明所测定的物质是原形药物或特定的活性代谢物,内源性物质和相应的代谢物及同时服用的其他药物不得干扰样品的测定。对于色谱法至少要提供6个不同来源的空白体内样品色谱图、空白体内样品外加标准物质色谱图(注明浓度)及用药后的体内样品色谱图。
(二)标准曲线与线性范围
根据所测定物质的浓度与响应的相关性,用回归分析方法获得标准曲线。标准曲线的高低浓度范围为线性范围,在线性范围内浓度测定结果应达到试验要求的精密度和准确度。
必须用至少6个浓度建立标准曲线,应使用与待测样品相同的生物介质,线性范围要能覆盖全部待测浓度,不允许将线性范围外推求算未知样品的浓度。建立标准曲线时应随行空白体内样品,但标准曲线不包括零点。
标准曲线上各浓度点的实测值与标示值的偏差(bias)在可接受范围内时,可判定标准曲线合格。偏差可按下式计算:
式中,回归值系将各浓度点的响应值代人标准曲线计算所得的浓度值;标示值系指制备标准曲线时,各相应浓度点的配制浓度。
标准曲线上各浓度点偏差的可接受范围一般规定为:最低浓度点的偏差在±20%以内,在其余各浓度点的偏差在±15%以内。只有合格的标准曲线才能用于临床待测样品的浓度计算。当线性范围较宽时,推荐采用加权最小二乘法(weighted least square method)进行同归计算。
(三)定量下限
定量下限(LLOQ)是标准曲线上的最低浓度点,:要求至少能满足测定3~5个半衰期时样品中的药物浓度,或Cmax的1/10~1/20时的药物浓度,其准确度应在真实浓度的80%~120%范围内。RSD应小于20%,S/N应大于5.应由至少5个标准样品测试结果证明。
(四)精密度与准确度
要求选择高、中、低3个浓度的质控(quality control,QC)样品同时进行方法的精密度和准确度验证。其中,低浓度接近定量下限(lower limit of quantitation,LLOQ),在LLOQ的3倍以内;高浓度接近标准曲线的上限(即定量上限,upper limit of quantitation,ULOQ),中间选一个浓度,每一浓度至少测定5个样品。
精密度用QC样品的批内(intra-batch)和批间(inter-batch)RSD表示,RSD一般应小于15%,在LLOQ附近应小于20%.
在测定批内RSD时,每一浓度至少制备并测定5个样品。为获得批间RSD应至少在不同天连续制备并测定3个分析批,至少45个样品。
准确度是指用特定方法测得的体内样品浓度与真实浓度的接近程度,一般应在85%~115%范围内,在LLOQ附近应在80%~120%范围内。
(五)样品稳定性
根据具体情况,对含药体内样品在室温、冰冻和冻融条件下以及不同存放时间进行稳定性考察,以确定体内样品的存放条件和时间。还应注意考查储备液的稳定性以及样品处理后的溶液中分析物的稳定性,以保证测试结果的准确性和重现性。
(六)提取回收率
应考察高、中、低3个浓度的提取回收率。其结果应一致、精密和可重现。
(七)质控样品
质控(QC)样品系将已知量的待测药物加入到生物介质中配制的样品,用于质量控制。
(八)质量控制
应在体内样品分析方法验证完成之后开始测试未知体内样品,每个样品一般测定一次,必要时进行复测。每个分析批均应建立相应的标准曲线,并随行测定高、中、低3个浓度的QC样品,每个浓度至少双样本。并应均匀分布在未知样品测试顺序中。当一个分析批中未知样品数目较多时,应增加各浓度QC样品数,使QC样品数大于未知样品总数的5%,QC样品数的增加以组(高、中、低3个浓度)为单位。QC样品测定结果的可接受标准为:偏差应小于15%,低浓度点偏差应小于20%,最多允许1/3不在同一浓度的QC样品结果超限。如QC样品测定结果不符合上述要求,则该分析批未知样品测试结果作废。浓度高于ULOQ的未知体内样品,应采用相应的空白介质稀释后重新测定。
(九)测试结果
应详细描述所用的分析方法,引用已有的参考文献,提供每个分析批的标准曲线、质控样品及未知样品的测试结果及计算过程。还应提供全部未知样品分析的色谱图,包括全部相关的标准曲线、质控样品的色谱图,以供审查。 (一)治疗药物监测的对象
对于治疗安全浓度范围窄、治疗剂量与中毒剂量接近、毒副作用强、具有非线性药代动力学特征、长期使用药效和毒性不明确、以及联合用药可能发生相互作用的药物,通常都应当进行监测。应当进行治疗药物监测的药物包括部分抗癫痫药、抗心律失常药、强心苷类药、抗生素、抗精神病药、抗哮喘药、抗恶性肿瘤药和一些解热镇痛药,如表7-1所示。部分应当进行治疗药物监测的药物的治疗浓度范围和中毒浓度,如表7-2所示。治疗药物监测示例见第十章第一节“苯巴比妥体内样品的分析。
(二)在药代动力学研究中的应用
地高辛在临床上用于心衰治疗,其有效浓度(0.8~2.0ng/ml)与中毒浓度(>2.4ng/ml)接近。消除半衰期长,成人的约为36小时、儿童的约为30小时,属一级动力学。地高辛在肠部被吸收,60%~90%以原型经肾小球滤过或肾小管排泌,仅有约10%在体内通过氢化、水解、结合等反应代谢,另有约7%发生肠-肝循环。
以毛地黄毒苷为内标,对人血浆和尿液中地高辛浓度LC-MS测定如下。
(1)样品处理方法精密吸取血浆1.0ml,置具塞离心管中,精密加入内标溶液(20ng/ml)50μl,加浓氨水100μl和甲基叔丁基醚5.0ml,振荡混匀30分钟后,3000×g力离心10分钟,分取有机层,置另一离心管中,在减压离心条件下挥千,残留物用100μl 含0.25mmol/L醋酸钠的甲醇-水(40:60)流动相溶解,14000×g力离心2分钟,取上清液15μl进行LC-MS分析。尿样用空白血浆按1:10或1:50稀释后照血浆方法处理和测定。
(2)色谱和质谱条件色谱柱C8(2.1mm×50mm,5μm)柱,流动相含0.25mmol/L醋酸钠的甲醇(A)-水(B)梯度洗脱,流速0.25ml/min.电喷雾正离子化,喷雾电压5000V,传输裂解电压250V,干燥氮气温度350℃,流速10.0L/min,喷雾口气压25psi.选择性离子【M+Na】+监测(SIM),m/z分别为803.4(地高辛)和787.4(毛地黄毒苷)。
(3)测定结果血浆浓度线性范围为0.05~1.5ng/ml,应用于人体药代动力学研究,测得女性受试者口服0.25mg地高辛后的典型血浆浓度-时间曲线如图7-2所示,其尿液48小时累积排泄量为30.2%。
E. 体内药物分析常用的分析方法有
药学专业知识(一)第六章生物药剂学,是研究药物吸收、分布、代谢与排泄过程,阐明药物制剂剂型因素,生物因素与药效关系。下面小编总结了药物在体内的各过程:
体内过程示意图
了解完药物在体内的过程示意图,接着我们来掌握执业药师考试中涉及的相关考点:
1. 需要掌握的几个概念
2. 药物的跨膜转运
【相关考题】
1.大部分口服药物的胃肠道中最主要的吸收部分是
A.胃
B.小肠
C.盲肠
D.结肠
E.直肠
2.借助载体或酶促系统,消耗机体能量,从膜的低浓度一侧向高浓度一侧转运的方式是
A.滤过
B.简单扩散
C.易化扩散
D.主动转运
E.膜动转运
答案:B D
F. 药物分析试题:TLC、HPLC及 GC用于鉴别时一般采用的方法是什么
TLC一般是用对照样或者标准品和需要鉴别的样品一起走一张薄层色谱图,对照特征谱带是否一致,HPLC鉴别一般采用指纹图谱,与标准物或者对照样的指纹图谱一致或者说相似度非常高应该就是真的,GC的鉴别方法和HPLC类似,但GC出现保留时间一致但实际不是同一物质的概率会大些,可以采用GC-MS进行定性分析更加可靠。
G. 薄层色谱法用于药物杂质检查常用的方法有哪些各有何特点
斑点面积法、斑点质量法(可结合紫外、荧光法等限量分析)。任何一本药物分析都有的
H. 在药品质量标准中,常用药物的鉴别方法有哪些,各有什么特点
主要原因是药品标准中药品成分相对单一,有主药成分,药品含量高;而体内药物分析的特点是样品成分复杂,被测组分含量低。
I. 薄层色谱法及高效液相色谱法鉴别药物的依据分别是什么
and with it I leave my curse. My curse on St. Gildas, on Marie Trevec, and on her descendants. I will come back to St. Gildas when my remains are disturbed. Woe to that Englishman whom my branded skull shall touch!’”
J. 药品检验时,有哪些常用分析方法
1、重量分析法:
重量分析法是药物分析检测中化学分析的基础方法,指的是称取一定重量的试样,用适当的方法将被测组分与试样中其他组分分离后,转化成一定的称量形式,称重,从而求得该组分含量的方法。
2、酸碱滴定法:
酸碱滴定法在药品分析检测中的应用十分广泛,是将一种已知其准确浓度的试剂溶液滴加到被测物质的溶液中,直到化学反应完全时为止,然后根据所用试剂溶液的浓度和体积可以求得被测组分的含量。
3、PH值测定方法:
pH值是溶液中氢离子活度的负对数,用来表示溶液的酸度。用于pH值测定的装置称为pH计或酸度计,酸度计由pH测量电池和pH指示器两部分组成。
4、光谱技术:
光谱技术的主要原理就是可以通过不同的频率对其要检测的药物进行辐射,在一定范围中的频率被一些物质接受的时候就会出现振动以及转动的状况。
5、化学发光技术:
在药物分析检测中,化学发光法是一种较为常见的技术方式,其主要就是基于化学检测系统中相关检测物的浓度以及体系的化学发光强度在特定状况之下呈线性定量关系的原理,通过仪器对整个体系的化学发光强度进行检测,确定待检测的实际含量的方式就是一种痕量分析方法。
6、色谱法:
色谱法又称为“色谱分析”、“色谱分析法”、“层析法”,是一种分离以及分析的方式与手段。它主要就是通过不同的物质在不同的相态之下对其进行有选择的分配,通过流动相对固定相中存在的混合物进行洗脱操作,而在混合物中存在的不同物质会则会通过不同的速度基于固定相进行移动,进而实现分离的最终效果。
7、电泳法:
电泳法是生物技术及生化药物分析的重要手段之一,具有灵敏度高、重现性好、检测范围广、操作简便并兼备分离、鉴定、分析等优点。
8、DNA扩增法:
DNA扩增技术属于PCR技术,可以把试管中的DNA样品的片段进行拓展,达到上百万倍左右,可以通过肉眼直接对其进行观察。
综上,药品质量的优劣关系着人民的用药和身体健康,为了保证药品的质量,应严格按照药品质量标准进行药物分析检测,为药品能否流通上市和提供用药提供依据。