① 工程地质学的研究方法
包括地质学方法、实验和测试方法、计算方法和模拟方法。地质学方法,即自然历史分析法,是运用地质学理论查明工程地质条件和地质现象的空间分布,分析研究其产生过程和发展趋势,进行定性的判断,它是工程地质研究的基本方法,也是其他研究方法的基础。实验和测试方法,包括为测定岩、土体特性参数的实验、对地应力的量级和方向的测试以及对地质作用随时间延续而发展的监测。计算方法,包括应用统计数学方法对测试数据进行统计分析,利用理论或经验公式对已测得的有关数据,进行计算,以定量地评价工程地质问题。
模拟方法,可分为物理模拟(也称工程地质力学模拟)和数值模拟,它们是在通过地质研究深入认识地质原型,查明各种边界条件,以及通过实验研究获得有关参数的基础上,结合建筑物的实际作用,正确地抽象出工程地质模型,利用相似材料或各种数学方法,再现和预测地质作用的发生和发展过程。电子计算机在工程地质学领域中的应用,不仅使过去难以完成的复杂计算成为可能,而且能够对数据资料自动存储、检索和处理,甚至能够将专家们的智慧存储在计算机中,以备咨询和处理疑难问题,即所谓的工程地质专家系统(见数学地质)。
② 关于地质小知识的内容
一、地质学的研究对象
地质学是研究地球及其演变的一门自然科学。它主要研究地球的组成、构造、发展历史和演化规律。
确切地地说,地质学研究地球(地壳)的物质成分、内部构造、表面特征及地球演化历史的科学。目前地质学主要研究固体地球的最外层,即岩石圈(包括地壳和上地幔的上部)。
二、地质学的研究内容与学科划分
地质学主要研究地球的物质组成、构造运动、发展历史和演化规律,并为人类的生存与发展提供必要的地质依据,主要是资源与环境条件的评价。
自然科学的六大基础学科包括数学、物理学、化学、生物学、天文学、地学。地质学在自身的研究工作中必须充分利用其它学科的成果手段,近些年来学科间相互渗透产生了交叉学科:
地质学自身的分地支学科(椐研究方向划分):
研究地球物质成分:结晶学、矿物学、岩石学。
研究地壳运动及变形的:构造地质学、大地构造学、 地震地质学。
研究地壳演化历史古生物学、地史学、岩相古地理学。
研究地表特征的:冰川地质学、海洋地质学。
地质应用学科:
(1) 与开发资源相关的:
煤田地质学、石油地质学、冶金地质学、矿床学、水文地质学。
(2) 与环境科学相关的:
工程地质学、环境地质学、城市地质学、旅游地质学
三、地质学的特点和研究方法
(一)地质学的特点
1.时间漫长:地球年龄大约46亿年,自地球形成起无时无刻不发生地质作
用,地质学问题涉及时间长。最老的岩石年龄38亿年。
一些地质作用过程持续时间长,如海陆变迁,山脉隆起,矿物、岩石的形成、煤、石油资源的形成等。
地质年代的记时单位是百万年(Ma)。
3. 现象复杂
性质上:包括物理的(崩塌、泥石流)、化学的(钟乳、滴石)、
生物的(煤、石油形成)等各种变化。
规模上:小到原子、分子的微观过程(矿物形成、化石形成……),
大到整个地球乃至太阳系形成的宏观现象。
范围上:从无机到有机界、有机界与无机界的相互转化。
环境上:常温、常压到高温高压,地表环境、地下深处环境。
4.无法再现:众多地质现象对人类来说是无法再现阶段,生物演化,海陆
变迁、煤、石油形成过程(非再生资源)。
针对以上地质学特点有其相适应的研究方法。
(二)地质学的研究方法
1.理论与实践相结合:
地质学是一门实践性很强的学科。
实践:(1)到自然界去观察,取得最基础的资料。
(2)实验室进行模拟实验。
一些地质现象(火山爆发、海底扩张、风化现象)只有在野外直接观察(可借助仪器,但必须到实地),否则无法全面了解。
同时,有些现象,我们需要模拟实验,在实验室重复过程,进行深入细致的分析、研究。辟如,河流沉积作用中,砂是在流动的水中 沉积下来的,我们可以在室内水槽中透明的水体里观察,砂的沉积过程,沉积的层时的类型、沉积颗粒的大小与水流速的关系等…。利用分析的结果,结合地层中河流沉积的地层来推测古河流(地史中)的状况。
2.室内与野外相结合
(从1可理解此)不应过度偏重某一方面。
3.局部与整体相结合
有些地质现象,涉及空间大,人们无法得到全部的空间资料,这时,
对整体的现象了解必须与局部相结合,如地质勘探探明地下矿藏
的分布:点-线-面-体。
4.宏观与微观相结合
如,火山喷发是极其宏观的现象,但熔浆冷凝过程中矿物的形成又是结晶的微观过程。
5.定性与定量相结合
6.原始手段与新技术、新装置相结合
在当今先进的技术条件下,“地质三大件(三件宝)”(锤子、罗盘、放大镜)仍不能放弃。
7.“将今论古”是地质研究的指导方法
“Present is the key to the Past”。
四、地质学的研究目的
n 地质学理论研究的目的就是要正确地认识地球和地球的发展历史。一方面满足人类认识自然、欣赏自然的精神需求,另一方面也是满足人类物质需求的前提与基础。
n 地质学研究的实践目的就是在正确认识地球的基础上,指导人类寻找并合理开发利用矿产、地下水、油气等资源与能源,查明与防治地质灾害,为改善人类生存的地质环境服务。
第2节 地质学发展简史
最早的地质思想的萌芽,可以追溯到二千多年前,但地质学成为一门系统的科学,只有200多年的历史。地质学的发展分可为:
1. 地质思想萌芽时期(公元前~十八世纪中叶)
公元前我国《山海经》(前374-287年)记载了73种矿物,古希腊《石头志》记载了13种,这个阶段对自然界地质现象的认识是朴素、直观、零散的,分析问题带有极大的猜测性。
2. 近代(经典)地质学时期(十八世纪中叶~二十世纪初)
人们开始将地球上孤立的自然现象纳入一个系统的理论体系,即地质科学。这时期地质学诞生、发展并涌现了一批着名的地质学家,确立了地质学的基本原理和方法,建立了地质年代表,使这一科学体系不断完善成熟。史密斯、菜伊尔、赫屯……
3. 现代地质学时期(二十世纪初~现代)
随着科技手段的更新,发展,同时人类自身探索资源的需要,收集到了更广泛的地质资料(洋底)建立了以大陆漂移——海底扩张——板块构造学说为标志的系统的新的地质学理论、观念、方法。
同时这一时期,地质应用学科得到了很大发展。(勘探地质学、工程地质学、石油地质学、煤田地质学等)地质学理论至今仍在不断发展、完善。
现代地质学的发展趋势
1.地质学观察与研究的范围和领域日益扩大。
2.地质学研究的精度与深度随着学科的合作而不断提升。
3.实验与模拟成为地质学研究的重要手段。
4.全球构造理论不断补充完善。
5.资源与环境是地质学服务社会的重要方面。
6.国际合作成为现代地质学研究的必然趋势。
③ 地学研究的特点
地质学(以下简称地学)是研究地球形成与演化的科学,它包括对地球的物质组成、内部结构、表面特征、地球发展历史中的各种地质作用和曾经生活于其上的生命形式及演变等的研究(地质矿产部地质辞典办公室,1983)。根据不同的研究任务和对象,形成许多分支学科。不同分支学科,都是通过对不同地质现象的观察分析,以查明其本质属性,并追溯其形成演化过程和产生的原因,总结有关规律,为人类生存和持续发展服务。
地学研究内容是地质现象(即由地质客体及其之间的关系所表现)的特征、内涵和本质。地质客体(即指地质观察研究尺度内的任何体积矿物或岩石体,及其他能被观察的物体)是观察研究的直接对象,它们都是在地球形成演变过程中留下的“自然遗迹”。由于地球形成演变的长期性(大约46亿a)与不可逆性,地质作用的复杂性和不均衡性,观察者与观察条件的差异性和局限性,从总体来看,这些“遗迹”都是不完整的和残缺的,只能算是“残迹”(贺自爱,1998)。这些“残迹”是不能复原的,在现有科学技术条件下,一般也不可能通过直接实验和模拟,再造其形成过程并加以检验。因此,由这些“残迹”所反映的地质现象的本质与规律,只能由观察者通过观察研究作出解释和判断,必然存在“瞎子摸象”,难以认识全貌的困难。
地质现象是地球形成演化过程中由各种地质作用或相互作用产生的。从本质来说,“运动是物质存在的形式”,没有运动的物质是不存在的。规律又是“宇宙运动中本质的反映”。可以说地质现象,是由物质运动在时间和空间四维中的体现,也是物质在化学的、物理的基本原理制约下相互运动和作用的结果。如岩浆岩的形成,是岩浆作用或火山作用的产物,但又是幔源、壳源及壳幔物质相互运动交换的结果;沉积岩的形成,是在盆地水体及其他陆地中,主要由陆源物质再分配、再沉积的结果;变质岩的形成,是不同类型的原岩,在地球内力(温度、压力等)及流体作用下,加以改造的结果;而构造变形和构造岩的形成,是构造运动对岩石分布产状,结构构造等的破坏和再改造的结果。因此,认识地质现象的本质属性,不仅要对地质作用的性质及发生演变过程进行探索研究,而且要充分运用物理、化学等原理进行思索和论证,“自然界的一切,都服从于基本的物理、数学原理”(张炳熹,1996)。这一点,往往被研究者所忽略。
鉴于地学研究对象的特点,虽然人们在长期生产活动中,通过对地质现象的观察分析,得出很多规律性认识,形成一些重要地学理论,促进了地球科学理论体系的形成与发展。从总体来说,地学研究仍处于探索阶段。可以说:没有对地球与天体形成演化的科学探索,没有对地球深部和各圈层物质运动形式的全面掌握,没有对制约这些运动产生的物理的、化学的原理深刻理解,没有对全球地质现象的分析综合,没有对客观地质现象分析的正确科学思维方法,任何关于地球形成演化、大陆与海洋的形成,以及各种地质作用发生和演变过程,都是一种假设或推论,难以作出全面客观的解释。纵观历史知名地质学家提出的一些地学理论,可以看出这些理论皆受到当时的科学水平、思维方法的制约,以及研究范围、观察手段、技术条件等的限制。从中可看出,对观察的地质现象解释,地质客体的认识,地质规律的阐明,假设或理论的形成等,都有正确的一面和未被认识,或被歪曲的一面。如地学理论中的“水成论”与“火成论”,“渐变论”与“灾变论”,“固定论”与“活动论”,以及地壳运动中的“垂直论”与“水平论”等等,就是很好的说明。在地学研究中最引人关注的是:大陆与海洋的产生,山脉的形成,生命的起源等,曾使很多地质学家终生为此探索,但仍有不能认为是确认的问题;提出的各种学说,有些须完善,有些仍还只是假说。
由“大陆漂移”到“海底扩张”发展形成的板块构造学说,虽然对地学理论的发展,全球构造的阐明起到了很大推动作用,被誉为是一场“地学革命”,但仍处于“假说”阶段。仍有不能被解释的现象,或它为一些新的事实所困惑。假说仍需要发展和完善,或为新的假说所取代。那种把“板块构造”学说看成是地学理论中惟一正确的科学理论体系,能解释一切地质现象,凡是不符合“板块构造学说”的地学研究不支持,凡是不符合“板块构造学说”的地质现象不承认,这将不利于“板块构造学说”的自身开拓与发展。近十年来,与板块构造学说相悖的事实不断被发现。对此,美国Texas工业大学1992年出版的《全球大地构造新概念》一书作了全面反映。除了在板块构造学说中,关于地幔对流驱动力机制、古地磁资料运用、欧拉极旋转、地质时期地球半径不变等概念存有很大争议外;新发现的事实有与大洋中脊平行,长达数千公里的断层、断裂、裂隙带,其运动方向不是垂直于洋脊而是平行洋脊运动。洋底年龄也不像板块构造描述的那样从洋中脊顶部向两侧系统地增加。如在太平洋底,于北纬20°与东经150°交汇处,向东南,由侏罗纪依次渐变为渐新世。太平洋西北部基底为覆盖有年轻沉积物的前寒武纪地盾。在濒临日本的太平洋中有古生代和早中生代古陆。在大西洋中脊有许多元古宙和古生代岩层,如北纬450的鲍尔德山,在长约13km、宽5km、高3km范围内,全由16.90亿~15.50亿a花岗岩(且又被7.85亿a镁铁质岩墙侵入)构成。在大西洋中脊处查明有数百个这类花岗岩产地。印度古大陆不存在独有的生物群,而澳大利亚大陆在生物方面却有独特的特征,两者有明显的区别,表明印度古大陆并不是由澳大利亚大陆分裂漂移而来。古生代及中生代陆生植物、四足类及海生动物群的分布型式,支持大陆和地极相对稳定的联合大陆假说。特别是“板块构造”登陆后,又遇到陆内造山的许多难题。对此,国内外很多学者提出了质疑:如Meyerhoff A A等,根据大量的地质和地球物理资料,提出了在地球收缩体制下新的“颤动构造说”;Owen H G(1992)则用地球的缓慢膨胀解释了大陆分裂和海底扩张,以及联合古陆的解体;杨槐(1993)用思辨的形式,对板块构造理论与实践进行了全面批驳,根据地球高密态起源与“态变”演化,地球非球对称膨胀,非球对称三维运动等论点,对板块构造理论所依据的资料及新发现的现象,进行了新的全面解释;此外,刘粤等(1995)提出了能量补偿论;吴珍汉(1995,1997)提出了旋转地球动力学;池顺良等(1996)提出了海陆起源的内波假说;杨志华提出的抽拉构造(1992)和动力学新理论(2001)等等。上述这些认识,并没有改变当前地学研究中用板块构造理论为指导的一统局面。面对中国如此复杂的大陆构造,一些重大地学研究项目的结论,也只是对板块构造学说进行修补和完善。近年来,大别山区及苏鲁地区,柴达木盆地北缘、阿尔金山、天山等地,相继发现含柯石英的超高压榴辉岩,这似乎为“板块碰撞—深俯冲作用”提供了重要地质依据,给板块构造登陆后遇到的难题求解找到了答案,作者将对此作出与其不同的解释。作者依据大别山及邻区地质构造特征,阐明陆内造山与变质、变形过程,及其形成过程中与深部地幔差速环流的联系。
工程地质学是研究与人类工程建筑等活动有关的地质问题的学科。地质学的一个分支。工程地质学的研究目的在于查明建设地区或建筑场地的工程地质条件,分析、预测和评价可能存在和发生的工程地质问题及其对建筑物和地质环境的影响和危害,提出防治不良地质现象的措施,为保证工程建设的合理规划以及建筑物的正确设计、顺利施工和正常使用,提供可靠的地质科学依据。研究方法包括地质学方法、实验和测试方法、计算方法和模拟方法。地质学方法,即自然历史分析法,是运用地质学理论查明工程地质条件和地质现象的空间分布,分析研究其产生过程和发展趋势,进行定性的判断,它是工程地质研究的基本方法,也是其他研究方法的基础。实验和测试方法,包括为测定岩、土体特性参数的实验、对地应力的量级和方向的测试以及对地质作用随时间延续而发展的监测。计算方法,包括应用统计数学方法对测试数据进行统计分析,利用理论或经验公式对已测得的有关数据,进行计算,以定量地评价工程地质问题。模拟方法,可分为物理模拟(也称工程地质力学模拟)和数值模拟,它们是在通过地质研究深入认识地质原型,查明各种边界条件,以及通过实验研究获得有关参数的基础上,结合建筑物的实际作用,正确地抽象出工程地质模型,利用相似材料或各种数学方法,再现和预测地质作用的发生和发展过程。电子计算机在工程地质学领域中的应用,不仅使过去难以完成的复杂计算成为可能,而且能够对数据资料自动存储、检索和处理,甚至能够将专家们的智慧存储在计算机中,以备咨询和处理疑难问题,即所谓的工程地质专家系统(见数学地质)。
⑤ 地质学的研究对象和研究内容具有哪些特点
地质学的研究对象是地球.地球包括固体地球及其外部的大气.固体地球包括最外层的地壳、中间的地幔及地核三个主要的层圈.目前,主要是研究固体地球的上层,即地壳和地幔的上部.研究内容:矿物学、岩石学、地球化学、构造地质、地球物理、古生物学、地史学、工程地质、水文地质、环境地质等等.
⑥ 工程地质学的研究方法有哪些
1 地质分析法
即自然历史分析法。是运用地质学的理论,查明工程地质条件和地质现象的空间分布以及它在工程建筑物作用下的发展变化,用自然历史的观点分析研究其产生过程和发展趋势,进行定性的判断。它是工程地质研究的基本方法,也是其他研究方法的基础。
工程地质工作中,必须综合运用上述方法,才能取得可靠的结论,对可能发生的工程地质问题制定出合理的防治对策。
⑦ 地质学有什么特点
地质学的特点:
第一,地质学的研究对象涉及到悠久的时间和广阔的空间。地球自形成
以来已经有46亿年的历史,在这样漫长的时间里,地球曾发生过沧海桑田、翻天覆地的重大变化,而其中任何一个变化和事件,任何一粒矿物和一块岩石的形成和演化,都往往要经历数百万年甚至数千万年的周期。对这些变化和事件,人们不能像研究人类历史那样,可以借助于文字和文物;也不能像研究物理那样,可以单纯依靠在实验室中做实验,而必须靠研究分析地球本身发展过程中所遗留下来的各种记录。
同时,地球具有巨大的空间,在不同地点和不同深度,具有不同的物质
基础和外界因素,因而有不同的发展过程。海洋和大陆、大陆的各个部分、地球表层和深部,都有其不同的发展过程。因此,既要研究它们的共性,更要研究它们的差异性和相关性,才能全面、深入地找出地球的发展规律。
第二,地质学具有多因素互相制约的复杂性。它所研究的对象和内容,
从小到矿物组成的微观世界到大至整个地球以及宇宙的宏观世界,从矿物岩石等无机界的变化到各种生命出现的演化,从常温常压环境到目前还不能人为模拟的高温高压环境,从各种变化的物理过程、化学过程到生物化学过程,从地球本身各个部分的物质能量转化到地球与外部空间的物质能量转化等等,充满着各种矛盾和相互作用的复杂过程。任何一种地质过程,都不可能是单一的物理过程和化学过程,地球自诞生以来,不仅形成了光怪陆离的矿物世界、岩石世界、海洋大陆、高山深谷,也出现和演化成了种类繁多的生物世界。众所周知,目前在实验室中即使合成最简单的生命物质,也是非常不容易。地球演化到今天,产生出如此面貌,这固然与其具有人类历史所不能比拟的充分时间有关,同时也说明地球演化的地质过程是一个十分复杂的过程。
第三,地质学是来源于实践而又服务于实践的科学。但地质学必须首先
是以地球为大课堂,以大自然为实验室,进行野外调查研究,大量掌握实际资料,进行分析对比归纳,得出初步结论,然后再用以指导生产实践,并不断修正补充和丰富已有的结论。远在数十万年前的旧石器时代,人类的祖先就是在制造石器的过程中,逐步掌握了一些岩石的特性,后来在铜器时代、铁器时代,人类又在生产活动中逐步掌握了寻找有用矿产的某些规律。近代以来,由于工矿业的发展,特别是相邻科学和现代技术的进步,又推动了地质学的突飞猛进,不断形成新的理论。
⑧ 地质学基础特点决定地球科学工作者的思维和研究方法有什么特点
地质学的研究对象主要是地球,属于地球科学(简称地学)的范畴,也是六大基础自然科学的一个组成部分。地质学的研究对象及其内容既不同于数学,也不同于物理和化学,而是具有它自己的特殊性,从而也具有它自己的研究方法。
(一)地质学的特点
第一,地质学的研究对象涉及到悠久的时间和广阔的空间。地球自形成以来已经有 46 亿年的历史,在这样漫长的时间里,地球曾发生过沧海桑田、翻天覆地的重大变化,而其中任何一个变化和事件,任何一粒矿物和一块岩石的形成和演化,都往往要经历数百万年甚至数千万年的周期。对这些变化和事件,人们不能像研究人类历史那样,可以借助于文字和文物;也不能像研究物理那样,可以单纯依靠在实验室中做实验,而必须靠研究分析地球本身发展过程中所遗留下来的各种记录。
同时,地球具有巨大的空间,在不同地点和不同深度,具有不同的物质基础和外界因素,因而有不同的发展过程。海洋和大陆、大陆的各个部分、地球表层和深部,都有其不同的发展过程。因此,既要研究它们的共性,更要研究它们的差异性和相关性,才能全面、深入地找出地球的发展规律。
第二,地质学具有多因素互相制约的复杂性。它所研究的对象和内容,从小到矿物组成的微观世界到大至整个地球以及宇宙的宏观世界,从矿物岩石等无机界的变化到各种生命出现的演化,从常温常压环境到目前还不能人为模拟的高温高压环境,从各种变化的物理过程、化学过程到生物化学过程,从地球本身各个部分的物质能量转化到地球与外部空间的物质能量转化等等,充满着各种矛盾和相互作用的复杂过程。任何一种地质过程,都不可能是单一的物理过程和化学过程,地球自诞生以来,不仅形成了光怪陆离的矿物世界、岩石世界、海洋大陆、高山深谷,也出现和演化成了种类繁多的生物世界。众所周知,目前在实验室中即使合成最简单的生命物质,也是非常不容易。地球演化到今天,产生出如此面貌,这固然与其具有人类历史所不能比拟的充分时间有关,同时也说明地球演化的地质过程是一个十分复杂的过程。
第三,地质学是来源于实践而又服务于实践的科学。但地质学必须首先是以地球为大课堂,以大自然为实验室,进行野外调查研究,大量掌握实际资料,进行分析对比归纳,得出初步结论,然后再用以指导生产实践,并不断修正补充和丰富已有的结论。远在数十万年前的旧石器时代,人类的祖先就是在制造石器的过程中,逐步掌握了一些岩石的特性,后来在铜器时代、铁器时代,人类又在生产活动中逐步掌握了寻找有用矿产的某些规律。近代以来,由于工矿业的发展,特别是相邻科学和现代技术的进步,又推动了地质学的突飞猛进,不断形成新的理论。
⑨ 构造地质学的研究方法
地质构造的研究应包括构造的几何学、运动学和动力学的研究,以及构造发育、演化的历史分析。①构造几何学的研究是对各种地质构造的形态、产状和规模及其组合型式和相互关系进行观察、描述和测量; ②构造的运动学分析是根据构造几何学的有关资料和数据,去追索现有构造状态和位置的岩体在变形时,物质相继发生的位移、转动和应变等内部和外部的运动; ③动力学的研究则是探索构造变形时作用力的性质、大小、方向、应力场的演化以及外力与应力之间的关系; ④构造的历史分析是通过野外观察和室内对有关资料的综合研究,阐明各种地质构造的形成时期及其发育顺序。这几个方面的研究是相互联系、相辅相成的。对构造形态进行几何分析则是构造地质学研究的基础,有了构造几何分析的基础,才可能正确分析地质构造的演化历史和成因,进而对各个地区的构造分析资料及其他方面的资料进行综合分析,从而揭示出地壳构造的形成和发展规律。
尽管对不同岩石类型地区地质构造和不同尺度构造的研究任务和方法各有不同,但是,野外观察和地质填图始终是研究地质构造的基本方法。通过野外观察填绘的地质图,不仅可反映出一个地区各种岩层和岩体的分布,而且根据岩层和岩体的产状、相互关系和各自的时代,可以认识该区各种地质构造的形态、组合特征和发育史。通过绘制剖面图和根据地面的构造形态观测及钻井和物探等提供的资料,编绘构造等高线图和等厚图,能较好地反映地下构造形态的特征。
研究地质构造的形态、产状及其相互关系,一方面是采用填绘地质图、编制有关图件以及相应文字描述的常规方法; 另一方面是通过对各种面状构造和线状构造要素的力学性质、产状和相互几何关系的系统观察和测量,应用极射赤平投影或电子计算机作数理统计分析和自动化成图,从而得出地质构造产状方位的型式和对称性的特征,为建立地质构造三维空间图像、分析构造变形机制和恢复变形历史等提供依据。Bruna Sander ( 1930) 在《岩石组构学》中提出的变形岩石显微组构的几何分析方法和运动学解释原则,经广大地质学家在实践中进行修正和补充,现已发展成为不仅可用于显微构造分析,而且也可以应用于中、小型构造乃至大型构造分析。
现代航空、航天遥感技术和航片、卫片的采用,扩大了观察地质构造的视域和深度,弥补了野外地质观察的局限性; 而钻探、物探等工程和探测技术的应用,为了解地下构造情况,提供了重要资料。
研究地质构造不能只满足于形态描述,还要应用力学原理,鉴定各个构造的力学性质和相互关系,并分析它们的形成机制和各构造之间的内在联系,以便得出区域地质构造的分布和演变规律。
研究地质构造形成的力学机制,常常需要进行模拟实验。例如根据相似原理,用泥巴、石蜡、沥青或凡士林等材料,做成某种形态和尺寸的试件,在设置的相应几何边界条件下,施加一定方式的力使之发生变形,观察其变形特点、应力与应变之间的关系,并将实验模型与自然界的构造原型进行类比,借以说明这种构造的形成、发展和组合关系以及构造变形的边界条件和应力作用方式。计算机的应用使构造地质的研究向定量的数理分析方向发展。如应用有限单元法来计算一定地区内的各点的应力方向和大小,进而对该地区的构造应力场做出数学模拟,据此,可以推断出相应的构造图像,并与该地区的地质构造特征进行比较。
对地质构造进行历史分析,一般是根据地层之间的不整合接触关系及各种构造间成因联系和交截、叠加关系,并结合沉积岩相、厚度以及岩浆活动等方面的分析,或配合同位素地质年代的测定资料,分析该区构造形成时代和发育顺序,划分构造发育的阶段,恢复区域构造发展史,从而对该区地质构造的规律有一个较为正确的认识。
在构造地质学研究中,还需与岩石学、地层学、地貌学及地球物理学等学科密切结合。