1. 概率论与数理统计中数据分析思想和方法是什么谢谢。
可以看一下大数定律
2. 学习概率论有什么好的方法啊
如果你是学生的话,可以请教老师,或者学习了概率论的学长们。
如果你不是学生,那么要边学边做笔记,可以适当拓宽一下知识面,了解有关概率论的资料。从全方面学习概率论。当然一边学你还可以稍微试用一下(前提是那些部分的知识不是全书面,全虚拟的)。最重要的是要记住知识。买关于这方面的辅导读物也可以,但要适量,毕竟辅导读物也不是全能的,买多了如果重复了的话就是浪费金钱了。
我能帮助你的也只有这些了,如果还有什么不明白的可以请教别的高人。谢谢,
1、对比分析法
对比分析法指通过指标的对比来反映事物数量上的变化,属于统计分析中常用的方法。常见的对比有横向对比和纵向对比。
横向对比指的是不同事物在固定时间上的对比,例如,不同等级的用户在同一时间购买商品的价格对比,不同商品在同一时间的销量、利润率等的对比。
纵向对比指的是同一事物在时间维度上的变化,例如,环比、同比和定基比,也就是本月销售额与上月销售额的对比,本年度1月份销售额与上一年度1月份销售额的对比,本年度每月销售额分别与上一年度平均销售额的对比等。利用对比分析法可以对数据规模大小、水平高低、速度快慢等做出有效的判断和评价。
2、分组分析法
分组分析法是指根据数据的性质、特征,按照一定的指标,将数据总体划分为不同的部分,分析其内部结构和相互关系,从而了解事物的发展规律。
根据指标的性质,分组分析法分为属性指标分组和数量指标分组。所谓属性指标代表的是事物的性质、特征等,如姓名、性别、文化程度等,这些指标无法进行运算;而数据指标代表的数据能够进行运算,如人的年龄、工资收入等。分组分析法一般都和对比分析法结合使用。
3、预测分析法
预测分析法主要基于当前的数据,对未来的数据变化趋势进行判断和预测。预测分析一般分为两种:一种是基于时间序列的预测,例如,依据以往的销售业绩,预测未来3个月的销售额;另一种是回归类预测,即根据指标之间相互影响的因果关系进行预测,例如,根据用户网页浏览行为,预测用户可能购买的商品。
4、漏斗分析法
漏斗分析法也叫流程分析法,它的主要目的是专注于某个事件在重要环节上的转化率,在互联网行业的应用较普遍。比如,对于信用卡申请的流程,用户从浏览卡片信息,到填写信用卡资料、提交申请、银行审核与批卡。
最后用户激活并使用信用卡,中间有很多重要的环节,每个环节的用户量都是越来越少的,从而形成一个漏斗。使用漏斗分析法,能使业务方关注各个环节的转化率,并加以监控和管理,当某个环节的转换率发生异常时,可以有针对性地优化流程,采取适当的措施来提升业务指标。
5、AB测试分析法
AB 测试分析法其实是一种对比分析法,但它侧重于对比A、B两组结构相似的样本,并基于样本指标值来分析各自的差异。
例如,对于某个App的同一功能,设计了不同的样式风格和页面布局,将两种风格的页面随机分配给使用者,最后根据用户在该页面的浏览转化率来评估不同样式的优劣,了解用户的喜好,从而进一步优化产品。
除此之外,要想做好数据分析,读者还需掌握一定的数学基础,例如,基本统计量的概念(均值、方差、众数、中位数等),分散性和变异性的度量指标(极差、四分位数、四分位距、百分位数等),数据分布(几何分布、二项分布等),以及概率论基础、统计抽样、置信区间和假设检验等内容,通过相关指标和概念的应用,让数据分析结果更具专业性。
4. 概率论
概率论
probability theory
研究随机现象数量规律的数学分支。随机现象是相对于决定性现象而言的。在一定条件下必然发生某一结果的现象称为决定性现象。例如在标准大气压下,纯水加热到100℃时水必然会沸腾等。随机现象则是指在基本条件不变的情况下,一系列试验或观察会得到不同结果的现象。每一次试验或观察前,不能肯定会出现哪种结果,呈现出偶然性。例如,掷一硬币,可能出现正面或反面,在同一工艺条件下生产出的灯泡,其寿命长短参差不齐等等。随机现象的实现和对它的观察称为随机试验。随机试验的每一可能结果称为一个基本事件,一个或一组基本事件统称随机事件,或简称事件。事件的概率则是衡量该事件发生的可能性的量度。虽然在一次随机试验中某个事件的发生是带有偶然性的,但那些可在相同条件下大量重复的随机试验却往往呈现出明显的数量规律。例如,连续多次掷一均匀的硬币,出现正面的频率随着投掷次数的增加逐渐趋向于1/2。又如,多次测量一物体的长度,其测量结果的平均值随着测量次数的增加,逐渐稳定于一常数,并且诸测量值大都落在此常数的附近,其分布状况呈现中间多,两头少及某程度的对称性。大数定律及中心极限定理就是描述和论证这些规律的。在实际生活中,人们往往还需要研究某一特定随机现象的演变情况随机过程。例如,微小粒子在液体中受周围分子的随机碰撞而形成不规则的运动(即布朗运动),这就是随机过程。随机过程的统计特性、计算与随机过程有关的某些事件的概率,特别是研究与随机过程样本轨道(即过程的一次实现)有关的问题,是现代概率论的主要课题。概率论与实际生活有着密切的联系,它在自然科学、技术科学、社会科学、军事和工农业生产中都有广泛的应用。
概率论的起源与赌博问题有关。16世纪,意大利的学者开始研究掷骰子等赌博中的一些简单问题。17世纪中叶,法国数学家B.帕斯卡、P.de费马及荷兰数学家C.惠更斯基于排列组合方法,研究了一些较复杂的赌博问题,他们解决了分赌注问题、赌徒输光问题等。随着18、19世纪科学的发展,人们注意到在某些生物、物理和社会现象与机会游戏之间有某种相似性,从而由机会游戏起源的概率论被应用到这些领域中;同时这也大大推动了概率论本身的发展。使概率论成为数学的一个分支的奠基人是瑞士数学家J.伯努利,他建立了概率论中第一个极限定理,即伯努利大数定律,阐明了事件的频率稳定于它的概率。随后A.de棣莫弗和P.S.拉普拉斯 又导出了第二个基本极限定理(中心极限定理)的原始形式。拉普拉斯在系统总结前人工作的基础上写出了《分析的概率理论》,明确给出了概率的古典定义,并在概率论中引入了更有力的分析工具,将概率论推向一个新的发展阶段。19世纪末,俄国数学家P.L.切比雪夫、A.A.马尔可夫、A.M.李亚普诺夫等人用分析方法建立了大数定律及中心极限定理的一般形式,科学地解释了为什么实际中遇到的许多随机变量近似服从正态分布。20世纪初受物理学的刺激,人们开始研究随机过程。这方面A.N.柯尔莫哥洛夫、N.维纳、A.A.马尔可夫、A.R辛钦、P.莱维及W.费勒等人作了杰出的贡献。
如何定义概率,如何把概率论建立在严格的逻辑基础上,是概率理论发展的困难所在,对这一问题的探索一直持续了3个世纪。20世纪初完成的勒贝格测度与积分理论及随后发展的抽象测度和积分理论,为概率公理体系的建立奠定了基础。在这种背景下,苏联数学家柯尔莫哥洛夫1933年在他的《概率论基础》一书中第一次给出了概率的测度论的定义和一套严密的公理体系。他的公理化方法成为现代概率论的基础,使概率论成为严谨的数学分支,对概率论的迅速发展起了积极的作用。
5. 概率抽样最基本的组织方式有哪四种
概率抽样方法 (Probability Sampling)
概率抽样包括有
简单随机抽样(又称:单纯随机抽样)
系统抽样(等距抽样)
分层随机抽样(类型抽样)
分群随机抽样
等方法。概率抽样又称几率抽样、可能率抽样,在实践中受到人们的普遍重视和广泛应用。概率抽样是以概率论与数理统计为基础,首先按照随机的原则选取调查样本,使调查母体中每一个子体均有被选中的可能性,即具有同等被选为样本的可能率,机遇均等。定量市场调查中的概率抽样是指在调查总体样本中的每个单位都具有同等可能性被抽中的机会。
概率抽样的基本原则是:样本量越大,抽样误差就越小,而样本量越大,则成本就越高。根据数理统计规律,样本量增加呈直线递增的情况下(样本量增加一倍,成本也增加一倍),而抽样误差只是样本量相对增长速度的平方根递减。因此,样本量的设计并不是越大越好,通常会受到经济条件的制约。
6. 怎么学好概率论
全部
视频
问答
贴吧
图片
文库
资讯
购物
职位
小视频
小程序
采购
地图
音乐
应用
热议
1.
如果是本科非数学专业的概率论:几大概率模型要能理解并掌握他们的条件,特点,期望,方差公式,这...
2.
基本的求概率问题,就是高中学过的那种,就理解贝叶斯公式就行了。任何选择判断都可以用文氏图解决...
3.
了解多元概率,复合概率的求法,卷积公式,其实这一部分就是微积分中积分的本质。后面的各种分布,...
经验精选看视频 更简单 解决你所有难题
7. 概率统计方法有哪些
总体来说,所有的统计推断都要依赖概率知识,因而都是概率统计,分两大类就是包括参数估计和假设检验。
再具体地说,方法就多了。假设检验包括:独立样本T检验、单样本T检验、配对样本T检验、相关系数检验、方差分析,以及众多的非参数假设,包括卡方检验、KS检验、Fridman检验,多了去了。