‘壹’ 数学方法论主要研究什么
数学方法论主要是研究和讨论数学的发展规律,数学的思想方法以及数学中的发现、发明与创新等法则的一门学问。数学是一门工具性很强的科学,它和别的科学比较起来还具有较高的抽象性等特征,为了有效地发展它、改进它、应用它或者把它很好地传授给学生们,就要求对这门科学的发展规律、研究方法、发现与发明等法则有所掌握,因此,数学研究工作者、数学教师、科技工作者,以及高年级大学生、研究生等都需要知道一些数学方法论。
‘贰’ 用什么数学方法研究影响大学生学习能力的因素
物理模型-数学模型-相关数据分析(算法)
‘叁’ 大学数学系老师课余时间的研究课题都为哪类请举例说明
数学有相当多的分支:你的问题太泛了。
我就举几个例子吧。比如搞基础数学的,像数论的就可以搞密码研究,例如山东大学的王小云就是搞加密算法的,用的是纯数学函数方面的东西。密码学和数学结合相当紧密的,国内西电的应用数学就是因为她的密码学而闻名的。还有搞信号的,也要数学系的老师,还有搞网络算法的,数学系的老师也搞,总之涉及的领域相当多,你说的还有楼上说的都只是些表面浅层的东西。
‘肆’ 数学的研究方法
学数学研究方法有哪些
一、学生的数学学习过程研究
1、小学数学命题改革的趋势与策略研究
2、小学数学“解决问题”评价内容与方式的研究
3、学生视角中的“好”数学教师标准的调查与研究
4、学生视角中的“好”数学课标准的调查与研究
5、 数学教师所需要哪些更高层次的知识?的本体性知识?
6、课堂教学常规研究
7、数学教师数学观的调查与分析
8、如何在校本教研中增强教师
二、教学资源研究
1、数学课堂合理利用教学资源的研究.
2、小学数学教学中有效情境的创设与利用研究
三、教学设计研究
1、小学数学概念教学的一般策略与关键因素的研究
2、关于“算”、“用”结合教学策略的研究
3、关于数学教学中动手实践有效性的研究
4、关于数学欣赏课的研究
5、关于新课程背景下口算教学的研究
四、教学过程研究
1、学生数学学习心理体验的研究
2、数学课堂教学有效性研究1、有效运用学生的学习起点实践研究
2、关注数学习困难生的实践研究
3、小学数学课前基础调查的作业设计研究
4、学生数学学习过程的优化研究.教学评价研究五、
‘伍’ 大学数学论文
高数论文
什么是微积分?它是一种数学思想,‘无限细分’就是微分,‘无限求和’就是积分。无限就是极限,极限的思想是微积分的基础,它是用一种运动的思想看待问题。比如,子弹飞出枪膛的瞬间速度就是微分的概念,子弹每个瞬间所飞行的路程之和就是积分的概念
如果将整个数学比作一棵大树,那么初等数学是树的根,名目繁多的数学分支是树枝,而树干的主要部分就是微积分。微积分堪称是人类智慧最伟大的成就之一。从17世纪开始,随着社会的进步和生产力的发展,以及如航海、天文、矿山建设等许多课题要解决,数学也开始研究变化着的量,数学进入了“变量数学”时代,即微积分不断完善成为一门学科。整个17世纪有数十位科学家为微积分的创立做了开创性的研究,但使微积分成为数学的一个重要分支的还是牛顿和莱布尼茨。
从微积分成为一门学科来说,是在17世纪,但是,微分和积分的思想早在古代就已经产生了。公元前3世纪,古希腊的数学家、力学家阿基米德(公元前287—前212)的着作《圆的测量》和《论球与圆柱》中就已含有微积分的萌芽,他在研究解决抛物线下的弓形面积、球和球冠面积、螺线下的面积和旋转双曲线的体积的问题中就隐含着近代积分的思想。作为微积分的基础极限理论来说,早在我国的古代就有非常详尽的论述,比如庄周所着的《庄子》一书中的“天下篇”中,着有“一尺之棰,日取其半,万世不竭”。三国时期的刘徽在他的割圆术中提出“割之弥细,所失弥少,割之又割以至于不可割,则与圆合体而无所失矣”。他在1615年《测量酒桶体积的新科学》一书中,就把曲线看成边数无限增大的直线形。圆的面积就是无穷多个三角形面积之和,这些都可视为典型极限思想的佳作。意大利数学家卡瓦列利在1635年出版的《连续不可分几何》,就把曲线看成无限多条线段(不可分量)拼成的。这些都为后来的微积分的诞生作了思想准备。
17世纪生产力的发展推动了自然科学和技术的发展,不但已有的数学成果得到进一步巩固、充实和扩大,而且由于实践的需要,开始研究运动着的物体和变化的量,这样就获得了变量的概念,研究变化着的量的一般性和它们之间的依赖关系。到了17世纪下半叶,在前人创造性研究的基础上,英国大数学家、物理学家艾萨克·牛顿(1642-1727)是从物理学的角度研究微积分的,他为了解决运动问题,创立了一种和物理概念直接联系的数学理论,即牛顿称之为“流数术”的理论,这实际上就是微积分理论。牛顿的有关“流数术”的主要着作是《求曲边形面积》、《运用无穷多项方程的计算法》和《流数术和无穷极数》。这些概念是力学概念的数学反映。牛顿认为任何运动存在于空间,依赖于时间,因而他把时间作为自变量,把和时间有关的固变量作为流量,不仅这样,他还把几何图形——线、角、体,都看作力学位移的结果。因而,一切变量都是流量。
牛顿指出,“流数术”基本上包括三类问题。
(l)“已知流量之间的关系,求它们的流数的关系”,这相当于微分学。
(2)已知表示流数之间的关系的方程,求相应的流量间的关系。这相当于积分学,牛顿意义下的积分法不仅包括求原函数,还包括解微分方程。
(3)“流数术”应用范围包括计算曲线的极大值、极小值、求曲线的切线和曲率,求曲线长度及计算曲边形面积等。
牛顿已完全清楚上述(l)与(2)两类问题中运算是互逆的运算,于是建立起微分学和积分学之间的联系。
牛顿在1665年5月20目的一份手稿中提到“流数术”,因而有人把这一天作为诞生微积分的标志。
莱布尼茨使微积分更加简洁和准确
而德国数学家莱布尼茨(G.W.Leibniz 1646-1716)则是从几何方面独立发现了微积分,在牛顿和莱布尼茨之前至少有数十位数学家研究过,他们为微积分的诞生作了开创性贡献。但是池们这些工作是零碎的,不连贯的,缺乏统一性。莱布尼茨创立微积分的途径与方法与牛顿是不同的。莱布尼茨是经过研究曲线的切线和曲线包围的面积,运用分析学方法引进微积分概念、得出运算法则的。牛顿在微积分的应用上更多地结合了运动学,造诣较莱布尼茨高一筹,但莱布尼茨的表达形式采用数学符号却又远远优于牛顿一筹,既简洁又准确地揭示出微积分的实质,强有力地促进了高等数学的发展。
莱布尼茨创造的微积分符号,正像印度——阿拉伯数码促进了算术与代数发展一样,促进了微积分学的发展,莱布尼茨是数学史上最杰出的符号创造者之一。
牛顿当时采用的微分和积分符号现在不用了,而莱布尼茨所采用的符号现今仍在使用。莱布尼茨比别人更早更明确地认识到,好的符号能大大节省思维劳动,运用符号的技巧是数学成功的关键之一。
‘陆’ 数学常用的数学思想方法有哪些
数学常用的数学思想方法主要有:用字母表示数的思想,数形结合的思想,转化思想 (化归思想),分类思想,类比思想,函数的思想,方程的思想,无逼近思想等等。
1.用字母表示数的思想:这是基本的数学思想之一 .在代数第一册第二章“代数初步知识”中,主要体现了这种思想。
2.数形结合:是数学中最重要的,也是最基本的思想方法之一,是解决许多数学问题的有效思想。“数缺形时少直观,形无数时难入微”是我国着名数学家华罗庚教授的名言,是对数形结合的作用进行了高度的概括。
3.转化思想:在整个初中数学中,转化(化归)思想一直贯穿其中。转化思想是把一个未知(待解决)的问题化为已解决的或易于解决的问题来解决,如化繁为简、化难为易,化未知为已知,化高次为低次等,它是解决问题的一种最基本的思想,它是数学基本思想方法之一。
4.分类思想:有理数的分类、整式的分类、实数的分类、角的分类,三角形的分类、四边形的分类、点与圆的位置关系、直线与圆的位置关系,圆与圆的位置关系等都是通过分类讨论的。
5.类比:类比推理在人们认识和改造客观世界的活动中具有重要意义.它能触类旁通,启发思考,不仅是解决日常生活中大量问题的基础,而且是进行科学研究和发明创造的有力工具.
6.函数的思想 :辩证唯物主义认为,世界上一切事物都是处在运动、变化和发展的过程中,这就要求我们教学中重视函数的思想方法的教学。
7.方程:是初中代数的主要内容.初中阶段主要学习了几类方程和方程组的解法,在初中阶段就要形成方程的思想.所谓方程的思想,就是突出研究已知量与未知量之间的等量关系,通过设未知数、列方程或方程组,解方程或方程组等步骤,达到求值目的的解题思路和策略,
函数思想,是指用函数的概念和性质去分析问题、转化问题和解决问题。方程思想,是从问题的数量关系入手,运用数学语言将问题中的条件转化为数学模型(方程、不等式、或方程与不等式的混合组),然后通过解方程(组)或不等式(组)来使问题获解。
从问题的整体性质出发,突出对问题的整体结构的分析和改造,发现问题的整体结构特征,善于用“集成”的眼光,把某些式子或图形看成一个整体,把握它们之间的关联,进行有目的的、有意识的整体处理。整体思想方法在代数式的化简与求值、解方程(组)、几何解证等方面都有广泛的应用。
‘柒’ 如何学好大学数学分析以及高等代数
大学数学分析
第一,要培养对数学的兴趣。第二,要弄清楚每一个数学的概念,定理,以及定理的适用范围。不仅如此,时常还要把各个概念、定理联系起来,相互推到一下。第三,坚持练习时的数量和质量的结合,用多中方法从不同的角度去解题。从而提高数学的思维能力。
高等数学
高等代数和数学分析、空间解析几何一起,并称为数学系本科生的三大基础课。所谓基础课,顾名思义,就是本科四年学习的所有数学课程,都是以上述三门课作为基础的。因此对一年级新生而言,学好这三门基础课,其重要性不言而喻。另一方面,从高中阶段的“初等数学”过渡到大学阶段的“高等数学”,中间需要一个思维转变和理解进阶的过程。这个过程延续的时间可长可短,完全取决于个人的能力和努力。因此,如何通过学好这三门基础课,尽快跨越这个转变过程,对一年级新生而言,其意思更加重大。
一、将三门基础课作为一个整体去学,摒弃孤立的学习,提倡综合的思考
恩格斯曾经说过:“数学是研究数和形的科学。”这位先哲对数学的这一概括,从现代数学的发展来看,已经远远不够准确了,但这一概括却点明了数学最本质的研究对象,即为“数”与“形”。比如说,从“数”的研究衍生出数论、代数、函数、方程等数学分支;从“形”的研究衍生出几何、拓扑等数学分支。20世纪以来,这些传统的数学分支相互渗透、相互交叉,形成了现代数学最前沿的研究方向,比如说,代数数论、解析数论、代数几何、微分几何、代数拓扑、微分拓扑等等。可以说,现代数学正朝着各种数学分支相互融合的方向继续蓬勃地发展下去。
数学分析、高等代数、空间解析几何这三门基础课,恰好是数学最重要的三个分支--分析、代数、几何的最重要的基础课程。根据课程的特点,每门课程的学习方法当然各不相同,但是如果不能以一种整体的眼光去学习和思考,即使每门课都得了A,也不见得就学的很好。学院的资深教授曾向我们抱怨:“有的问题只要画个图,想一想就做出来了,怎么现在的学生做题,拿来就只知道死算,连个图也不画一下。”当然,造成这种不足的原因肯定是多方面的。比如说,从教的角度来看,各门课程的教材或授课在某种程度上过于强调自身的特点,很少以整体的眼光去讲授课程或处理问题,课程之间的相互联系也涉及的较少;从学的角度来看,学生们大都处于孤立学习的状态,也就是说,孤立在某门课程中学习这门课程,缺乏对多门课程的整体把握和综合思考。
二、正确认识代数学的特点,在抽象和具体之间找到结合点
代数学(包括高等代数和抽象代数)给人的印象就是“抽象”,这与另外两门基础课有很大的不同。以“线性空间”的定义为例,集合V上定义了加法和数乘两种运算,并且这两种运算满足八条性质,那么V就称为线性空间。第一次学高等代数的同学都会认为这个定义太抽象了。其实在高等代数中,这样抽象的定义比比皆是。不过这样的抽象是有意义的,因为可以验证三维欧氏空间、连续函数全体、多项式全体、矩阵全体都是线性空间,也就是说,线性空间是从许多具体例子中抽象出来的概念,具有绝对的一般性。代数学的研究方法是,从许多具体的例子中抽象出某个概念;然后通过代数的方法对这一概念进行研究,得到一般的结论;最后再将这些结论返回到具体的例子中,得到各种运用。因此,“具体--抽象--具体”,这便是代数学的特点。
在认识了代数学的特点后,就可以有的放矢地学习高等代数了。我们可以通过具体的例子去理解抽象的定义和证明;可以将定理的结论运用到具体的例子中,从而加深对定理的理解和掌握;还可以通过具体例子的启发,去发现和证明一些新的结果。因此,要学好高等代数,就需要正确认识抽象和具体的辩证关系,在抽象和具体之间找到结合点。
三、高等代数不仅要学代数,也要学几何,更要在代数和几何之间建立一座桥梁
随着时代的变迁,高等代数的教学内容和方式也在不断的发展。大概在90年代之前,国内高校的高等代数教材大多以“矩阵论”作为中心,比较强调矩阵论的相关技巧;90年代之后,国内高校的高等代数教材渐渐地改变为以“线性空间理论”作为中心,比较强调几何的意义。作为缩影,复旦的高等代数教材也经历了这样一个变化过程,1993年之前采用的屠伯埙老师的教材强调“矩阵论”;1993年之后采用的姚慕生老师的教材强调“线性空间理论”。从单纯重视“代数”到“代数”与“几何”并重,这其实是高等代数教学观念的一种全球性的改变,可能这种改变与现代数学的发展密切相关吧!
学好高等代数的有效方法应该是:
深入理解几何意义、熟练掌握代数方法。
其次,高等代数中很多问题都是几何的问题,我们经常将几何的问题代数化,然后用代数的方法去解决它。当然,对于一些代数的问题,我们有时也将其几何化,然后用几何的方法去解决它。
最后,代数和几何之间存在一座桥梁,这就是代数和几何之间的转换语言。有了这座桥梁,我们就可以在代数和几何之间来去自由、游刃有余。因此,要学好高等代数,不仅要学代数,也要学几何,更要在代数和几何之间建立一座桥梁。
四、学好教材,用好教参,练好基本功
复旦现行的高等代数教材是姚慕生老师、吴泉水老师编着的《高等代数学(第二版)》。这本教材从1993年开始沿用至今,已有近20年的历史。教材内容翔实、重点突出、表述清晰、习题丰富,即使与全国各高校的高等代数教材相比,也不失为出类拔萃之作。
复旦现行的高等代数教学参考书是姚慕生老师编着的《高等代数学习方法指导(第二版)》(因为封面为白色,俗称“白皮书”)。这本教参书是数院本科生必备的宝典,基本上人手一册,风行程度可见一斑。
要学好高等代数,学好教材是最低的要求。另外,如何用好教参书,也是一个重要的环节。很多同学购买教参书,主要是因为教材里的部分作业(包括一些很难的证明题)都可以在教参书上找到答案。当然,这一点无可厚非,毕竟这就是教参书的功能嘛!但是,我还是希望一年级的新生能正确地使用教参书,遇到问题首先自己独立思考,实在想不出,再去看懂教参书上的解答,这样才能达到提高能力、锻炼思维的效果。
‘捌’ 高等数学的思想方法有什么实际应用,举例说明 500字
一,关于开设《大学数学》课程的思考
数学教研室卢介景
[摘要] 二十世纪八十年代初期,我国卫生部开始把高等数学列为医学类各专业的必修课程。几乎同时,世界开始进入“数学技术”的新时代。去年国家教育部高教司组织了一次重要会议,研讨“数学教育在大学教育中的作用”,建议开设“大学数学”课程。医学院校面对新的挑战、新的要求,当有新的认识、新的行动。本文综合简介有关“数学技术”和“大学数学”的重要资料,结合我校实际提出一些教改建议。此文也献给即将到来的“国际数学”年——2000年。
[关键词] 数学技术大学数学教学改革
一.“数学技术”的新挑战
1984年1月25日,在美国数学会(AMS)和美国数学协议(MAA)联合年会上,美国总统尼克松的科学顾问David说:“……,对数学研究的低水平的资助,只能出自对数学带来的好处的完全不适当的估价。显然,很少的人认识到如今被如此称颂的‘高技术’本质上是数学技术。”此后,“‘高技术’本质上是数学技术”的说法在学术界,特别是在数学界广为流传。例如,在欧洲工业数学联合会的宗旨中,就引述了David的这句话。
1989年8月18日,在中国数学会召开的数学教育与科研座谈会上,钱学森教授指出:“……,这是数学技术,即怎样给出一个方法,能使科学的理论通过电子计算机解答具体的科学技术问题。”“……,数学的发展关系到整个科学技术的发展,而科学技术是第一生产力;所以数学的发展是一件国家大事。”
五十年前,数学虽然也直接为工程技术提供一些工具,但基本方式是间接的:先促进其他科学的发展,再由这些科学提供工程原理和设计的基础。“高技术”的出现,把我们的社会推进到了数学工程技术的时代。数学与工程技术之间,在更广阔的范围内和更深刻的程度上,以新的方式直接地相互作用着,极大地推动了数学和工程科学的发展。数学从后台走向前台。
数学技术的例子是很多的。例如,代数与密码技术;Radon与CT(计算机层析)技术;大规模线性规划求解技术在经济、管理中的应用;与保险有关的精算学软件;期货、期权交易中的期权定价软件;信息提取与处理软件;小波技术在信息科学中的应用;穿甲弹的计算仿真技术;并行计算技术在气象和工程中的应用;等等。
创建于1964年的美国工程院,过去是不选数学家为院士的。但是,在1997年选出的85位院士中,有3位数学家;在1998年选出的84位院士中,又有3位数学家。这从一个方面说明了时代对“数学技术”的认可。
鉴于数学科学在21世纪所具有的关键的重要性,即将到来的公元2000年,被联合国定为“国际数学年”。在今后两千年内,在人类思想领域里,具有压倒性的新情况,将是数学地理解问题占统治地位。
“数学技术”对我国大学数学教育提出了新的挑战。
二.“大学数学”的新要求
1998年10月,教育部高教司在北京组织了一个重要会议,研讨“数学教育在大学教育中的作用”。在一些重要问题上,教育部领导、专家与第一线数学教师取得了广泛的共识。
在面临21世纪数学思想和方法对世界经济和技术发展起着越来越重要作用的形势下,必须明确:数学是培养和造就各类高层次专门人才的共同基础。对非数学类专业的学生,大学数学基础课的作用至少有以下三个方面。
首先,它是学生掌握数学工具的主要课程。目前的主要问题是,对“工具性”的理解过窄,甚至把数学基础课看成只是为专业课程服务的工具。历史的经验告诫我们,这将导致学生基础薄弱、视野狭窄、后劲不足、创新乏力,十分不利于面向21世纪人才的培养。
其次,它是学生培养理性思维的重要载体。从本质上讲,数学研究的是各种抽象的“数”和“形”的模式结构,运用的主要是逻辑、思辩和推理等理性思维方法。这种理性思维的训练,是其他学科难以替代的。这对大学生全面素质的提高、分析能力的加强、创新意识的启迪都是至关重要的。
再次,它是学生接受美感熏陶的一种途径。数学是美学四大中心建构(史诗、音乐、造形和数学)之一。数学为之努力的目标:将杂乱整理为有序,使经验升华为规律,寻求各种运动的简洁统一的数学表达等,都是数学美的表现,也是人类对美感的追求。
对大学数学教育改革,要转变教育观念,用正确的教育思想指导改革的实践。要以数学统一性的观点,从全面素质教育的高度,来设计数学基础课程的体系。把微积分、代数、几何以及随机数学作为大学非数学专业的四门必修基础课程,并把这一序列课程统称为《大学数学》。
根据数学教学自身的特点以及长期实践的经验,对大学数学的课堂教学学时,应保障其基本稳定。对一般理工和财经管理类专业,学时不应少于300,其中少数对数学要求较低的学校和专业,也不应少于240;对农林类各专业,不应少于200;医科类力争不低于140;文科类争取达到140。数学教学的安排不能过于集中,最好不少于两个学期。
要充分认识数学教改的艰巨性。大力加强教学方法改革的研究和实验。努力加强数学教学中的实践环节。
指导思想应求基本一致,具体做法则要因校制宜、百花齐放、突出特色。要办出特色,必须重视基础。
三.强化基础的新建议
近三十多年来,数学方法在医药学研究中的应用日益广泛和深入。这标志医药科学已从定性分析进入到定量分析的发展阶段,正在经历“数学化”的进程。流行病学、诊断学、药理学、肿瘤学及临床研究中建立了一系列典型的数学模型。
当代医药学研究中常用的数学方法有:常微分方程、偏微分方程、概率论与数理统计、模糊数学、运筹学、正交设计、多元分析、计算方法、模式识别、数理逻辑、拓扑学、集合论、图论,等等。
联合国科教文组织八十年代的调查分析指出,目前科学研究工作有两个特点:一是所有各门学科的“数学化”,二是生物研究的突飞猛进。它们的结合推动医药科学日新月异。
我国卫生部从1982年开始把高等数学列为医学各专业的必修课程。我校即在医学各专业一年级上、下学期开设了高等数学考查课、线性代数和概率论选修(或考查)课。十八年来,这三门数学基础课的总学时从108增至144,又减至117。总的说来,领导、教师和学生对在医学院校开设这些数学基础课的认识是逐步提高的。但不必讳言,是不够重视的。
为了迎接国际“数学技术”时代的新挑战,为了适应国内开设《大学数学》的新要求,结合我校当前数学教学的实际情况,我们提出如下几条强化数学基础课的新建议。
一 保证必需的教学时数。近年来,由于实施“双休日”和新生军训,高等数学学时从72减为45(实际除去节假日通常只剩下40左右)。学时太少,只好砍掉空间解析几何、多元函数微积分等部分内容以及习题课,大大影响了学生从量和质上对高等数学的掌握。实际上,空间解析几何知识对学生理解人体的位置、三重积分对计算血流量都是重要的。一年级上学期高等数学的学时如果由周3增加到周5,则可达75;加上一年级下学期的线性代数和概率论的原72(周4,18周),就可保证实际上达到《大学数学》要求的140学时。
二 提高学生的重视程度。为了强调数学基础课的重要性,把原高等数学(增大空间解析几何部分的份量)、线性代数和概率论合并为《大学数学》课,140学时,考试课。
三 改善教学条件,提高教学质量。组织本校教师或几校教师合编《大学数学》教材(医学类专业,140学时适用)。化大班(6~7个小班)教学为中班(3~4个小班)教学。引进教学软件,逐步建立数学实验室。在高年级开设数学应用于医学的选修课或讲座,如计量诊断学、数理医药学、模糊医学决策,等等。
我们希望得到领导的支持。通过师生的共同努力,我校新世纪的大学生的数学素质将得到较大的提高。有了较扎实的数学基础,就能不断掌握新的数学方法,并自觉把数学技术用于医药科学的研究,以赶超世界医药科学的最高水平。
‘玖’ 数学方法论该怎么学
数学方法论主要是研究和讨论数学的发展规律,数学的思想方法以及数学中的发现、发明与创新等法则的一门学问。数学是一门工具性很强的科学,它和别的科学比较起来还具有较高的抽象性等特征,为了有效地发展它、改进它、应用它或者把它很好地传授给学生们,就要求对这门科学的发展规律、研究方法、发现与发明等法则有所掌握,因此,数学研究工作者、数学教师、科技工作者,以及高年级大学生、研究生等都需要知道一些数学方法论。
我国着名数学家、数学方法论的倡导者和带头人徐利治先生指出:“方法沦(methodology)就是把某种共同的发展规律和研究方法作为讨论对象的一门学问……。
数学方法对于数学的发展起着关键性的推动作用,许多比较困难的重大问题的解决,往往取决于数学概念和数学方法上的突破,如历史上古希腊三大尺规作图难题,就是笛卡尔创立解析几何之后,数学家们借助解析几何,采用了RMI(关系——映射——反演)方法,才得到彻底的解决;这又启发了后来的数学家们采用类似的办法解决了欧氏几何与实数理论的相对相容性问题。又如,代数方程的根式解的问题,也是在伽罗瓦群论思想方法的指导下,才得以圆满解决;不仅如此,群论的思想方法还使得代数学的研究发生了巨大的变革,从古典的局部性研究转向了近代的系统结构整体性的研究。
对数学方法论的早期研究,十七世纪就已经开始了,法国数学家笛卡尔和德国数学家莱布尼兹都曾做过这方面的探讨,并出版过专着,历史上不少着名的大数学家,如欧拉,高斯、庞加莱、希尔伯特等人也曾就数学方法沦的问题发表过许多精辟的见解,但是,对数学方法论进行系统地研究,还是最近几十年间的事,在这方面做了突出的贡献,当首推美国数学家和数学教育家波利亚,最近几十年来.由于现代电子计算机技术已经进入了人工智能和摸拟思维的阶段,就更加促使数学方法论蓬勃发展起来;信息论,控制论、认知科学和人工智能的最新研究成果相继引进了数学方法论的领域。而徐利治先生正式提出“数学方法论”这一名称,并使其成为一门独立的学科,迄今仅二十来年。
数学科学和数学史料是数学方法论的源泉,同时,数学方法论还涉及到哲学、思维科学,心理学、一般科学方法论、系统科学等众多的领域。
数学方法论分为宏观数学方法论与微观数学方法论。
数学宏观方法论所研究的是整个数学的产生、形成和发展的规律,数学理论的构造,以及数学与其它科学之间的关系。研究宏观方法论的主要途径之一是研究数学史。研究宏观方法论的另一条主要途径是研究数学理论体系的构造。
数学微观方法论所研究的是一些比较具体数学方法,特别是数学发现和数学创造的方法。包括数学思维方法、数学解题心理与数学解题理论等等。
这门学科看起来不是很难 只要认真读,并且自己理解的话很容易掌握的