导航:首页 > 研究方法 > 华中8型系统数控plc编程方法的研究

华中8型系统数控plc编程方法的研究

发布时间:2022-08-17 19:15:03

1. 华中数控研究报告,300161研究报告

2021年8月份国资委召开会议,会议反复提出,要大力开展科技创新,并把工业母机位列首位,可见国家对工业母机的重视程度不言而喻。其中工业母机里最为关键的就是高端数控,今天我们就一起来了解一下华中数控,它是国内高端数据系统的龙头公司。


解析华中数控之前,机械行业的龙头股我已经整理出来了分享给你们,点击立马获取: 宝藏资料:机械行业龙头一览表


一、从公司角度来看


公司介绍:在国内数控系统领域核心企业中,华中数控占有一席之地,它的主营业务在于机床数控系统、工业机器人跟新能源汽车配套。经过二十多年的进展,数控技术水平已处于国内领先水平。除此以外,公司产出的上乘产品,在功能和性能上,一样达到国外同类系统程度。


大家已经基本了解了华中数控的相关信息,这家公司有哪些优势呢?我们下面就来看看,有哪些地方可以吸引我们去投资?


优势一:技术优势


在数控系统、工业机器人、智能制造等领域,公司取得很多进步。直到2017年的时候,已申请发明专利14项、实用新型专利15项、外观设计专利10项。授权发明专利4项、实用新型专利9项、外观设计专利5项,获得计算机软件着作权10项。


公司数控系统在部分高端细分领域已实现国产数控系统从无到有的突破,像华中8型数控系统荣获国家科技进步二等奖,当前该系统已经发售数万台,是配套最齐全的国产高档数控系统。


我们能够了解到,华中数控自始至终聚焦于技术的进步,持续发展创新能力。


优势二:受到相关政策的加持


在《中国制造2025》中,国家将智能制造确立为主战场 ,不断地完善智能制造顶层设计方案,与此同时还陆续完善相关配套措施,并且加快推进智能制造试点示范项目。不难看出,智能制造将会成为未来装备制造业不可抵挡的发展趋势。在这种发展趋势的影响下,华中数控在机器人领域上的开发和制造将会受到更多政策上的扶持。


由于篇幅有所限制,更多和华中数控的深度报告和风险提示密切相关的资料,我写进了这篇研报当中,想继续研究的朋友不妨看看下方的文章: 【深度研报】华中数控点评,建议收藏!


二、从行业角度来看


现如今,我国正处在一个最重要阶段,由制造大国向制造强国转型,一个国家的数控化水平越高,它的制造实力水平也越强。而数控系统可谓是目前机床中的核心部件,它的技术含量极高。尽管在数控率上有了很大进步,从2013年的28.30%提高到2020年的43%,但是这样的数控率还是远落后于其他发达国家,未来制造业的发展要求之一就是要提高数控率。另外数控机床涉及的领域很多,主要包括航空航天、船舶制造、汽车、工程机械、电力设备、工业模具等方面,具有广阔的提升空间。


根据上述分析,我认为华中数控除了技术占着优势外,主营产品所在的未来发展趋势好,有希望因为技术发展的推动,迎来高速发展。不过文章一般都比较滞后,如果想更准确地把握华中数控这只股票的未来走向,大家可以直接点击这里的链接,有专业的投顾帮你诊股,看下华中数控估值有没有被估错: 【免费】测一测华中数控现在是高估还是低估?


应答时间:2021-09-05,最新业务变化以文中链接内展示的数据为准,请点击查看

2. 求一篇关于华中数控系统的论文急。。。

2.德国的数控发展史

德国政府一贯重视机床工业的重要战略地位,在多方面大力扶植。,于1956年研制出第一台数控机床后,德国特别注重科学试验,理论与实际相结合,基础科研与应用技术科研并重。企业与大学科研部门紧密合作,对数控机床的共性和特性问题进行深入的研究,在质量上精益求精。德国的数控机床质量及性能良好、先进实用、货真价实,出口遍及世界。尤其是大型、重型、精密数控机床。德国特别重视数控机床主机及配套件之先进实用,其机、电、液、气、光、刀具、测量、数控系统、各种功能部件,在质量、性能上居世界前列。如西门子公司之数控系统,均为世界闻名,竞相采用。

3.日本的数控发展史

日本政府对机床工业之发展异常重视,通过规划、法规(如“机振法”、“机电法”、“机信法”等)引导发展。在重视人才及机床元部件配套上学习德国,在质量管理及数控机床技术上学习美国,甚至青出于蓝而胜于蓝。自1958年研制出第一台数控机床后,1978年产量(7,342台)超过美国(5,688台),至今产量、出口量一直居世界首位(2001年产量46,604台,出口27,409台,占59%)。战略上先仿后创,先生产量大而广的中档数控机床,大量出口,占去世界广大市场。在上世纪80年代开始进一步加强科研,向高性能数控机床发展。日本FANUC公司战略正确,仿创结合,针对性地发展市场所需各种低中高档数控系统,在技术上领先,在产量上居世界第一。该公司现有职工3,674人,科研人员超过600人,月产能力7,000套,销售额在世界市场上占50%,在国内约占70%,对加速日本和世界数控机床的发展起了重大促进作用。

4.我国的现状

我国数控技术的发展起步于二十世纪五十年代, 中国于1958年研制出第一台数控机床,发展过程大致可分为两大阶段。在1958~1979年间为第一阶段,从1979年至今为第二阶段。第一阶段中对数控机床特点、发展条件缺乏认识,在人员素质差、基础薄弱、配套件不过关的情况下,一哄而上又一哄而下,曾三起三落、终因表现欠佳,无法用于生产而停顿。主要存在的问题是盲目性大,缺乏实事求是的科学精神。在第二阶段从日、德、美、西班牙先后引进数控系统技术,从日、美、德、意、英、法、瑞士、匈、奥、韩国、台湾省共11国(地区)引进数控机床先进技术和合作、合资生产,解决了可靠性、稳定性问题,数控机床开始正式生产和使用,并逐步向前发展。通过“六五”期间引进数控技术,“七五”期间组织消化吸收“科技攻关”,我国数控技术和数控产业取得了相当大的成绩。特别是最近几年,我国数控产业发展迅速,1998~2004年国产数控机床产量和消费量的年平均增长率分别为39.3%和34.9%。尽管如此,进口机床的发展势头依然强劲,从2002年开始,中国连续三年成为世界机床消费第一大国、机床进口第一大国,2004年中国机床主机消费高达94.6亿美元,国内数控机床制造企业在中高档与大型数控机床的研究开发方面与国外的差距更加明显,70%以上的此类设备和绝大多数的功能部件均依赖进口。由此可以看出国产数控机床特别是中高档数控机床仍然缺乏市场竞争力,究其原因主要在于国产数控机床的研究开发深度不够、制造水平依然落后、服务意识与能力欠缺、数控,系统生产应用推广不力及数控人才缺乏等。我们应看清形势,充分认识国产数控机床的不足,努力发展先进技术,加大技术创新与培训服务力度,以缩短与发达国家之问的差距。
在20余年间,数控机床的设计和制造技术有较大提高,主要表现在三大方面:培训一批设计、制造、使用和维护的人才;通过合作生产先进数控机床,使设计、制造、使用水平大大提高,缩小了与世界先进技术的差距;通过利用国外先进元部件、数控系统配套,开始能自行设计及制造高速、高性能、五面或五轴联动加工的数控机床,供应国内市场的需求,但对关键技术的试验、消化、掌握及创新却较差。至今许多重要功能部件、自动化刀具、数控系统依靠国外技术支撑,不能独立发展,基本上处于从仿制走向自行开发阶段,与日本数控机床的水平差距很大。存在的主要问题包括:缺乏象日本“机电法”、“机信法”那样的指引;严重缺乏各方面专家人才和熟练技术工人;缺少深入系统的科研工作;元部件和数控系统不配套;企业和专业间缺乏合作,基本上孤军作战,虽然厂多人众,但形成不了合力。 我国数控技术的发展起步于二十世纪五十年代,通过“六五”期间引进数控技术,“七五”期间组织消化吸收“科技攻关”,我国数控技术和数控产业取得了相当大的成绩。特别是最近几年,我国数控产业发展迅速,1998~2004年国产数控机床产量和消费量的年平均增长率分别为39.3%和34.9%。尽管如此,进口机床的发展势头依然强劲,从2002年开始,中国连续三年成为世界机床消费第一大国、机床进口第一大国,2004年中国机床主机消费高达94.6亿美元,国内数控机床制造企业在中高档与大型数控机床的研究开发方面与国外的差距更加明显,70%以上的此类设备和绝大多数的功能部件均依赖进口。由此可以看出国产数控机床特别是中高档数控机床仍然缺乏市场竞争力,究其原因主要在于国产数控机床的研究开发深度不够、制造水平依然落后、服务意识与能力欠缺、数控,系统生产应用推广不力及数控人才缺乏等。我们应看清形势,充分认识国产数控机床的不足,努力发展先进技术,加大技术创新与培训服务力度,以缩短与发达国家之问的差距。

2003年开始,中国就成了全球最大的机床消费国,也是世界上最大的数控机床进口国。目前正在提高机械加工设备的数控化率,1999年,我们国家机械加工设备数控华率是5-8%,目前预计是15-20%之间。 一、 什么是数控机床 车、铣、刨、磨、镗、钻、电火花、剪板、折弯、激光切割等等都是机械加工方法,所谓机械加工,就是把金属毛坯零件加工成所需要的形状,包含尺寸精度和几何精度两个方面。能完成以上功能的设备都称为机床,数控机床就是在普通机床上发展过来的,数控的意思就是数字控制。给机床装上数控系统后,机床就成了数控机床。当然,普通机床发展到数控机床不只是加装系统这么简单,例如:从铣床发展到加工中心,机床结构发生变化,最主要的是加了刀库,大幅度提高了精度。加工中心最主要的功能是铣、镗、钻的功能。 我们一般所说的数控设备,主要是指数控车床和加工中心。 我国目前各种门类的数控机床都能生产,水平参差不齐,有的是世界水平,有的比国外落后10-15年,但如果国家支持,追赶起来也不是什么问题,例如:去年,沈阳机床集团收购了德国西思机床公司,意义很大,如果大力消化技术,可以缩短不少差距。大连机床公司也从德国引进了不少先进技术。上海一家企业购买日本着名的机床制造商池贝。, 近几年随着中国制造的崛起,欧洲不少企业倒闭或者被兼并,如马毫、斯滨纳等。日本经济不景气,有不少在80年代很出名的机床制造商倒闭,例如:新泻铁工所。 二、 数控设备的发展方向 六个方面:智能化、网络化、高速、高精度、符合、环保。目前德国和瑞士的机床精度最高,综合起来,德国的水平最高,日本的产值最大。美国的机床业一般。中国大陆、韩国。台湾属于同一水平。但就门类、种类多少而言,我们应该能进世界前4名。 三、 数控系统 由显示器、控制器伺服、伺服电机、和各种开关、传感器构成。目前世界最大的三家厂商是:日本发那客、德国西门子、日本三菱;其余还有法国扭姆、西班牙凡高等。国内由华中数控、航天数控等。国内的数控系统刚刚开始产业化、水平质量一般。高档次的系统全都是进口。 华中数控这几年发展迅速,软件水平相当不错,但差就差在电器硬件上,故障率比较高。华中数控也有意向数控机床业进军,但机床的硬件方面不行,质量精度一般。目前国内一些大厂还没有采用华中数控的。广州机床厂的简易数控系统也不错。 我们国家机床业最薄弱的环节在数控系统。 自己剪切。、、、

3. 华中数控为什么这么牛

2021年8月份国资委召开会议,会议指出,要大力开展科技创新,并把工业母机位列首位,可见国家对工业母机的重视程度不言而喻。其中工业母机里最为关键的就是高端数控,因此我们今天就一起来了解高端数控系统的龙头企业--华中数控。


首先在分析华中数控之前,我整理好了机械行业龙头股分享给大家,点击链接就可以领啦: 宝藏资料:机械行业龙头一览表


一、从公司角度来看


公司介绍:国内数控系统领域核心企业之一是华中数控,它的主营业务,是机床数控系统、工业机器人与新能源汽车配套这三种。经过二十多年的进展,数控技术水平已处于国内领先水平。除此之外,公司生产的高端产品无论是在功能还是性能上,同样达到国外同类系统水平。


前面已经简单了解了华中数控的情况,我们再来看看这家公司的优势在哪里,有哪些地方可以吸引我们去投资?


优势一:技术优势


在数控系统、工业机器人、智能制造等领域,公司不停获得突破。到了2017年,已申请发明专利14项、实用新型专利15项、外观设计专利10项。授权发明专利4项、实用新型专利9项、外观设计专利5项,获得计算机软件着作权10项。


公司数控系统在部分高端细分领域已实现国产数控系统打破零的空白,像华中8型数控系统取得了国家科技进步二等奖,当前该系统已经发售数万台,是最多配置的国产高档数控系统。


所以我们可以由此得知,华中数控一贯关注技术的进步,持续发展创新能力。


优势二:受到相关政策的加持


在《中国制造2025》中,国家将智能制造确立为发展重点,不断地完善智能制造顶层设计,与此同时还不断出台相关配套办法,同时明显加快了推进智能制造试点示范项目。看得出来,智能制造将会变成未来装备制造业的发展趋势。在这种趋势下,华中数控在机器人领域上的开发和制造上,能够借到更多利好政策的东风。


由于篇幅比较短,更多关于华中数控的深度报告和风险提示,我撰写成了这篇研报,想继续研究的朋友不妨看看下方的文章: 【深度研报】华中数控点评,建议收藏!


二、从行业角度来看


现如今,我国正处在一个非常重要阶段,由制造大国向制造强国转型,数控化水平越高,那就意味着这个国家的制造实力越强。然而整个机床当中技术含量特别高的核心部件就是数控系统。虽然数控率增加了不少,从2013年的28.30%涨到2020年的43%,但是其他发达国家的数控率却还远高于于我们,提高数控率就是未来发展制造业的任务之一。另外数控机床可用于多个领域,主要包括航空航天、船舶制造、汽车、工程机械、电力设备、工业模具等方面,提升空间非常广。


概而言之,我认为华中数控除了拥有技术优势外,主营产品所在的产业发展空间巨大,发展方面来看,也有望在基数发展的推动下引来高速的这样一个状态。不过文章一般都比较滞后,大家要是想精确到知道华中数控这只股票的未来的一个走向,小伙伴们可以直接戳链接哦,有很多专业的投资顾问能够帮你判断股票,看下华中数控估值是否符合实际: 【免费】测一测华中数控现在是高估还是低估?


应答时间:2021-09-08,最新业务变化以文中链接内展示的数据为准,请点击查看

4. 数控车床编程。华中

这些是华中数控-世纪星说明书的一部分
1、零件程序是由数控装置专用编程语言书写的一系列指令组成的。
2、数控装置将零件程序转化为对机床的控制动作。
3、最常使用的程序存储介质是磁盘和网络。
4、为简化编程和保证程序的通用性,规定直线进给坐标轴用X,Y,Z 表示,常称基本坐标轴。X,Y,Z 坐标轴的相互关系用右手定则决定。
5、规定大姆指的指向为X 轴的正方向,食指指向为Y轴的正方向,中指指向为Z 轴的正方向。围绕X,Y,Z 轴旋转的圆周进给坐标轴分别用A,B,C 表示,
6、数控机床的进给运动,有的由主轴带动刀具运动来实现,有的由工作台带着工件运动来实现。
7、坐标轴正方向,是假定工件不动,刀具相对于工件做进给运动的方向。如果是工件移动则用加“′”的字母表示,按相对运动的关系,工件运动的正方向恰好与刀具运动的正方向相反,即有:
+X =-X′, +Y =-Y′, +Z =-Z′
+A =-A′, +B =-B′, +C =-C′
同样两者运动的负方向也彼此相反。
8、机床坐标轴的方向取决于机床的类型和各组成部分的布局,对车床而言:
——Z 轴与主轴轴线重合,沿着Z 轴正方向移动将增大零件和刀具间的距离;
——X 轴垂直于Z 轴,对应于转塔刀架的径向移动,沿着X轴正方向移动将增大零件和刀具间的距离;
——Y 轴(通常是虚设的)与X 轴和Z 轴一起构成遵循右手定则的坐标系统。
9、机床坐标系是机床固有的坐标系,机床坐标系的原点称为机床原点或机床零点。在机床经过设计、制造和调整后,这个原点便被确定下来,它是固定的点。
10、为什么数控车床开机后要回参考点?
答:数控装置上电时并不知道机床零点,为了正确地在机床工作时建立机床坐标系,通常在每个坐标轴的移动范围内设置一个机床参考点(测量起点),机床起动时,通常要进行机动或手动回参考点,以建立机床坐标系。机床回到了参考点位置,也就知道了该坐标轴的零点位置,找到所有坐标轴的参考点,CNC 就建立起了机床坐标系。
11、机床参考点可以与机床零点重合,也可以不重合,通过参数指定机床参考点到机床零点的距离。
12、机床坐标轴的机械行程是由最大和最小限位开关来限定的。机床坐标轴的有效行程范围是由软件限位来界定的,其值由制造商定义。
13、工件坐标系是编程人员在编程时使用的,编程人员选择工件上的某一已知点为原点(也称程序原点),建立一个新的坐标系,称为工件坐标系。工件坐标系一旦建立便一直有效,直到被新的工件坐标系所取代。
14、程序原点选择原则?
答:工件坐标系的原点选择要尽量满足编程简单,尺寸换算少,引起的加工误差小等条件。一般情况下,程序原点应选在尺寸标注的基准或定位基准上。对车床编程而言,工件坐标系原点一般选在,工件轴线与工件的前端面、后端面、卡爪前端面的交点上。
15、什么是对刀点?对刀的目的是什么?
答:对刀点是零件程序加工的起始点。
对刀的目的是确定程序原点在机床坐标系中的位置,对刀点可与程序原点重合,也可在任何便于对刀之处,但该点与程序原点之间必须有确定的坐标联系。可以通过CNC 将相对于程序原点的任意点的坐标转换为相对于机床零点的坐标。
16、加工开始时要设置工件坐标系,用G92 指令可建立工件坐标系;用G54~G59 及刀具指令可选择工件坐标系。
17、一个零件程序是一组被传送到数控装置中去的指令和数据。
18、一个零件程序是由遵循一定结构、句法和格式规则的若干个程序段组成的,而每个程序段是由若干个指令字组成的。
19、一个指令字是由地址符(指令字符)和带符号(如定义尺寸的字)或不带符号(如准备功能字G 代码)的数字数据组成的。
20、一个程序段定义一个将由数控装置执行的指令行。
21、一个零件程序必须包括起始符和结束符。
22、一个零件程序是按程序段的输入顺序执行的,而不是按程序段号的顺序执行的,但书写程序时,建议按升序书写程序段号。
26、CNC 装置可以装入许多程序文件,以磁盘文件的方式读写。
27、华中数控车系统通过调用文件名来调用程序,进行加工或编辑。
28、辅助功能由地址字M 和其后的一或两位数字组成,主要用于控制零件程序的走向,以及机床各种辅助功能的开关动作。
29、M 功能有非模态M 功能和模态M 功能两种形式。
30、非模态M 功能 (当段有效代码) :只在书写了该代码的程序段中有效。
31、模态M 功能(续效代码):一组可相互注销的M 功能,这些功能在被同一组的另一个功能注销前一直有效。
32、M 功能还可分为前作用M 功能和后作用M 功能两类。
33、前作用M 功能:在程序段编制的轴运动之前执行;
34、后作用M 功能:在程序段编制的轴运动之后执行。
35、M00、M02、M30、M98、M99 用于控制零件程序的走向,是CNC 内定的辅助功能,不由机床制造商设计决定,也就是说,与PLC 程序无关;
36、其余M 代码用于机床各种辅助功能的开关动作,其功能不由CNC 内定,而是由PLC 程序指定,所以有可能因机床制造厂不同而有差异(表内为标准PLC 指定的功能)。
37、程序暂停M00
38、当CNC 执行到M00 指令时,将暂停执行当前程序,以方便操作者进行刀具和工件的尺寸测量、工件调头、手动变速等操作。
39、暂停时,机床的进给停止,而全部现存的模态信息保持不变,欲继续执行后续程序,重按操作面板上的“循环启动”键。
40、M00 为非模态后作用M 功能。
41、程序结束M02
42、M02 一般放在主程序的最后一个程序段中。
43、当CNC 执行到M02 指令时,机床的主轴、进给、冷却液全部停止,加工结束。
44、使用M02 的程序结束后,若要重新执行该程序,就得重新调用该程序。
45、M02 为非模态后作用M 功能。。
46、、程序结束并返回到零件程序头M30
47、M30 和M02 功能基本相同,只是M30 指令还兼有控制返回到零件程序头(%)的作用。
48、使用M30 的程序结束后,若要重新执行该程序,只需再次按操作面板上的“循环启动”键。
49、、子程序调用M98 及从子程序返回M99
50、M98 用来调用子程序。
51、M99 表示子程序结束,执行M99 使控制返回到主程序。
52、在子程序开头,必须规定子程序号,以作为调用入口地址。
53、在子程序的结尾用M99,以控制执行完该子程序后返回主程序。
54、可以带参数调用子程序。G65 指令的功能和参数与M98 相同。
55、PLC 设定的辅助功能:M03、M04、M05、M07、M09
56、主轴控制指令M03、M04、M05
57、M03 启动主轴以程序中编制的主轴速度顺时针方向(从Z 轴正向朝Z 轴负向看)旋转。
58、M04 启动主轴以程序中编制的主轴速度逆时针方向旋转。
59、M05 使主轴停止旋转。
60、M03、M04 为模态前作用M 功能;M05 为模态后作用M 功能,
61、M05 为缺省功能。
62、M03、M04、M05 可相互注销。
63、M07 指令将打开冷却液管道。
64、M09 指令将关闭冷却液管道。
65、M07 为模态前作用M 功能;M09 为模态后作用M 功能,M09为缺省功能。
66、主轴功能S控制主轴转速,其后的数值表示主轴速度,单位为:转/每分钟(r/min)。
67、恒线速度功能时S 指定切削线速度,其后的数值单位为:米/每分钟(m/min)。
68、G96 恒线速度有效、G97 取消恒线速度。
69、S 是模态指令,S 功能只有在主轴速度可调节时有效。
70、S所编程的主轴转速可以借助机床控制面板上的主轴倍率开关进行修调。
71、进给速度F指令表示工件被加工时刀具相对于工件的合成进给速度。
72、F的单位取决于G94(每分钟进给量mm/min)或G95(主轴每转一转刀具的进给量mm/r)。
73、工作在G01,G02 或G03 方式下,编程的F 一直有效,直到被新的F 值所取代。
74、工作在G00 方式下,快速定位的速度是各轴的最高速度,与所编F无关。
75、借助机床控制面板上的倍率按键,F 可在一定范围内进行倍率修调。
76、执行攻丝循环G76、G82,螺纹切削G32 时,倍率开关失效,进给倍率固定在100%。
77、当使用每转进给量方式时,必须在主轴上安装一个位置编码器。
78、直径编程时,X 轴方向的进给速度为:半径的变化量/分、半径的变化量/转。
79、刀具功能(T 机能)T 代码用于选刀,其后的4 位数字分别表示选择的刀具号和刀具补偿号。
80、T 代码与刀具的关系是由机床制造厂规定的。
81、执行T 指令,转动转塔刀架,选用指定的刀具。
82、当一个程序段同时包含T 代码与刀具移动指令时:先执行T代码指令,而后执行刀具移动指令。
83、T 指令同时调入刀补寄存器中的补偿值。
84、准备功能G 指令由G 后一或二位数值组成,它用来规定刀具和工件的相对运动轨迹、机床坐标系、坐标平面、刀具补偿、坐标偏置等多种加工操作。
85、G 功能根据功能的不同分成若干组,其中00 组的G 功能称非模态G 功能,其余组的称模态G 功能。
86、非模态G 功能:只在所规定的程序段中有效,程序段结束时被注销;
87、模态G 功能:一组可相互注销的G 功能,这些功能一旦被执行,则一直有效,直到被同一组的G 功能注销为止。
88、模态G 功能组中包含一个缺省G 功能,上电时将被初始化为该功能。
89、没有共同地址符的不同组G 代码可以放在同一程序段中,而且与顺序无关。例如,G90、G17 可与G01 放在同一程序段。
90、华中世纪星HNC-21T 数控装置G 功能指令见下表。
注意:
[1] 00 组中的G 代码是非模态的,其他组的G 代码是模态的;[2] 标记者为缺省值。
91、尺寸单位选择:说明:G20:英制输入制式;G21:公制输入制式;
92、G20、G21 为模态功能,可相互注销,G21 为缺省值。
93、进给速度单位的设定:说明:G94:每分钟进给;G95:每转进给。
94、G94 为每分钟进给。对于线性轴,F 的单位依G20/G21 的设定而为mm/min 或in/min;对于旋转轴,F 的单位为度/min。
95、G95 为每转进给,即主轴转一周时刀具的进给量。F 的单位依G20/G21 的设定而为mm/r 或in/r。这个功能只在主轴装有编码器时才能使用。
96、G94、G95 为模态功能,可相互注销,G94 为缺省值。
97、 绝对值编程G90 与相对值编程G91
98、G90:绝对值编程,每个编程坐标轴上的编程值是相对于程序原点的。
99、G91:相对值编程,每个编程坐标轴上的编程值是相对于前一位置而言的,该值等于沿轴移动的距离。
100、绝对编程时,用G90 指令后面的X、Z 表示X 轴、Z 轴的坐标值;
101、增量编程时, 用U、W 或G91 指令后面的X、Z 表示X 轴、Z 轴的增量值。
102、表示增量的字符U、W 不能用于循环指令G80、G81、G82、G71、G72、G73、G76 程序段中。
103表示增量的字符U、W可用于定义精加工轮廓的程序中。
104、G90、G91 为模态功能,可相互注销,G90 为缺省值。
105、选择合适的编程方式可使编程简化。
106、当图纸尺寸由一个固定基准给定时,采用绝对方式编程较为方便。
107、当图纸尺寸是以轮廓顶点之间的间距给出时,采用相对方式编程较为方便。
108、G90、G91 可用于同一程序段中,但要注意其顺序所造成的差异。
109、坐标系设定G92:说明:X、Z:对刀点到工件坐标系原点的有向距离。
110、当执行G92 Xα Zβ 指令后,系统内部即对(α ,β )进行记忆,并建立一个使刀具当前点坐标值为(α ,β )的坐标系,系统控制刀具在此坐标系中按程序进行加工。
执行G92 Xα Zβ 指令后只建立一个坐标系,刀具并不产生运动。
111、G92 指令为非模态指令。
112、执行G92 Xα Zβ 指令时,若刀具当前点恰好在工件坐标系的α 和β 坐标值上,既刀具当前点在对刀点位置上,此时建立的坐标系即为工件坐标系,加工原点与程序原点重合。
113、执行G92 Xα Zβ 指令时,若刀具当前点不在工件坐标系的α 和β 坐标值上,则加工原点与程序原点不一致,加工出的产品就有误差或报废,甚至出现危险。
114、执行G92 Xα Zβ 指令时,刀具当前点必须恰好在对刀点上即工件坐标系的α 和β 坐标值上,由上可知要正确加工,加工原点与程序原点必须一致,故编程时加工原点与程序原点考虑为同一点。
115、执行G92 Xα Zβ 指令实际操作时怎样使两点一致,由操作时对刀完成。
116、执行G92 Xα Zβ 指令时,当α 、β 不同,或改变刀具位置时,既刀具当前点不在对刀点位置上,则加工原点与程序原点不一致。
117、在执行程序段G92 Xα Zβ 前,必须先对刀确定对刀点在工件坐标系下的坐标值。
118、坐标系设定G92选择的一般原则为:
1)、方便数学计算和简化编程;2)、容易找正对刀;3)、便于加工检查;
4)、引起的加工误差小;5)、不要与机床、工件发生碰撞;6)、方便拆卸工件;
7)、空行程不要太长;
119、坐标系选择G54~G59是系统预定的6 个坐标系,可根据需要任意选用。
120、加工时其坐标系的原点,必须设为工件坐标系的原点在机床坐标系中的坐标值,否则加工出的产品就有误差或报废,甚至出现危险。
121、坐标系选择G54~G59这6 个预定工件坐标系的原点在机床坐标系中的值(工件零点偏置值)可用MDI 方式输入,系统自动记忆。
122、工件坐标系一旦选定,后续程序段中绝对值编程时的指令值均为相对此工件坐标系原点的值。
123、G54~G59为模态功能,可相互注销,G54 为缺省值。
124、使用G54~G59指令前,先用MDI 方式输入各坐标系的坐标原点在机床坐标系中的坐标值。
125、使用G54~G59指令前,必须先回参考点
126、直接机床坐标系编程G53是机床坐标系编程,在含有G53的程序段中,绝对值编程时的指令值是在机床坐标系中的坐标值。
127、G53其为非模态指令。
128、G36 直径编程、G37 半径编程
129、数控车床的工件外形通常是旋转体,其X 轴尺寸可以用两种方式加以指定:直径方式和半径方式。
130、G36 为缺省值,机床出厂一般设为直径编程。
131、使用直径、半径编程时,系统参数设置要求与之对应
132、快速定位G00说明:X、Z:为绝对编程时,快速定位终点在工件坐标系中的坐标;
U、W:为增量编程时,快速定位终点相对于起点的位移量;
133、G00 指令刀具相对于工件以各轴预先设定的速度,从当前位置快速移动到程序段指令的定位目标点。
134、G00 指令中的快移速度由机床参数“快移进给速度”对各轴分别设定,不能用F 规定。
135、G00 一般用于加工前快速定位或加工后快速退刀。
136、快移速度可由面板上的快速修调按钮修正。
137、G00 为模态功能,可由G01、G02、G03 或G32 功能注销。
138、在执行G00 指令时,由于各轴以各自速度移动,不能保证各轴同时到达终点,因而联动直线轴的合成轨迹不一定是直线。
139、执行G00 指令时,常见的做法是将X 轴移动到安全位置,再放心地执行G00 指令。
140、线性进给及倒角G01
141、G01 X(U)_ Z(W) _ F_ ;说明:X、Z:为绝对编程时终点在工件坐标系中的坐标;U、W:为增量编程时终点相对于起点的位移量;F_:合成进给速度。
142、G01 指令刀具以联动的方式,按F 规定的合成进给速度,从当前位置按线性路线(联动直线轴的合成轨迹为直线)移动到程序段指令的终点。
143、G01 是模态代码,可由G00、G02、G03 或G32 功能注销。
144、★倒直角
1)格式:G01 X(U)____ Z(W)____C____;
2)说明:直线倒角G01,指令刀具从A 点到B 点,然后到C 点。
3)X、Z: 为绝对编程时,未倒角前两相邻轨迹程序段的交点G 的坐标值;
4)U、W:为增量编程时,G 点相对于起始直线轨迹的始点A点的移动距离。
5)C:是相邻两直线的交点G,相对于倒角始点B 的距离。
145、★倒圆角
1)格式:G01 X(U)____ Z(W)____R____;
2)说明:直线倒角G01,指令刀具从A 点到B 点,然后到C 点。
3)X、Z: 为绝对编程时,未倒角前两相邻轨迹程序段的交点G 的坐标值;
4)U、W:为增量编程时,G 点相对于起始直线轨迹的始点A点的移动距离。
5)R:是倒角圆弧的半径值。
146、在螺纹切削程序段中不得出现倒角控制指令;
147、X,Z轴指定的移动量比指定的R或C小时,系统将报警,即GA长度必须大于GB长度。
148、圆弧进给:G02: 顺时针圆弧插补,G03: 逆时针圆弧插补。
149、圆弧插补G02/G03 的判断,是在加工平面内,根据其插补时的旋转方向为顺时针/逆时针来区分的。
150、圆弧插补G02/G03 的判断时,加工平面为观察者迎着Y 轴的指向,所面对的平面。
插补方向
G02/G03参数说明
151、X、 Z: 为绝对编程时,圆弧终点在工件坐标系中的坐标;
U、W: 为增量编程时,圆弧终点相对于圆弧起点的位移量;
I、 K:圆心相对于圆弧起点的增加量(等于圆心的坐标减去圆弧起点的坐标),在绝对、增量编程时都是以增量方式指定,在直径、半径编程时I 都是半径值;
R: 圆弧半径;
F: 被编程的两个轴的合成进给速度;
152、顺时针或逆时针是从垂直于圆弧所在平面的坐标轴的正方向看到的回转方向;
153、同时编入R 与I、K 时,R 有效。
154、、螺纹切削G32
1)格式:G32 X(U)__Z(W)__R__E__P__F__
2)说明:X、 Z: 为绝对编程时,有效螺纹终点在工件坐标系中的坐标;
3)U、W: 为增量编程时,有效螺纹终点相对于螺纹切削起点的位移量;
F: 螺纹导程,即主轴每转一圈,刀具相对于工件的进给值;
R、 E: 螺纹切削的退尾量,R 表示Z 向退尾量;E 为X 向退尾量,R、E 在绝对或增量编程时都是以增量方式指定,其为正表示沿Z、X 正向回退,为负表示沿Z、X 负向回退。使用R、E 可免去退刀槽。R、E可以省略,表示不用回退功能;根据螺纹标准R 一般取0.75~1.75 倍的螺距,E 取螺纹的牙型高。
P:主轴基准脉冲处距离螺纹切削起始点的主轴转角。
4)使用G32指令能加工圆柱螺纹、锥螺纹和端面螺纹。
5)螺纹车削加工为成型车削,且切削进给量较大,刀具强度较差,一般要求分数次进给加工。
为常用螺纹切削的进给次数与吃刀量

6)注意:
1.从螺纹粗加工到精加工,主轴的转速必须保持一常数;
2.在没有停止主轴的情况下,停止螺纹的切削将非常危险;因此螺纹切削时进给保持功能无效,如果按下进给保持按键,刀具在加工完螺纹后停止运动;
3.在螺纹加工中不使用恒定线速度控制功能;
4.在螺纹加工轨迹中应设置足够的升速进刀段δ 和降速退刀段δ ′ ,以消除伺服滞后造成的螺距误差。
155、自动返回参考点G28
1)格式:G28 X_Z_
2)说明:X、Z: 绝对编程时为中间点在工件坐标系中的坐标;
U、W:增量编程时为中间点相对于起点的位移量。
3)G28 指令首先使所有的编程轴都快速定位到中间点,然后再从中间点返回到参考点。
4)一般,G28 指令用于刀具自动更换或者消除机械误差,在执行该指令之前应取消刀尖半径补偿。
5)在G28 程序段中不仅产生坐标轴移动指令,而且记忆了中间点坐标值,以供G29 使用。
6)电源接通后,在没有手动返回参考点的状态下,指定G28 时,从中间点自动返回参考点,与手动返回参考点相同。这时从中间点到参考点的方向就是机床参数“回参考点方向”设定的方向。
7)G28 指令仅在其被规定的程序段中有效。
156、自动从参考点返回G29
1)格式:G29 X_Z_
2)说明:X、Z:绝对编程时为定位终点在工件坐标系中的坐标;
U、W:增量编程时为定位终点相对于G28 中间点的位移量。
3)G29 可使所有编程轴以快速进给经过由G28 指令定义的中间点,然后再到达指定点。通常该指令紧跟在G28 指令之后。
4)G29 指令仅在其被规定的程序段中有效。
5)编程员不必计算从中间点到参考点的实际距离。
157、恒线速度指令G96:恒线速度有效,G97:取消恒线速度功能
1)格式:G96 S,G97 S
2)说明:S:G96 后面的S 值为切削的恒定线速度,单位为m/min;
G97 后面的S 值为取消恒线速度后,指定的主轴转速,单位为r/min;
3)如缺省,则为执行G96 指令前的主轴转速度。
4)注意:使用恒线速度功能,主轴必须能自动变速。(如:伺服主轴、变频主轴)在系统参数中设定主轴最高限速。
158、简单循环
1)有三类简单循环,分别是G80:内(外)径切削循环;G81:端面切削循环;G82:螺纹切削循环。
2)切削循环通常是用一个含G 代码的程序段完成用多个程序段指令的加工操作,使程序得以简化。
3)声明:下述图形中U,W表示程序段中X、Z字符的相对值;X,Z表示绝对坐标值;R 表示快速移动;F 表示以指定速度F移动。
159、内(外)径切削循环G80
★ 圆柱面内(外)径切削循环
1)格式: G80 X__Z__F__;
2)说明:X、Z:绝对值编程时,为切削终点C 在工件坐标系下的坐标;增量值编程时,为切削终点C 相对于循环起点A的有向距离,图形中用U、W 表示,其符号由轨迹1 和2 的方向确定。
3)该指令执行如下图所示A→B→C→D→A 的轨迹动作。
71、★ 园锥面内(外)径切削循环
1)格式: G80 X__Z__ I___F__;
2)说明:X、Z:绝对值编程时,为切削终点C 在工件坐标系下的坐标;增量值编程时,为切削终点C 相对于循环起点A的有向距离,图形中用U、W 表示。I:为切削起点B 与切削终点C 的半径差。其符号为差的符号(无论是绝对值编程还是增量值编程)。
3)该指令执行如下图所示A→B→C→D→A 的轨迹动作。
76、螺纹切削循环G82
★ 直螺纹切削循环
1)格式: G82 X(U)__Z(W)__R__E__C__P__F__;
2)说明:X、Z:绝对值编程时,为螺纹终点C 在工件坐标系下的坐标;
增量值编程时,为螺纹终点C 相对于循环起点A的有向距离,图形中用U、W 表示,其符号由轨迹1 和2 的方向确定;
R, E:螺纹切削的退尾量,R、E 均为向量,R 为Z 向回退量;E 为X 向回退量,R、E 可以省略,表示不用回退功能;
C:螺纹头数,为0 或1 时切削单头螺纹;
P:单头螺纹切削时,为主轴基准脉冲处距离切削起始点的主轴转角(缺省值为0);多头螺纹切削时,为相邻螺纹头的切削起始点之间对应的主轴转角。
F:螺纹导程;
3)注意:螺纹切削循环同G32螺纹切削一样,在进给保持状态下,该循环在完成全部动作之后才停止运动。
该指令执行下图所示A→B→C→D→E→A 的轨迹动作。
77、★ 锥螺纹切削循环
1)格式: G82 X__Z__ I__R__E__C__P__F__;
2)说明:X、Z:绝对值编程时,为螺纹终点C 在工件坐标系下的坐标;
增量值编程时,为螺纹终点C 相对于循环起点A的有向距离,图形中用U、W 表示。
I:为螺纹起点B 与螺纹终点C 的半径差。其符号为差的符号(无论是绝对值编程还是增量值编程);
R, E:螺纹切削的退尾量,R、E 均为向量,R 为Z 向回退量;E 为X 向回退量,R、E 可以省略,表示不用回退功能;
C:螺纹头数,为0 或1 时切削单头螺纹;
P:单头螺纹切削时,为主轴基准脉冲处距离切削起始点的主轴转角(缺省值为0);多头螺纹切削时,为相邻螺纹头的切削起始点之间对应的主轴转角。
F:螺纹导程;
3)该指令执行图3.3.22 所示A→B→C→D→A 的轨迹动作。
79、复合循环
1)有四类复合循环,分别是
G71:内(外)径粗车复合循环;
G72:端面粗车复合循环;
G73:封闭轮廓复合循环;
G76:螺纹切削复合循环;
2)运用这组复合循环指令,只需指定精加工路线和粗加工的吃刀量,系统会自动计算粗加工路线和走刀次数。
80、内(外)径粗车复合循环G71
★ 无凹槽加工时
1)格式:G71 U(Δ d) R(r) P(ns) Q(nf) X(Δ x) Z(Δ z) F(f) S(s) T(t);
2)说明:该指令执行如图所示的粗加工和精加工,其中精加工路径为A→A'→B'→B 的轨迹。
△d:切削深度(每次切削量),指定时不加符号,方向由矢量AA′决定;
r:每次退刀量;
ns:精加工路径第一程序段(即图中的AA')的顺序号;
nf:精加工路径最后程序段(即图中的B'B)的顺序号;
△x:X 方向精加工余量;
△z:Z 方向精加工余量;
f,s,t:粗加工时G71 中编程的F、S、T 有效,而精加工时处于ns 到nf 程序段之间的F、S、T 有效。
3)G71切削循环下,切削进给方向平行于Z轴,X(ΔU)和Z(ΔW) 的符号如图所示。其中(+)表示沿轴正方向移动,(-)表示沿轴负方向移动。
G71复合循环下X(ΔU)和Z(ΔW) 的符号
81、★ 有凹槽加工时
1)格式:G71 U(Δ d) R(r) P(ns) Q(nf) E(e) F(f) S(s) T(t);
2)说明:该指令执行如图所示的粗加工和精加工,其中精加工路径为A→A'→B'→B 的轨迹。
Δ d:切削深度(每次切削量),指定时不加符号,方向由矢量AA′决定;
r:每次退刀量;
ns:精加工路径第一程序段(即图中的AA')的顺序号;
nf:精加工路径最后程序段(即图中的B'B)的顺序号;
e:精加工余量,其为X 方向的等高距离;外径切削时为正,内径切削时为负
f,s,t:粗加工时G71 中编程的F、S、T 有效,而精加工时处于ns 到nf 程序段之间的F、S、T 有效。
3)注意:
(1) G71 指令必须带有P,Q 地址ns、nf,且与精加工路径起、止顺序号对应,否则不能进行该循环加工。
(2) ns的程序段必须为G00/G01指令,即从A到A'的动作必须是直线或点定位运动。
(3) 在顺序号为ns 到顺序号为nf 的程序段中,不应包含子程序。
另外,虚机团上产品团购,超级便宜

5. 数控车床华中系统如何编程

数控车床刚入行,图纸中的程序编程大致介绍两种方法以作参考: 绝对之方式编程书写格式:G90,说明在此指令以后,所有编入的坐标值全部以编程原点为基准。在系统通电时机床处于G90状态。 增量方式编程书写格式:G91,说明在G91编入程序时,以后所有编入的坐标值均以前一个坐标位置作为起点来计算下一个点的位置。在螺纹加工.循环加工.子程序调用指令编制前,必须设置成增量方式。 以上两种程序编程是数控车床初学者,通过简单图纸编程 慢慢由浅至深地体会 。

6. 基于数控机床的PLC技术的研究

楼上那一位加上以下的,自己整合一下
1、PLC即可编程控制器(Programmable logic Controller,是指以计算机技术为基础的新型工业控制装置。在1987年国际电工委员会(International Electrical Committee)颁布的PLC标准草案中对PLC做了如下定义:

“PLC是一种专门为在工业环境下应用而设计的数字运算操作的电子装置。它采用可以编制程序的存储器,用来在其内部存储执行逻辑运算、顺序运算、计时、计数和算术运算等操作的指令,并能通过数字式或模拟式的输入和输出,控制各种类型的机械或生产过程。PLC及其有关的外围设备都应该按易于与工业控制系统形成一个整体,易于扩展其功能的原则而设计。”

PLC的特点

2.1可靠性高,抗干扰能力强
高可靠性是电气控制设备的关键性能。PLC由于采用现代大规模集成电路技术,采用严格的生产工艺制造,内部电路采取了先进的抗干扰技术,具有很高的可靠性。例如三菱公司生产的F系列PLC平均无故障时间高达30万小时。一些使用冗余CPU的PLC的平均无故障工作时间则更长。从PLC的机外电路来说,使用PLC构成控制系统,和同等规模的继电接触器系统相比,电气接线及开关接点已减少到数百甚至数千分之一,故障也就大大降低。此外,PLC带有硬件故障自我检测功能,出现故障时可及时发出警报信息。在应用软件中,应用者还可以编入外围器件的故障自诊断程序,使系统中除PLC以外的电路及设备也获得故障自诊断保护。这样,整个系统具有极高的可靠性也就不奇怪了。

2.2配套齐全,功能完善,适用性强
PLC发展到今天,已经形成了大、中、小各种规模的系列化产品。可以用于各种规模的工业控制场合。除了逻辑处理功能以外,现代PLC大多具有完善的数据运算能力,可用于各种数字控制领域。近年来PLC的功能单元大量涌现,使PLC渗透到了位置控制、温度控制、CNC等各种工业控制中。加上PLC通信能力的增强及人机界面技术的发展,使用PLC组成各种控制系统变得非常容易。

2.3易学易用,深受工程技术人员欢迎
PLC作为通用工业控制计算机,是面向工矿企业的工控设备。它接口容易,编程语言易于为工程技术人员接受。梯形图语言的图形符号与表达方式和继电器电路图相当接近,只用PLC的少量开关量逻辑控制指令就可以方便地实现继电器电路的功能。为不熟悉电子电路、不懂计算机原理和汇编语言的人使用计算机从事工业控制打开了方便之门。

2.4系统的设计、建造工作量小,维护方便,容易改造
PLC用存储逻辑代替接线逻辑,大大减少了控制设备外部的接线,使控制系统设计及建造的周期大为缩短,同时维护也变得容易起来。更重要的是使同一设备经过改变程序改变生产过程成为可能。这很适合多品种、小批量的生产场合。

2.5体积小,重量轻,能耗低
以超小型PLC为例,新近出产的品种底部尺寸小于100mm,重量小于150g,功耗仅数瓦。由于体积小很容易装入机械内部,是实现机电一体化的理想控制设备。

3. PLC的应用领域
目前,PLC在国内外已广泛应用于钢铁、石油、化工、电力、建材、机械制造、汽车、轻纺、交通运输、环保及文化娱乐等各个行业,使用情况大致可归纳为如下几类。

3.1开关量的逻辑控制
这是PLC最基本、最广泛的应用领域,它取代传统的继电器电路,实现逻辑控制、顺序控制,既可用于单台设备的控制,也可用于多机群控及自动化流水线。如注塑机、印刷机、订书机械、组合机床、磨床、包装生产线、电镀流水线等。

3.2模拟量控制
在工业生产过程当中,有许多连续变化的量,如温度、压力、流量、液位和速度等都是模拟量。为了使可编程控制器处理模拟量,必须实现模拟量(Analog)和数字量(Digital)之间的A/D转换及D/A转换。PLC厂家都生产配套的A/D和D/A转换模块,使可编程控制器用于模拟量控制。

3.3运动控制
PLC可以用于圆周运动或直线运动的控制。从控制机构配置来说,早期直接用于开关量I/O模块连接位置传感器和执行机构,现在一般使用专用的运动控制模块。如可驱动步进电机或伺服电机的单轴或多轴位置控制模块。世界上各主要PLC厂家的产品几乎都有运动控制功能,广泛用于各种机械、机床、机器人、电梯等场合。

3.4过程控制
过程控制是指对温度、压力、流量等模拟量的闭环控制。作为工业控制计算机,PLC能编制各种各样的控制算法程序,完成闭环控制。PID调节是一般闭环控制系统中用得较多的调节方法。大中型PLC都有PID模块,目前许多小型PLC也具有此功能模块。PID处理一般是运行专用的PID子程序。过程控制在冶金、化工、热处理、锅炉控制等场合有非常广泛的应用。

3.5数据处理
现代PLC具有数学运算(含矩阵运算、函数运算、逻辑运算)、数据传送、数据转换、排序、查表、位操作等功能,可以完成数据的采集、分析及处理。这些数据可以与存储在存储器中的参考值比较,完成一定的控制操作,也可以利用通信功能传送到别的智能装置,或将它们打印制表。数据处理一般用于大型控制系统,如无人控制的柔性制造系统;也可用于过程控制系统,如造纸、冶金、食品工业中的一些大型控制系统。

3.6通信及联网
PLC通信含PLC间的通信及PLC与其它智能设备间的通信。随着计算机控制的发展,工厂自动化网络发展得很快,各PLC厂商都十分重视PLC的通信功能,纷纷推出各自的网络系统。新近生产的PLC都具有通信接口,通信非常方便。

4. PLC的国内外状况

在工业生产过程中,大量的开关量顺序控制,它按照逻辑条件进行顺序动作,并按照逻辑关系进行连锁保护动作的控制,及大量离散量的数据采集。传统上,这些功能是通过气动或电气控制系统来实现的。1968年美国GM(通用汽车)公司提出取代继电气控制装置的要求,第二年,美国数字设备公司(DEC)研制出了基于集成电路和电子技术的控制装置,首次采用程序化的手段应用于电气控制,这就是第一代可编程序控制器,称Programmable ,是世界上公认的第一台PLC.
限于当时的元器件条件及计算机发展水平,早期的PLC主要由分立元件和中小规模集成电路组成,可以完成简单的逻辑控制及定时、计数功能。20世纪70年代初出现了微处理器。人们很快将其引入可编程控制器,使PLC增加了运算、数据传送及处理等功能,完成了真正具有计算机特征的工业控制装置。为了方便熟悉继电器、接触器系统的工程技术人员使用,可编程控制器采用和继电器电路图类似的梯形图作为主要编程语言,并将参加运算及处理的计算机存储元件都以继电器命名。此时的PLC为微机技术和继电器常规控制概念相结合的产物。个人计算机(简称PC)发展起来后,为了方便,也为了反映可编程控制器的功能特点,可编程序控制器定名为Programmable Logic Controller(PLC)。

20世纪70年代中末期,可编程控制器进入实用化发展阶段,计算机技术已全面引入可编程控制器中,使其功能发生了飞跃。更高的运算速度、超小型体积、更可靠的工业抗干扰设计、模拟量运算、PID功能及极高的性价比奠定了它在现代工业中的地位。20世纪80年代初,可编程控制器在先进工业国家中已获得广泛应用。这个时期可编程控制器发展的特点是大规模、高速度、高性能、产品系列化。这个阶段的另一个特点是世界上生产可编程控制器的国家日益增多,产量日益上升。这标志着可编程控制器已步入成熟阶段。

上世纪80年代至90年代中期,是PLC发展最快的时期,年增长率一直保持为30~40%。在这时期,PLC在处理模拟量能力、数字运算能力、人机接口能力和网络能力得到大幅度提高,PLC逐渐进入过程控制领域,在某些应用上取代了在过程控制领域处于统治地位的DCS系统。

20世纪末期,可编程控制器的发展特点是更加适应于现代工业的需要。从控制规模上来说,这个时期发展了大型机和超小型机;从控制能力上来说,诞生了各种各样的特殊功能单元,用于压力、温度、转速、位移等各式各样的控制场合;从产品的配套能力来说,生产了各种人机界面单元、通信单元,使应用可编程控制器的工业控制设备的配套更加容易。目前,可编程控制器在机械制造、石油化工、冶金钢铁、汽车、轻工业等领域的应用都得到了长足的发展。

我国可编程控制器的引进、应用、研制、生产是伴随着改革开放开始的。最初是在引进设备中大量使用了可编程控制器。接下来在各种企业的生产设备及产品中不断扩大了PLC的应用。目前,我国自己已可以生产中小型可编程控制器。上海东屋电气有限公司生产的CF系列、杭州机床电器厂生产的DKK及D系列、大连组合机床研究所生产的S系列、苏州电子计算机厂生产的YZ系列等多种产品已具备了一定的规模并在工业产品中获得了应用。此外,无锡华光公司、上海乡岛公司等中外合资企业也是我国比较着名的PLC生产厂家。可以预期,随着我国现代化进程的深入,PLC在我国将有更广阔的应用天地。

5. PLC未来展望
21世纪,PLC会有更大的发展。从技术上看,计算机技术的新成果会更多地应用于可编程控制器的设计和制造上,会有运算速度更快、存储容量更大、智能更强的品种出现;从产品规模上看,会进一步向超小型及超大型方向发展;从产品的配套性上看,产品的品种会更丰富、规格更齐全,完美的人机界面、完备的通信设备会更好地适应各种工业控制场合的需求;从市场上看,各国各自生产多品种产品的情况会随着国际竞争的加剧而打破,会出现少数几个品牌垄断国际市场的局面,会出现国际通用的编程语言;从网络的发展情况来看,可编程控制器和其它工业控制计算机组网构成大型的控制系统是可编程控制器技术的发展方向。目前的计算机集散控制系统DCS(Distributed Control System)中已有大量的可编程控制器应用。伴随着计算机网络的发展,可编程控制器作为自动化控制网络和国际通用网络的重要组成部分,将在工业及工业以外的众多领域发挥越来越大的作用。

1.2 PLC的构成

从结构上分,PLC分为固定式和组合式(模块式)两种。固定式PLC包括CPU板、I/O板、显示面板、内存块、电源等,这些元素组合成一个不可拆卸的整体。模块式PLC包括CPU模块、I/O模块、内存、电源模块、底板或机架,这些模块可以按照一定规则组合配置。

1.3 CPU的构成

CPU是PLC的核心,起神经中枢的作用,每套PLC至少有一个CPU,它按PLC的系统程序赋予的功能接收并存贮用户程序和数据,用扫描的方式采集由现场输入装置送来的状态或数据,并存入规定的寄存器中,同时,诊断电源和PLC内部电路的工作状态和编程过程中的语法错误等。进入运行后,从用户程序存贮器中逐条读取指令,经分析后再按指令规定的任务产生相应的控制信号,去指挥有关的控制电路。

CPU主要由运算器、控制器、寄存器及实现它们之间联系的数据、控制及状态总线构成,CPU单元还包括外围芯片、总线接口及有关电路。内存主要用于存储程序及数据,是PLC不可缺少的组成单元。

在使用者看来,不必要详细分析CPU的内部电路,但对各部分的工作机制还是应有足够的理解。CPU的控制器控制CPU工作,由它读取指令、解释指令及执行指令。但工作节奏由震荡信号控制。运算器用于进行数字或逻辑运算,在控制器指挥下工作。寄存器参与运算,并存储运算的中间结果,它也是在控制器指挥下工作。

CPU速度和内存容量是PLC的重要参数,它们决定着PLC的工作速度,IO数量及软件容量等,因此限制着控制规模。

1.4 I/O模块

PLC与电气回路的接口,是通过输入输出部分(I/O)完成的。I/O模块集成了PLC的I/O电路,其输入暂存器反映输入信号状态,输出点反映输出锁存器状态。输入模块将电信号变换成数字信号进入PLC系统,输出模块相反。I/O分为开关量输入(DI),开关量输出(DO),模拟量输入(AI),模拟量输出(AO)等模块。

常用的I/O分类如下:

开关量:按电压水平分,有220VAC、110VAC、24VDC,按隔离方式分,有继电器隔离和晶体管隔离。

模拟量:按信号类型分,有电流型(4-20mA,0-20mA)、电压型(0-10V,0-5V,-10-10V)等,按精度分,有12bit,14bit,16bit等。

除了上述通用IO外,还有特殊IO模块,如热电阻、热电偶、脉冲等模块。

按I/O点数确定模块规格及数量,I/O模块可多可少,但其最大数受CPU所能管理的基本配置的能力,即受最大的底板或机架槽数限制。

1.5 电源模块

PLC电源用于为PLC各模块的集成电路提供工作电源。同时,有的还为输入电路提供24V的工作电源。电源输入类型有:交流电源(220VAC或110VAC),直流电源(常用的为24VDC)。

1.6 底板或机架

大多数模块式PLC使用底板或机架,其作用是:电气上,实现各模块间的联系,使CPU能访问底板上的所有模块,机械上,实现各模块间的连接,使各模块构成一个整体。

1.7 PLC系统的其它设备

1.7.1

编程设备:编程器是PLC开发应用、监测运行、检查维护不可缺少的器件,用于编程、对系统作一些设定、监控PLC及PLC所控制的系统的工作状况,但它不直接参与现场控制运行。小编程器PLC一般有手持型编程器,目前一般由计算机(运行编程软件)充当编程器。也就是我们系统的上位机。

1.7.2 人机界面:最简单的人机界面是指示灯和按钮,目前液晶屏(或触摸屏)式的一体式操作员终端应用越来越广泛,由计算机(运行组态软件)充当人机界面非常普及。

1.8 PLC的通信联网

依靠先进的工业网络技术可以迅速有效地收集、传送生产和管理数据。因此,网络在自动化系统集成工程中的重要性越来越显着,甚至有人提出"网络就是控制器"的观点说法。

PLC具有通信联网的功能,它使PLC与PLC

之间、PLC与上位计算机以及其他智能设备之间能够交换信息,形成一个统一的整体,实现分散集中控制。多数PLC具有RS-232接口,还有一些内置有支持各自通信协议的接口。PLC的通信现在主要采用通过多点接口(MPI)的数据通讯、PROFIBUS

或工业以太网进行联网。

2 PLC控制系统的设计基本原则
2.1 最大限度的满足被控对象的控制要求。
2.2 在满足控制要求的前提下,力求使控制系统简单、经济、使用和维护方便。
2.3 保证控制系统安全可靠。
2.4 考虑到生产的发展和工艺的改进在选择PLC容量时应适当留有余量。
3 PLC软件系统及常用编程语言

3.1 PLC软件系统由系统程序和用户程序两部分组成。系统程序包括监控程序、编译程序、诊断程序等,主要用于管理全机、将程序语言翻译成机器语言,诊断机器故障。系统软件由PLC厂家提供并已固化在EPROM中,不能直接存取和干预。用户程序是用户根据现场控制要求,用PLC的程序语言编制的应用程序(也就是逻辑控制)用来实现各种控制。STEP7是用于SIMATIC可编程逻辑控制器组态和编程的标准软件包,也就是用户程序,我们就是使用STEP7来进行硬件组态和逻辑程序编制,以及逻辑程序执行结果的在线监视。

3.2 PLC提供的编程语言

3.2.1 标准语言梯形图语言也是我们最常用的一种语言,它有以下特点

3.2.1.1 它是一种图形语言,沿用传统控制图中的继电器触点、线圈、串联等术语和一些图形符号构成,左右的竖线称为左右母线。

3.2.1.2 梯形图中接点(触点)只有常开和常闭,接点可以是PLC输入点接的开关也可以是PLC内部继电器的接点或内部寄存器、计数器等的状态。

3.2.1.3 梯形图中的接点可以任意串、并联,但线圈只能并联不能串联。

3.2.1.4 内部继电器、计数器、寄存器等均不能直接控制外部负载,只能做中间结果供CPU内部使用。

3.2.1.5 PLC是按循环扫描事件,沿梯形图先后顺序执行,在同一扫描周期中的结果留在输出状态暂存器中所以输出点的值在用户程序中可以当做条件使用。

3.2.2 语句表语言,类似于汇编语言。

3.2.3 逻辑功能图语言,沿用半导体逻辑框图来表达,一般一个运算框表示一个功能左边画输入、右边画输出。

4 STEP7程序的使用

4.1 创建一个项目结构,项目就象一个文件夹,所有数据都以分层的结构存在于其中,任何时候你都可以使用。在创建一个项目之后,所有其他任务都在这个项目下执行。

4.2 组态一个站,组态一个站就是指定你要使用的可编程控制器,例如S7300、S7400等。

4.3 组态硬件,组态硬件就是在组态表中指定你的控制方案所要使用的模板以及在用户程序中以什么样的地址来访问这些模板,地址一般不用修改由程序自动生成。模板的特性也可以用参数进行赋值。

4.4 组态网络和通讯连接,通讯的基础是预先组态网络,也就是要创建一个满足你的控制方案的子网,设置网络特性、设置网络连接特性以及任何联网的站所需要的连接。网络地址也是程序自动生成如果没有更改经验一定不要修改。

4.5 定义符号,可以在符号表中定义局部或共享符号,在你的用户程序中用这些更具描述性的符号名替代绝对地址。符号的命名一般用字母编写不超过8个字节,最好不要使用很长的汉字进行描述,否则对程序的执行有很大的影响。

4.6 创建程序,用梯形图编程语言创建一个与模板相连结或与模板无关的程序并存储。创建程序是我们控制工程的重要工作之一,一般可以采用线形编程(基于一个块内,OB1)、分布编程(编写功能块FB,OB1组织调用)、结构化编程(编写通用块)。我们最常采用的是结构化编程和分布编程配合使用,很少采用线形编程。

4.7 下载程序到可编程控制器,完成所有的组态、参数赋值和编程任务之后,可以下载整个用户程序到可编程控制器。在下载程序时可编程控制器必须在允许下载的工作模式下(STOP或RUN-P),

RUN-P模式表示,这个程序将一次下载一个块,如果重写一个旧的CPU程序就可能出现冲突,所以一般在下载前将CPU切换到STOP模式。

5 WINCC程序的使用

5.1 简介,WINCC是在生产和过程自动化中解决可视化和控制任务的工业技术中性系统。具有控制自动化过程的强大功能,是基于个人计算机的操作监视系统,它很容易结合标准的和用户的程序建立人机界面精确的满足生产实际要求。WINCC有两个版本RC版(具有组态和开发环境)、RT版(只有运行环境),我们一般使用的是RC版。

5.2 WINCC简单使用步骤

5.2.1 变量管理,首先确定通讯方式安装驱动程序,然后定义内部变量和外部变量,外部变量是受你买的WINCC软件授权限制的最大授权64K字节,内部变量没有限制。

5.2.2 画面生成,进入图形编辑器,图形编辑器是一种用于创建过程画面的面向矢量的作图程序。也可以使用包含在对象和样式库中的众多的图形对象来创建复杂的过程画面。可以通过动作编程将动态添加到单个图形对象上。

5.2.3 报警记录设置,报警记录提供了显示和操作选项来获取和归档结果。可以任意地选择消息块、消息级别、消息类型、消息显示以及报表。为了在运行中显示消息,可以使用包含在图形编辑器中的对象库中的报警控件。

5.2.4 变量记录,变量记录是用来从运行过程中采集数据并准备将它们显示和归档。

5.2.5 报表组态,报表组态是通过报表编辑器来实现的。是为消息、操作、归档内容和当前或已归档的数据定时器或事件控制文档的集成的报表系统,可以自由选择用户报表的形式。

5.2.6 全局脚本的应用,全局脚本就是C语言函数和动作的通称,根据不同的类型脚本被用于给对象组态动作并通过系统内部C语言编译器来处理。全局脚本动作用于过程执行的运行中。一个触发可以开始这些动作的执行。

5.2.7 用户管理器设置,用户管理器用于分配和控制用户的单个组态和运行系统编辑器的访问权限。每建立一个用户,就设置了WINCC功能的访问权利并独立的分配给此用户。至多可分配999个不同的授权。

5.2.8 交叉表索引,交叉索引用于为对象寻找和显示所有使用处,例如变量、画面和函数等。使用“链接”功能可以改变变量名称而不会导致组态不一致。

参考文献
[1] 林小峰.可编程控制器原理及应用.北京:高等教育出版社,1994
[2] 田瑞庭.可编程控制器应用技术.北京:机械工业出版社,1994
[3] 张万忠.可编程控制器应用技术.北京:化学工业出版社,2001.12
[4] 于庆广.可编程控制器原理及系统设计.北京:清华大学出版社.2004

PLC,俗称“电力线上网”,英文全名为Power Line Communication,主要是指利用电力线传输数据和话音信号的一种通信方式
1、主要特点

① 结构灵活,不受环境的限制,有电即可组建网络,同时可以灵活扩展接入端口数量,使资源保持较高的利用率,在移动性方面可与WLAN媲美。

② 传输质量高、速度快、带宽稳定,可以很平顺的在线观赏DVD影片,它所提供的14Mbps带宽可以为很多应用平台提供保证。最新的电力线标准HomePlug AV传输速度已经达到了200Mbps;为了确保QoS,HomePlug AV采用了时分多路访问(TDMA)与带有冲突检测机能的载体侦听多路访问(CSMA)协议,两者结合,能够很好地传输流媒体。

③ 范围广,无所不在的电力线网络也是这种技术的优势。虽然无线网络可以做到不破墙,但对于高层建筑来说,其必需布设N多个AP才能满足需求,而且同样不能避面信号盲区的存在。而电力线是最基础的网络,它的规模之大,是其他任何网络无法比拟的。由此,运营商就可以轻松地把这种网络接入服务渗透到每一处有电力线的地方。这一技术一旦全面进入商业化阶段,将给互联网普及带来极大的发展空间。终端用户只需要插上电力猫,就可以实现因特网接入,电视频道接收节目,打电话或者是可视电话。

④ 低成本。充分利用现有的低压配电网络基础设施,无需任何布线,节约了资源。无需挖沟和穿墙打洞,避免了对建筑物、公用设施、家庭装潢的破坏,同时也节省了人力。相对传统的组网技术,PLC成本更低,工期短,可扩展性和可管理性更强。目前国内已开通电力宽带上网的地方,其包月使用费用一般为50-80元/月左右,这样的价格和很多地方的ADSL包月相持平。

⑤ 适用面广。PLC作为利用电力线组网的一种接入技术,提供宽带网络“最后一公里”的解决方案,广泛适用于居民小区,酒店,办公区,监控安防等领域。它是利用电力线作为通信载体,使得PLC具有极大的便捷性,只要在房间任何有电源插座的地方,不用拨号,就立即可享受4.5~45Mbps的高速网络接入,来浏览网页、拨打电话,和观看在线电影,从而实现集数据、语音、视频,以及电力于一体的“四网合一”。

PLC 还有一种说法是:产品生命周期(proct life cycle)观念,简称PLC,是把一个产品的销售历史比作象人的生命周期一样,要经历出生、成长、成熟、老化、死亡等阶段。就产品而言,也就是要经历一个开发、引进、成长、成熟、衰退的阶段。
1、产品开发期:从开发产品的设想到产品制造成功的时期。此期间该产品销售额为零,公司投资不断增加。
2、引进期:新产品新上市,销售缓慢。由于引进产品的费用太高,初期通常利润偏低或为负数,但此时没有或只有极少的竞争者。
3、成长期:产品经过一段时间已有相当知名度,销售快速增长,利润也显着增加。但由于市场及利润成长较快,容易吸引更多的竞争者。
4、成熟期:此时市场成长趋势减缓或饱和,产品已被大多数潜在购买者所接受,利润在达到顶点后逐渐走下坡路。此时市场竞争激烈,公司为保持产品地位需投入大量的营销费用。
5、衰退期:这期间产品销售量显着衰退,利润也大幅度滑落。优胜劣汰,市场竞争者也越来越少。
http://www.douban.com/isbn/7-118-04611-6/

7. 华中8型数控系统有哪些补偿功能

丝杠螺距补偿:一般指丝杠的螺距误差补偿.由于丝杆螺距的不均匀性,螺距误差是避免不了的,需要数控系统用参数来进行补偿(通过激光干涉仪测量),以求较高的精度.
间隙补偿:包括所有传动链中的间隙(包括丝杆螺母副)的补偿.传动链正/反向运动的间隙,会直接影响数控精度,齿轮啮合需要间隙才能正常运行,这种累计间隙误差也需要通过数控系统用参数进行补偿(通过千分表测量),才能提高控制精度.

8. 华中8型数控车子程序编程

在窗体上放置以下控件:
1、lblResult Label控件 设置lblResult.Caption = 0
2、btnNum(0)~btnNum(9) 按钮控件数组,下标对应齐数字(如:btnNum(0).Caption=0,依次类推)
3、添加btnAdd(加法)、btnSub(减法)、btnMul(乘法)、btnDiv(除法)、btnEnter(等于号)、btnReset(清除键)六个按钮。

在窗体代码中输入以下内容:

Dim byteOperation As Byte '操作符
Dim byteTmp As Byte '临时操作符
Dim intNum As Double '输入的数字
Sub Calc()
Select Case byteOperation
Case 1 'Add
lblResult.Caption = CDbl(lblResult.Caption) + intNum
Case 2 'Sub
lblResult.Caption = intNum - CDbl(lblResult.Caption)
Case 3 'Mul
lblResult.Caption = CDbl(lblResult.Caption) * intNum
Case 4 'Div
lblResult.Caption = intNum / CDbl(lblResult.Caption)
Case Else

End Select
End Sub

Private Sub btnNum_Click(Index As Integer)
If byteTmp <> 0 Then
intNum = lblResult.Caption
lblResult.Caption = 0
byteTmp = 0
End If
If lblResult.Caption = 0 Then
lblResult.Caption = Index
Else
If Len(lblResult.Caption) < 9 Then
lblResult.Caption = lblResult.Caption & Index
End If
End If
End Sub

Private Sub btnAdd_Click()
If byteOperation <> 0 Then
Call Calc
End If
byteOperation = 1
byteTmp = 1
End Sub

Private Sub btnReset_Click()
byteTmp = 0
byteOperation = 0
intNum = 0
lblResult.Caption = 0
End Sub

Private Sub btnSub_Click()
If byteOperation <> 0 Then
Call Calc
End If
byteOperation = 2
byteTmp = 2
End Sub

Private Sub btnMul_Click()
If byteOperation <> 0 Then
Call Calc
End If
byteOperation = 3
byteTmp = 3
End Sub

Private Sub btnDiv_Click()
If byteOperation <> 0 Then
Call Calc
End If
byteOperation = 4
byteTmp = 4
End Sub

Private Sub btnEnter_Click()
Call Calc
byteTmp = 0
End Sub

9. 如何理解华中数控系统的PLC

问的什么哦,我也在学。看不懂你说的
编程是画完图用后处理生成程序传给数控系统,c语言是宏程序
有C语言比如华中数控,有plc就是梯形图

10. 华中数控深度研究报告

2021年8月份国资委召开会议,会议一再提出要大力开展科技创新,并把工业母机位列首位,可见国家对工业母机的重视程度不言而喻。其中工业母机里最为关键的就是高端数控,所以今天我们一起来看看高端数控系统的龙头公司——华中数控。


首先在分析华中数控之前,我清理好了机械行业龙头股大家一起看看,点击就直接领取: 宝藏资料:机械行业龙头一览表


一、从公司角度来看


公司介绍:国内数控系统领域核心企业之一是华中数控,它的主营业务,是机床数控系统、工业机器人与新能源汽车配套这三种。通过二十多年的进步,数控技术水平已处于国内领先水平。除此以外,公司产出的上乘产品,在功能和性能上,同样赶上了国外同类系统水平。


华中数控的概况已经介绍过了,我们下面来看看这家公司优势有哪些,究竟值不值得我们去投资?


优势一:技术优势


公司在数控系统、工业机器人、智能制造等领域不断取得突破。直到2017年的时候,已申请发明专利14项、实用新型专利15项、外观设计专利10项。授权发明专利4项、实用新型专利9项、外观设计专利5项,获得计算机软件着作权10项。


公司数控系统在部分高端细分领域已实现国产数控系统从零到一的突破,像华中8型数控系统荣获国家科技进步二等奖,当前该系统已经发售数万台,是国产高档数控系统里配套做多的系统。


所以我们可以由此得知,华中数控一贯关注技术的进步,不断推动创新能力的发展。


优势二:受到相关政策的加持


在《中国制造2025》中,国家将智能制造确立为主要方向,不断地弥补智能制造顶层设计的短板,与此同时还不断出台相关配套办法,同时推进智能制造试点示范项目不断加快。大家可以发现,智能制造已成为未来装备制造业的行业发展方向。在这种条件下,华中数控在机器人领域上的开发和制造将会受到更多政策上的扶持。


由于篇幅有限,更多和华中数控的深度报告和风险提示密切相关的资料,我概括在这篇研报当中,点击即可查看: 【深度研报】华中数控点评,建议收藏!


二、从行业角度来看


现如今,我国正处在一个非常重要阶段,由制造大国向制造强国转型,数控化水平越高,那就意味着这个国家的制造实力越强。而数控系统可谓是目前机床中的核心部件,它的技术含量极高。尽管数控率增长了很多,从2013年的28.30%升高到2020年的43%,但和其他发达国家相比,这样的数控率还处于较低水平,想要发展制造业,必须要把数控率提高。另外数控机床可用于多个领域,主要包括航空航天、船舶制造、汽车、工程机械、电力设备、工业模具等方面,有非常大的提升空间。


整体来看,我认为华中数控除了拥有技术优势外,主营产品所在的未来发展趋势好,发展方面来看,也有望在基数发展的推动下引来高速的这样一个状态。不过文章会滞后一些,若是有朋友想了更准确到了掌握华中数控这只股票的未来发展趋势是咋样的,下面有个链接直接点击,有很多专业的投资顾问能够帮你判断股票,看下华中数控估值是否符合预期: 【免费】测一测华中数控现在是高估还是低估?


应答时间:2021-09-09,最新业务变化以文中链接内展示的数据为准,请点击查看

阅读全文

与华中8型系统数控plc编程方法的研究相关的资料

热点内容
快速削水果皮的方法 浏览:827
路灯电压过低闪烁解决方法 浏览:500
挂车改短方法图片 浏览:443
嘴上起皮用什么方法能治好 浏览:440
矿泉水桶锻炼方法图解 浏览:170
pvz系统使用方法和技巧 浏览:85
尿蛋白高的治疗方法 浏览:603
肚子撑胀右侧胀气有什么方法 浏览:619
手腕腱鞘囊肿治疗方法 浏览:304
一般分析化学的方法 浏览:249
如何用数数的方法做减法 浏览:455
水彩码头使用方法视频 浏览:345
如何激励孩子的学习方法 浏览:996
八年级物理学中常见的测量方法 浏览:151
防蚊扣使用方法 浏览:320
夏天洗衣服衣领技巧方法 浏览:106
球囊炎的治疗方法 浏览:582
电脑关机关闭键盘灯光的方法 浏览:911
什么方法去额头皱纹 浏览:864
如何在初中时学习好的方法 浏览:454