Ⅰ 圆周率计算方法
3.
π=4∑(k=0,..∞)(-1)^k/(2k+1)
圆周率即圆的周长与其直径之间的比率。关于它的计算问题,历来是中外数学家极感兴趣、孜孜以求的问题。德国的一位数学家曾经说过:“历史上一个国家所算得的圆周率的准确程度,可以作为衡量这个国家当时数学发展的一个标志。”我国古代在圆周率的计算方面长期领先于世界水平,这应当归功于魏晋时期数学家刘徽所创立的新方法——“割圆术”。
所谓“割圆术”,是用圆内接正多边形的周长去无限逼近圆周并以此求取圆周率的方法。这个方法,是刘徽在批判总结了数学史上各种旧的计算方法之后,经过深思熟虑才创造出来的一种崭新的方法。
中国古代从先秦时期开始,一直是取“周三径一”(即
)的数值来进行有关圆的计算。但用这个数值进行计算的结果,往往误差很大。正如刘徽所说,用“周三径一”计算出来的圆周长,实际上不是圆的周长而是圆内接正六边形的周长(参见图1-5-1),其数值要比实际的圆周长小得多。东汉的张衡不满足于这个结果,他从研究圆与它的外切正方形的关系着手(参见图1-5-2)得到圆周率。这个数值比“周三径一”要好些,但刘徽认为其计算出来的圆周长必然要大于实际的圆周长,也不精确。刘徽以极限思想为指导,提出用“割圆术”来求圆周率,既大胆创新,又严密论证,从而为圆周率的计算指出了一条科学的道路。
在刘徽看来,既然用“周三径一”计算出来的圆周长实际上是圆内接正六边形的周长,与圆周长相差很多;那么我们可以在圆内接正六边形把圆周等分为六条弧的基础上,再继续等分,把每段弧再分割为二,做出一个圆内接正十二边形,这个正十二边形的周长不就要比正六边形的周长更接近圆周了吗?如果把圆周再继续分割,做成一个圆内接正二十四边形,那么这个正二十四边形的周长必然又比正十二边形的周长更接近圆周。(参见图1-5-3)。这就表明,越是把圆周分割得细,误差就越少,其内接正多边形的周长就越是接近圆周。如此不断地分割下去,一直到圆周无法再分割为止,也就是到了圆内接正多边形的边数无限多的时候,它的周长就与圆周“合体”而完全一致了。
按照这样的思路,刘徽把圆内接正多边形的面积一直算到了正3072边形,并由此而求得了圆周率 为3.14和
3.1416这两个近似数值。这个结果是当时世界上圆周率计算的最精确的数据。刘徽对自己创造的这个“割圆术”新方法非常自信,把它推广到有关圆形计算的各个方面,从而使汉代以来的数学发展大大向前推进了一步。
以后到了南北朝时期,祖冲之在刘徽的这一基础上继续努力,终于求得了圆周率为:精确到了小数点以后的第七位。在西方,这个成绩是由法国数学家韦达于1593年取得的,
比祖冲之要晚了一千一百多年。祖冲之还求得了圆周率的两个分数值,一个是“约率” ,另一个是“密率”.,其中
这个值,在西方是由德国的奥托和荷兰的安东尼兹在16世纪末才得到的,都比祖冲之晚了一千一百年。刘徽所创立的“割圆术”新方法对中国古代数学发展的重大贡献,历史是永远不会忘记的。
Ⅱ 计算圆周率简单方法
它定义为圆形之周长与直径之比
最简单的就是直接量圆的周长和直径然后相比。
以上是本人拙见,下面出自网络
古人计算圆周率,一般是用割圆法。即用圆的内接或外切正多边形来逼近圆的周长。阿基米德用正96边形得到圆周率小数点后3位的精度;刘徽用正3072边形得到5位精度;鲁道夫用正262边形得到了35位精度。这种基于几何的算法计算量大,速度慢,吃力不讨好。随着数学的发展,数学家们在进行数学研究时有意无意地发现了许多计算圆周率的公式。
把圆周率的数值算得这么精确,实际意义并不大。现代科技领域使用的圆周率值,有十几位已经足够了。如果用鲁道夫算出的35位精度的圆周率值,来计算一个能把太阳系包起来的一个圆的周长,误差还不到质子直径的百万分之一。以前的人计算圆周率,是要探究圆周率是否循环小数。自从1761年兰伯特证明了圆周率是无理数,1882年林德曼证明了圆周率是超越数后,圆周率的神秘面纱就被揭开了。现在的人计算圆周率,多数是为了验证计算机的计算能力,还有,就是为了兴趣。
Ⅲ 计算圆周率的三种方法
蒙特卡洛法、割圆迭代法、梅钦级数法。
蒙特卡罗法也称统计模拟法、统计试验法。是把概率现象作为研究对象的数值模拟方法。割圆迭代法就是采用圆的内接止多边形相员的外切止多边形,通过将多边形的切数成信增大到一定数值时二者(圆与正多边形)周长近似相等,从而得到有关π和n,从而计算。梅钦类公式的形式为:其中,和为正整数,且,为非零整数,且为正整数。梅钦类公式的应用可结合反正切函数的泰勒级数展开即可。
圆周率就是圆的周长与直径的比值的数学常数。
Ⅳ 圆周率正确计算方法
圆周率正确计算方法是用圆的周长与直径的比值
圆周率正确计算方法是用圆的周长与直径的比值
圆周率正确计算方法是用圆的周长与直径的比值
圆周率正确计算方法是用圆的周长与直径的比值
圆周率正确计算方法是用圆的周长与直径的比值
圆周率正确计算方法是用圆的周长与直径的比值
圆周率正确计算方法是用圆的周长与直径的比值
圆周率正确计算方法是用圆的周长与直径的比值
Ⅳ 圆周率的计算方法
计算方法
圆周率
古人计算圆周率,一般是用割圆法。即用圆的内接或外切正多边形来逼近圆的周长。阿基米德用正96边形得到圆周率小数点后3位的精度;刘徽用正3072边形得到5位精度;鲁道夫用正262边形得到了35位精度。这种基于几何的算法计算量大,速度慢,吃力不讨好。随着数学的发展,数学家们在进行数学研究时有意无意地发现了许多计算圆周率的公式。下面挑选一些经典的常用公式加以介绍。除了这些经典公式外,还有很多其它公式和由这些经典公式衍生出来的公式,就不一一列举了。 1、马青公式 π=16arctan1/5-4arctan1/239 这个公式由英国天文学教授约翰·马青于1706年发现。他利用这个公式计算到了100位的圆周率。马青公式每计算一项可以得到1.4位的十进制精度。因为它的计算过程中被乘数和被除数都不大于长整数,所以可以很容易地在计算机上编程实现。 还有很多类似于马青公式的反正切公式。在所有这些公式中,马青公式似乎是最快的了。虽然如此,如果要计算更多的位数,比如几千万位,马青公式就力不从心了。 2、拉马努金公式 1914年,印度天才数学家拉马努金在他的论文里发表了一系列共14条圆周率的计算公式。这个公式每计算一项可以得到8位的十进制精度。1985年Gosper用这个公式计算到了圆周率的17,500,000位。 1989年,大卫·丘德诺夫斯基和格雷高里·丘德诺夫斯基兄弟将拉马努金公式改良,这个公式被称为丘德诺夫斯基公式,每计算一项可以得到15位的十进制精度。1994年丘德诺夫斯基兄弟利用这个公式计算到了4,044,000,000位。丘德诺夫斯基公式的另一个更方便于计算机编程的形式是: 3、AGM(Arithmetic-Geometric Mean)算法 高斯-勒让德公式:
圆周率
这个公式每迭代一次将得到双倍的十进制精度,比如要计算100万位,迭代20次就够了。1999年9月,日本的高桥大介和金田康正用这个算法计算到了圆周率的206,158,430,000位,创出新的世界纪录。 4、波尔文四次迭代式: 这个公式由乔纳森·波尔文和彼得·波尔文于1985年发表的。 5、ley-borwein-plouffe算法 这个公式简称BBP公式,由David Bailey, Peter Borwein和Simon Plouffe于1995年共同发
丘德诺夫斯基公式
表。它打破了传统的圆周率的算法,可以计算圆周率的任意第n位,而不用计算前面的n-1位。这为圆周率的分布式计算提供了可行性。 6.丘德诺夫斯基公式 这是由丘德诺夫斯基兄弟发现的,十分适合计算机编程,是目前计算机使用较快的一个公式。以下是这个公式的一个简化版本: 7.莱布尼茨公式 π/4=1-1/3+1/5-1/7+1/9-1/11+……
圆周率的计算方法
古人计算圆周率,一般是用割圆法。即用圆的内接或外切正多边形来逼近圆的周长。Archimedes用正96边形得到圆周率小数点后3位的精度;刘徽用正3072边形得到5位精度;Ludolph Van Ceulen用正262边形得到了35位精度。这种基于几何的算法计算量大,速度慢,吃力不讨好。随着数学的发展,数学家们在进行数学研究时有意无意地发现了许多计算圆周率的公式。下面挑选一些经典的常用公式加以介绍。除了这些经典公式外,还有很多其他公式和由这些经典公式衍生出来的公式,就不一一列举了。
Machin公式
这个公式由英国天文学教授John Machin于1706年发现。他利用这个公式计算到了100位的圆周率。Machin公式每计算一项可以得到1.4位的十进制精度。因为它的计算过程中被乘数和被除数都不大于长整数,所以可以很容易地在计算机上编程实现。
Machin.c 源程序
还有很多类似于Machin公式的反正切公式。在所有这些公式中,Machin公式似乎是最快的了。虽然如此,如果要计算更多的位数,比如几千万位,Machin公式就力不从心了。下面介绍的算法,在PC机上计算大约一天时间,就可以得到圆周率的过亿位的精度。这些算法用程序实现起来比较复杂。因为计算过程中涉及两个大数的乘除运算,要用FFT(Fast Fourier Transform)算法。FFT可以将两个大数的乘除运算时间由O(n2)缩短为O(nlog(n))。
Ⅶ 圆周率的计算方法是什么
早在一千七百多年前,我国古代数学家刘徽曾用割圆术求出圆周率是3.14.继刘徽之后,我国古代数学家祖冲之在推求圆周率的研究方面,又有了重要发展.他计算的结果共得到两个数:一个是盈数(即过剩的近似值),为3.1415927;另一个是(nǜ)数(即不足的近似值),为 3.1415926.圆周率的真值正好在盈两数之间.祖冲之还采用了两个分数值:一个是22/7(约等于3.14),称之为“约率”;另一个是 355/113(约等于3.1415929),称之为“密率”.祖冲之求得的密率,比外国数学家求得这个值,至少要早一千年.
⑴ 2∕π=√2∕2*√(2+√2)∕2*√(2+√(2+√2))∕2……
⑵ π∕2=2*2*4*4*6*6*8*8……∕(1*3*3*3*4*5*5*7*7……)
⑶ π∕4=4arctg(1∕5)-arctg(1∕239) (注:tgx=…………)
⑷ π=426880√10005∕(∑((6n)!*(545140134n+13591409))
∕((n!)*(3n)!*(-640320)^(3n)))
(0≤n→∞)
现代数学家计算圆周率大多采用此类公式,普通人是望尘莫及的.
而中国圆周率公式的使用就简单多了,普通中学生使用常规计算工具就能轻松解决问题!
Ⅷ 圆周率的准确计算方法
准确计算方法可以用微积分的原理,设原半径为r的话,圆的面积就可以用积分式表达。面积为4(r^2-y^2)关于dy的积分,积分下限为0,上限为r。用面积除以r^2,就可以求得圆周率。