‘壹’ dft是线性变换吗
dft是一种线性变换。
线性变换(linear transformation)是线性空间V到其自身的线性映射。
而傅立叶变换(dft),表示能将满足一定条件的某个函数表示成三角函数(正弦和/或余弦函数)或者它们的积分的线性组合。在不同的研究领域,傅立叶变换具有多种不同的变体形式,如连续傅立叶变换和离散傅立叶变换。最初傅立叶分析是作为热过程的解析分析的工具被提出的。
傅立叶变换应用:
尽管最初傅里叶分析是作为热过程的解析分析的工具,但是其思想方法仍然具有典型的还原论和分析主义的特征。
"任意"的函数通过一定的分解,都能够表示为正弦函数的线性组合的形式,而正弦函数在物理上是被充分研究而相对简单的函数类,这一想法跟化学上的原子论想法何其相似!奇妙的是,现代数学发现傅里叶变换具有非常好的性质,使得它如此的好用和有用。
‘贰’ 简述密度泛函理论
密度泛函理论是一种研究多电子体系电子结构的量子力学方法。密度泛函理论在物理和化学上都有广泛的应用,特别是用来研究分子和凝聚态的性质,是凝聚态物理和计算化学领域最常用的方法之一。
Density functional theory (DFT)
电子结构理论的经典方法,特别是Hartree-Fock方法和后Hartree-Fock方法,是基于复杂的多电子波函数的。密度泛函理论的主要目标就是用电子密度取代波函数做为研究的
基本量。因为多电子波函数有 3N 个变量(N 为电子数,每个电子包含三个空间变量),而电子密度仅是三个变量的函数,无论在概念上还是实际上都更方便处理。
虽然密度泛函理论的概念起源于Thomas-Fermi模型,但直到Hohenberg-Kohn定理提出之后才有了坚实的理论依据。Hohenberg-Kohn第一定理指出体系的基态能量仅仅是电子密度的泛函。
Hohenberg-Kohn第二定理证明了以基态密度为变量,将体系能量最小化之后就得到了基态能量。
最初的HK理论只适用于没有磁场存在的基态,虽然现在已经被推广了。最初的Hohenberg-Kohn定理仅仅指出了一一对应关系的存在,但是没有提供任何这种精确的对应关系。正是在这些精确的对应关系中存在着近似(这个理论可以被推广到时间相关领域,从而用来计算激发态的性质[6])。
‘叁’ 如何理解数字信号处理中的离散傅立叶变换以及FFT
离散傅里叶变换:
傅里叶变换,是一种数学的精妙描述。但计算机实现,却是一步步把时域和频域离散化而来的。
离散化也就是要采样。我们知道,时域等间隔采样,频域发生周期延拓;频域采样,时域发生周期延拓。那么要得到时域频域都离散的结果,显然时域频域都要采样。周期延拓怎么办?只取一个周期就行了。
总结一下:
第一步,时域离散化,我们得到离散时间傅里叶变换(DTFT),频谱被周期化;
第二步,再将频域离散化,我们得到离散周期傅里叶级数(DFS),时域进一步被周期化。
第三步,考虑到周期离散化的时域和频域,我们只取一个周期研究,也就是众所周知的离散傅里叶变换(DFT)。
这里说一句,DFT是没有物理意义的,它只是我们研究的需要。借此,计算机的处理才成为可能。
FFT:
这就是DFT的一种快速算法。
复数的加法乘法计算量很大,FFT利用了DFT中WN的周期性和对称性,把一个N项序列按奇偶分组,分为两个N/2项的子序列,继续分解,迭代下去,大大缩减计算量。具体算法就看那张蝶形图吧。
FFT对傅氏变换的理论并没有新的发现,但是对于在计算机系统或者说数字系统中应用离散傅里叶变换,可以说是进了一大步。
‘肆’ 数字信号处理 DFT DTFT DFS之间什么区别啊谢谢。。。
1、定义不同: DTFT是离散时间傅里叶变换 ,它用于离散非周期序列分析;DFT只是对一周期内的有限个离散频率的表示;DFS是周期序列的离散傅里叶级数。
2、DFS是对离散周期信号进行级数展开,DFS是DFT的周期延拓;DFT是将DFS取主值,
3、DTFT是是对序列的FT,得到连续的周期谱,而DFT得到是有限长的非周期离散谱。
(4)dft研究方法扩展阅读:
1、DFT:离散傅里叶变换(Discrete Fourier Transform,缩写为DFT),是傅里叶变换在时域和频域上都呈离散的形式,将信号的时域采样变换为其DTFT的频域采样。在形式上,变换两端(时域和频域上)的序列是有限长的,而实际上这两组序列都应当被认为是离散周期信号的主值序列。
即使对有限长的离散信号作DFT,也应当将其看作其周期延拓的变换。
2、DTFT,离散时间傅里叶变换(DTFT,Discrete-timeFourierTransform),是傅里叶变换的一种。也可以叫做序列的傅里叶变换。
3、DFS也即离散傅里叶级数,又称离散时间傅里叶级数即DTFS,T代表时间。和连续周期信号相比,离散周期信号的离散傅里叶级数的频谱是周期性的,因为时域的连续对应于频率的非周期,时域的离散对应于频率的周期。
‘伍’ 离散傅里叶变换DFT和离散时间傅里叶变换DTFT的区别
一、两者的实质不同:
1、离散傅里叶变换DFT的实质:离散时间傅里叶变换。
2、离散时间傅里叶变换DTFT的实质:序列的傅里叶变换。
二、两者的结果不同:
1、离散傅里叶变换DFT的结果:傅里叶分析方法是信号分析的最基本方法,傅里叶变换是傅里叶分析的核心,通过它把信号从时间域变换到频率域,进而研究信号的频谱结构和变化规律。
2、离散时间傅里叶变换DTFT的结果:原信号如果是非周期函数,DTFT变换后是连续函数;原信号如果是周期函数,DTFT变换后是离散函数。
三、两者的周期不同:
1、离散傅里叶变换DFT的周期:
(1)从序列DFT与序列FT之间的关系考虑X(k)是对频谱X(ejω)在[0,2π]上的N点等间隔采样,当不限定k的取值范围在[0,N-1]时,那么k的取值就在[0,2π]以外,从而形成了对频谱X(ejω)的等间隔采样。由于X(ejω)是周期的,这种采样就必然形成一个周期序列。
(2)从DFT与DFS之间的关系考虑。X(k)= ∑n={0,N-1}x(n) WNexp^nk,当不限定N时,具有周期性。
(3)从WN来考虑,当不限定N时,具有周期性。
2、离散时间傅里叶变换DTFT的周期:
将以离散时间信号X(n)变换到连续的频域,值得注意的是这一频谱是周期的,且周期为2π。