导航:首页 > 研究方法 > 数据分析理解方法

数据分析理解方法

发布时间:2022-08-15 10:17:36

⑴ 一文了解数据分析的方法都有哪些

常用的数据分析方法有以下几种:

一、漏斗分析法

漏斗分析法能够科学反映用户行为状态,以及从起点到终点各阶段用户转化率情况,是一种重要的分析模型。漏斗分析模型已经广泛应用于网站和APP的用户行为分析中,例如流量监控、CRM系统、SEO优化、产品营销和销售等日常数据运营与数据分析工作中。

二、留存分析法

留存分析法是一种用来分析用户参与情况和活跃程度的分析模型,考察进行初始行为的用户中,有多少人会进行后续行为。从用户的角度来说,留存率越高就说明这个产品对用户的核心需求也把握的越好,转化成产品的活跃用户也会更多,最终能帮助公司更好的盈利。

三、分组分析法

分组分析法是根据数据分析对象的特征,按照一定的标志(指标),把数据分析对象划分为不同的部分和类型来进行研究,以揭示其内在的联系和规律性。

四、矩阵分析法

矩阵分析法是指根据事物(如产品、服务等)的两个重要属性(指标)作为分析的依据,进行分类关联分析,找出解决问题的一种分析方法,也称为矩阵关联分析法,简称矩阵分析法。

想要了解更多关于数据分析方法的问题,可以咨询一下CDA认证中心。CDA行业标准由国际范围数据领域的行业专家、学者及知名企业共同制定并每年修订更新,确保了标准的公立性、权威性、前沿性。通过CDA认证考试者可获得CDA中英文认证证书。

⑵ 数据分析的基本方法有哪些

数据分析的三个常用方法
1. 数据趋势分析
趋势分析一般而言,适用于产品核心指标的长期跟踪,比如,点击率,GMV,活跃用户数等。做出简单的数据趋势图,并不算是趋势分析,趋势分析更多的是需要明确数据的变化,以及对变化原因进行分析。
趋势分析,最好的产出是比值。在趋势分析的时候需要明确几个概念:环比,同比,定基比。环比是指,是本期统计数据与上期比较,例如2019年2月份与2019年1月份相比较,环比可以知道最近的变化趋势,但是会有些季节性差异。为了消除季节差异,于是有了同比的概念,例如2019年2月份和2018年2月份进行比较。定基比更好理解,就是和某个基点进行比较,比如2018年1月作为基点,定基比则为2019年2月和2018年1月进行比较。
比如:2019年2月份某APP月活跃用户数我2000万,相比1月份,环比增加2%,相比去年2月份,同比增长20%。趋势分析另一个核心目的则是对趋势做出解释,对于趋势线中明显的拐点,发生了什么事情要给出合理的解释,无论是外部原因还是内部原因。
2. 数据对比分析
数据的趋势变化独立的看,其实很多情况下并不能说明问题,比如如果一个企业盈利增长10%,我们并无法判断这个企业的好坏,如果这个企业所处行业的其他企业普遍为负增长,则5%很多,如果行业其他企业增长平均为50%,则这是一个很差的数据。
对比分析,就是给孤立的数据一个合理的参考系,否则孤立的数据毫无意义。在此我向大家推荐一个大数据技术交流圈: 658558542 突破技术瓶颈,提升思维能力 。
一般而言,对比的数据是数据的基本面,比如行业的情况,全站的情况等。有的时候,在产品迭代测试的时候,为了增加说服力,会人为的设置对比的基准。也就是A/B test。
比较试验最关键的是A/B两组只保持单一变量,其他条件保持一致。比如测试首页改版的效果,就需要保持A/B两组用户质量保持相同,上线时间保持相同,来源渠道相同等。只有这样才能得到比较有说服力的数据。
3. 数据细分分析
在得到一些初步结论的时候,需要进一步地细拆,因为在一些综合指标的使用过程中,会抹杀一些关键的数据细节,而指标本身的变化,也需要分析变化产生的原因。这里的细分一定要进行多维度的细拆。常见的拆分方法包括:
分时 :不同时间短数据是否有变化。
分渠道 :不同来源的流量或者产品是否有变化。
分用户 :新注册用户和老用户相比是否有差异,高等级用户和低等级用户相比是否有差异。
分地区 :不同地区的数据是否有变化。
组成拆分 :比如搜索由搜索词组成,可以拆分不同搜索词;店铺流量由不用店铺产生,可以分拆不同的店铺。
细分分析是一个非常重要的手段,多问一些为什么,才是得到结论的关键,而一步一步拆分,就是在不断问为什么的过程。

⑶ 数据分析的分析方法有哪些

数据分析的分析方法有:

1、列表法

将数据按一定规律用列表方式表达出来,是记录和处理最常用的方法。表格的设计要求对应关系清楚,简单明了,有利于发现相关量之间的相关关系;此外还要求在标题栏中注明各个量的名称、符号、数量级和单位等:根据需要还可以列出除原始数据以外的计算栏目和统计栏目等。

2、作图法

作图法可以最醒目地表达各个物理量间的变化关系。从图线上可以简便求出实验需要的某些结果,还可以把某些复杂的函数关系,通过一定的变换用图形表示出来。

图表和图形的生成方式主要有两种:手动制表和用程序自动生成,其中用程序制表是通过相应的软件,例如SPSS、Excel、MATLAB等。将调查的数据输入程序中,通过对这些软件进行操作,得出最后结果,结果可以用图表或者图形的方式表现出来。

图形和图表可以直接反映出调研结果,这样大大节省了设计师的时间,帮助设计者们更好地分析和预测市场所需要的产品,为进一步的设计做铺垫。同时这些分析形式也运用在产品销售统计中,这样可以直观地给出最近的产品销售情况,并可以及时地分析和预测未来的市场销售情况等。所以数据分析法在工业设计中运用非常广泛,而且是极为重要的。

(3)数据分析理解方法扩展阅读:

数据分析是指用适当的统计分析方法对收集来的大量数据进行分析,将它们加以汇总和理解并消化,以求最大化地开发数据的功能,发挥数据的作用。数据分析是为了提取有用信息和形成结论而对数据加以详细研究和概括总结的过程。

数据分析的数学基础在20世纪早期就已确立,但直到计算机的出现才使得实际操作成为可能,并使得数据分析得以推广。数据分析是数学与计算机科学相结合的产物。

如何进行有效的数据分析

首先,我们要明确数据分析的概念和含义,清楚地理解什么是数据分析;

什么是数据分析呢,浅层面讲就是通过数据,查找其中蕴含的能够反映现实状况的规律。

专业一点讲:数据分析就是适当的统计分析方法对收集来的大量数据进行分析,将他们加以汇总、理解和消化,以求最大化的开发数据的功能,发挥数据的作用。

那么,我们做数据 分析的目的是什么呢?

事实上,数据分析就是为了提取有用的信息和形成结论而对数据加以详细的研究和概括总结的过程。

数据分析可以分为:描述性数据分析、探索性数据分析、验证性数据分析

工作中我们运用数据分析的作用有哪些?

1、现状分析:就是企业运营状况的分析,主要是各项指标的监控以及日报、周报、月报等

2、原因分析:需求分析,多数是针对运营中出现的问题进行剖析,找出出现问题的因素以便于解决问题

3、预测分析:针对以后的运营情况做出分析报告,对公司以后的发展趋势做出有效的预测,对公司的发展目标和策略制定做出有力的支撑。

最重要的一点:

我们如何做数据分析呢,换一句话说就是如何进行数据分析,是怎样的流程?

然后,我们来看数据分析的六部曲

1、明确分析目的和思路:

这一定很重要,你想通过数据分析得到什么,你想通过数据分析告诉别人什么,这是你做数据分析的首要问题,分析不能是漫无目的的,一定要明确思路,有目的性、有计划性的去做数据分析。找好角度、指标、以及分析逻辑尤为重要。

2、数据收集,这里不做过多的说明,一般情况下,数据来源都会可靠有效。我们要做的只是把我们需求的数据get即可。

3、数据处理:

主要包括数据清洗、数据转化、数据提取、数据计算等方法,数据分析的前提是要保证数据质量,如果数据质量无法保证,分析出来的结果也没法得到有效的利用,甚至会对决策者造成误导的行为。

4、数据分析:

首先要明确数据处理和数据分析的区别:数据处理只是数据分析的基础,我们做数据处理就是为了保证数据形式合适,保证数据的一致性和有效性。

5、数据展现:

数据展现就是把数据分析的结果,用可视化的图标形式展现出来,用一种简单易懂的方式表达出你分析的观点

6、撰写报告:

数据分析报告其实就是对整个数据分析过程的一个总结与呈现,通过报告把数据分析的起因、过程、结果及建议完整的呈现出来,供决策者参考。

⑸ 数据分析方法论有哪些

1、PEST分析法

PEST,也就是政治(Politics)、经济(Economy)、社会(Society)、技术(Technology),能从各个方面把握宏观环境的现状及变化趋势,主要用户行业分析。


宏观环境又称一般环境,是指影响一切行业和企业的各种宏观力量。


对宏观环境因素作分析时,由于不同行业和企业有其自身特点和经营需要,分析的具体内容会有差异,但一般都应对政治、经济、技术、社会,这四大类影响企业的主要外部环境因素进行分析。


政治环境:政治体制、经济体制、财政政策、税收政策、产业政策、投资政策等。


社会环境:人口规模、性别比例、年龄结构、生活力式、购买习惯、城市特点等。


技术环境:折旧和报废速度、技术更新速度、技术传播速度、技术商品化速度等。


经济环境:GDP 及增长率、进出口总额及增长率、利率、汇率、通货膨胀率、消费价格指数、居民可支配收入、失业率、劳动生产率等。


2、5W2H分析法


5W2H,即为什么(Why)、什么事(What)、谁(Who)、什么时候(When)、什么地方(Where)、如何做(How)、什么价格(How much),主要用于用户行为分析、业务问题专题分析、营销活动等。


该分析方法又称为七何分析法,是一个非常简单、方便又实用的工具,以用户购买行为为例:


Why:用户为什么要买?产品的吸引点在哪里?


What:产品提供的功能是什么?


Who:用户群体是什么?这个群体的特点是什么?


When:购买频次是多少?


Where:产品在哪里最受欢迎?在哪里卖出去?


How:用户怎么购买?购买方式什么?


How much:用户购买的成本是多少?时间成本是多少?


3、SWOT分析法


SWOT分析法也叫态势分析法,S (strengths)是优势、W (weaknesses)是劣势,O (opportunities)是机会、T (threats)是威胁或风险。


SWOT分析法是用来确定企业自身的内部优势、劣势和外部的机会和威胁等,通过调查列举出来,并依照矩阵形式排列,然后用系统分析的思想,把各种因素相互匹配起来加以分析。


运用这种方法,可以对研究对象所处的情景进行全面、系统、准确的研究,从而将公司的战略与公司内部资源、外部环境有机地结合起来。


4、4P营销理论


4P即产品(Proct)、价格(Price)、渠道(Place)、推广(Promotion),在营销领域,这种以市场为导向的营销组合理论,被企业应用最普遍。


可以说企业的一切营销动作都是在围绕着4P理论进行,也就是将:产品、价格、渠道、推广。通过将四者的结合、协调发展,从而提高企业的市场份额,达到最终获利的目的。


产品:从市场营销的角度来看,产品是指能够提供给市场,被入们使用和消费并满足人们某种需要的任何东西,包括有形产品、服务、人员、组织、观念或它们的组合。


价格:是指顾客购买产品时的价格,包括基本价格、折扣价格、支付期限等。影响定价的主要因素有三个:需求、成本与竞争。


渠道:是指产品从生产企业流转到用户手上全过程中所经历的各个环节。


促销:是指企业通过销售行为的改变来刺激用户消费,以短期的行为(比如让利、买一送一,营销现场气氛等等)促成消费的增长,吸引其他品牌的用户或导致提前消费来促进销售的增长。广告、宣传推广、人员推销、销售促进是一个机构促销组合的四大要素。


5、逻辑树法


逻辑树又称问题树、演绎树或分解树等。它是把一个已知问题当成“主干”,然后开始考虑这个问题和哪些相关问题有关,也就是“分支”。逻辑树能保证解决问题的过程的完整性,它能将工作细分为便于操作的任务,确定各部分的优先顺序,明确地把责任落实到个人。


逻辑树的使用必须遵循以下三个原则:


要素化:把相同的问题总结归纳成要素。


框架化:将各个要素组织成框架。遵守不重不漏的原则。


关联化:框架内的各要素保持必要的相互关系,简单而不独立。


6、AARRR模型


AARRR模型是所有运营人员都要了解的一个数据模型,从整个用户生命周期入手,包括获取(Acquisition)、激活(Activition)、留存(Retention)、变现(Revenue)和传播(Refer)。


每个环节分别对应生命周期的5个重要过程,即从获取用户,到提升活跃度,提升留存率,并获取收入,直至最后形成病毒式传播。

⑹ 常用的数据分析方法有哪些

①对比分析法

通过指标的对比来反映事物数量上的变化,属于统计分析中常用的方法。利用对比分析法可以对数据规模大小、水平高低、速度快慢等做出有效的判断和评价。常见的对比有横向对比和纵向对比。


②分组分析法


分组分析法是指根据数据的性质、特征,按照一定的指标,将数据总体划分为不同的部分,分析其内部结构和相互关系,从而了解事物的发展规律。根据指标的性质,分组分析法分为属性指标分组和数量指标分组。所谓属性指标代表的是事物的性质、特征等,如姓名、性别、文化程度等,这些指标无法进行运算;而数据指标代表的数据能够进行运算,如人的年龄、工资收入等。分组分析法一般都和对比分析法结合使用。


③预测分析法


预测分析法主要基于当前的数据,对未来的数据变化趋势进行判断和预测。预测分析一般分为两种:一种是基于时间序列的预测,例如,依据以往的销售业绩,预测未来3个月的销售额;另一种是回归类预测,即根据指标之间相互影响的因果关系进行预测,例如,根据用户网页浏览行为,预测用户可能购买的商品。


④漏斗分析法


漏斗分析法也叫流程分析法,它的主要目的是专注于某个事件在重要环节上的转化率,在互联网行业的应用较普遍。比如,对于信用卡申请的流程,用户从浏览卡片信息,到填写信用卡资料、提交申请、银行审核与批卡,最后用户激活并使用信用卡,中间有很多重要的环节,每个环节的用户量都是越来越少的,从而形成一个漏斗。使用漏斗分析法,能使业务方关注各个环节的转化率,并加以监控和管理,当某个环节的转换率发生异常时,可以有针对性地优化流程,采取适当的措施来提升业务指标。


⑤AB测试分析法


AB 测试分析法其实是一种对比分析法,但它侧重于对比A、B两组结构相似的样本,并基于样本指标值来分析各自的差异。例如,对于某个App的同一功能,设计了不同的样式风格和页面布局,将两种风格的页面随机分配给使用者,最后根据用户在该页面的浏览转化率来评估不同样式的优劣,了解用户的喜好,从而进一步优化产品。

⑺ 数据分析方法有哪些

常用的数据分析方法有:聚类分析、因子分析、相关分析、对应分析、回归分析、方差分析。

1、聚类分析(Cluster Analysis)

聚类分析指将物理或抽象对象的集合分组成为由类似的对象组成的多个类的分析过程。聚类是将数据分类到不同的类或者簇这样的一个过程,所以同一个簇中的对象有很大的相似性,而不同簇间的对象有很大的相异性。

2、因子分析(Factor Analysis)

因子分析是指研究从变量群中提取共性因子的统计技术。因子分析就是从大量的数据中寻找内在的联系,减少决策的困难。因子分析的方法约有10多种,如重心法、影像分析法,最大似然解、最小平方法、阿尔发抽因法、拉奥典型抽因法等等。

3、相关分析(Correlation Analysis)

相关分析(correlation analysis),相关分析是研究现象之间是否存在某种依存关系,并对具体有依存关系的现象探讨其相关方向以及相关程度。

4、对应分析(Correspondence Analysis)

对应分析(Correspondence analysis)也称关联分析、R-Q型因子分析,通过分析由定性变量构成的交互汇总表来揭示变量间的联系。可以揭示同一变量的各个类别之间的差异,以及不同变量各个类别之间的对应关系。对应分析的基本思想是将一个联列表的行和列中各元素的比例结构以点的形式在较低维的空间中表示出来。

5、回归分析

研究一个随机变量Y对另一个(X)或一组(X1,X2,?,Xk)变量的相依关系的统计分析方法。回归分析(regression analysis)是确定两种或两种以上变数间相互依赖的定量关系的一种统计分析方法。

6、方差分析(ANOVA/Analysis of Variance)

又称“变异数分析”或“F检验”,是R.A.Fisher发明的,用于两个及两个以上样本均数差别的显着性检验。由于各种因素的影响,研究所得的数据呈现波动状。

想了解更多关于数据分析的信息,推荐到CDA数据认证中心看看,CDA(Certified Data Analyst),即“CDA 数据分析师”,是在数字经济大背景和人工智能时代趋势下,面向全行业的专业权威国际资格认证, 旨在提升全民数字技能,助力企业数字化转型,推动行业数字化发展。 “CDA 数据分析师”具体指在互联网、金融、零售、咨询、电信、医疗、旅游等行业专门从事数据的采集、清洗、处理、分析并能制作业务报告、 提供决策的新型数据分析人才。

⑻ 常用的数据分析方法是什么

1. 描述型分析


这是最常见的分析方法。在业务中,这种方法向数据分析师提供了重要指标和业务的衡量方法。


例如,每月的营收和损失账单。数据分析师可以通过这些账单,获取大量的客户数据。了解客户的地理信息,就是“描述型分析”方法之一。利用可视化工具,能够有效的增强描述型分析所提供的信息。


2. 诊断型分析


描述性数据分析的下一步就是诊断型数据分析。通过评估描述型数据,诊断分析工具能够让数据分析师深入地分析数据,钻取到数据的核心。


良好设计的BI dashboard能够整合:按照时间序列进行数据读入、特征过滤和钻取数据等功能,以便更好的分析数据。


3. 预测型分析


预测型分析主要用于进行预测。事件未来发生的可能性、预测一个可量化的值,或者是预估事情发生的时间点,这些都可以通过预测模型来完成。


预测模型通常会使用各种可变数据来实现预测。数据成员的多样化与预测结果密切相关。在充满不确定性的环境下,预测能够帮助做出更好的决定。预测模型也是很多领域正在使用的重要方法。


4. 指令型分析


数据价值和复杂度分析的下一步就是指令型分析。指令模型基于对“发生了什么”、“为什么会发生”和“可能发生什么”的分析,来帮助用户决定应该采取什么措施。通常情况下,指令型分析不是单独使用的方法,而是前面的所有方法都完成之后,最后需要完成的分析方法。

⑼ 数据分析的方法有哪些

数据分析的方法有:对比分析法,分组分析法,预测分析法,漏斗分析法,AB测试分析法,象限分析法,公式拆解法,可行域分析法,二八分析法,假设性分析法。

1.对比分析法:对比分析法指通过指标的对比来反映事物数量上的变化,属于统计分析中常用的方法。常见的对比有横向对比和纵向对比。

横向对比指的是不同事物在固定时间上的对比,例如,不同等级的用户在同一时间购买商品的价格对比,不同商品在同一时间的销量、利润率等的对比。

数据分析方法是‬数据统计学‬当中‬应用‬非常‬广泛‬的方法‬,具体‬方法‬有很多种‬,具体采用的时候因人而异。

阅读全文

与数据分析理解方法相关的资料

热点内容
如何做贺卡很简单的方法 浏览:866
羊绒衫缩绒剂使用方法视频教程 浏览:512
配电箱控制柜的安装方法 浏览:2
吸尘器抽真空使用方法 浏览:65
做人流方法什么好 浏览:974
说话与沟通的方法有哪些 浏览:624
招聘谈钱技巧和方法 浏览:8
怎么补色最快的方法 浏览:380
痛风解决方法有哪些 浏览:363
门牌调换最佳方法 浏览:21
什么方法快速消红 浏览:665
如何运用文学批评方法 浏览:497
小米手机5s输入法在哪里设置方法 浏览:442
通信网络优化的常用方法 浏览:774
数据分析包含哪些方法 浏览:614
88打六折怎么计算方法 浏览:338
藏香的使用方法 浏览:711
41的竖式计算方法 浏览:946
如何快速选择有效的治疗方法 浏览:920
centos安装软件的方法 浏览:289