通过指标的对比来反映事物数量上的变化,属于统计分析中常用的方法。利用对比分析法可以对数据规模大小、水平高低、速度快慢等做出有效的判断和评价。常见的对比有横向对比和纵向对比。
②分组分析法
分组分析法是指根据数据的性质、特征,按照一定的指标,将数据总体划分为不同的部分,分析其内部结构和相互关系,从而了解事物的发展规律。根据指标的性质,分组分析法分为属性指标分组和数量指标分组。所谓属性指标代表的是事物的性质、特征等,如姓名、性别、文化程度等,这些指标无法进行运算;而数据指标代表的数据能够进行运算,如人的年龄、工资收入等。分组分析法一般都和对比分析法结合使用。
③预测分析法
预测分析法主要基于当前的数据,对未来的数据变化趋势进行判断和预测。预测分析一般分为两种:一种是基于时间序列的预测,例如,依据以往的销售业绩,预测未来3个月的销售额;另一种是回归类预测,即根据指标之间相互影响的因果关系进行预测,例如,根据用户网页浏览行为,预测用户可能购买的商品。
④漏斗分析法
漏斗分析法也叫流程分析法,它的主要目的是专注于某个事件在重要环节上的转化率,在互联网行业的应用较普遍。比如,对于信用卡申请的流程,用户从浏览卡片信息,到填写信用卡资料、提交申请、银行审核与批卡,最后用户激活并使用信用卡,中间有很多重要的环节,每个环节的用户量都是越来越少的,从而形成一个漏斗。使用漏斗分析法,能使业务方关注各个环节的转化率,并加以监控和管理,当某个环节的转换率发生异常时,可以有针对性地优化流程,采取适当的措施来提升业务指标。
⑤AB测试分析法
AB 测试分析法其实是一种对比分析法,但它侧重于对比A、B两组结构相似的样本,并基于样本指标值来分析各自的差异。例如,对于某个App的同一功能,设计了不同的样式风格和页面布局,将两种风格的页面随机分配给使用者,最后根据用户在该页面的浏览转化率来评估不同样式的优劣,了解用户的喜好,从而进一步优化产品。
‘贰’ 数据分析架构及方法
数据分析架构及方法
一、以往的数据分析在今天的各类型企业中,数据分析岗位已经基本得到普及和认可,这个岗位的核心任务往往是支撑运营和营销,将企业内部的数据,客户的数据进行分析和总结,形成以往工作情况的量化表现,以及客户的行为趋势或特征等。
如果从更宏观的角度来认识数据分析岗位的话,每一个数据分析人员都明白,其实数据分析岗位要达到的目标就是希望通过数据来发现潜在的规律,进而帮助预测未来,这一点同数据挖掘的目标一致。那么为什么在大多数公司都已经具备的数据分析岗位基础上,今天却还是在反复提到数据挖掘这个概念,我们就需要来看看数据分析都有哪些是没有做到的内容。
1数据分散
多数数据分析岗位在公司中的岗位设置是隶属在单一业务部门中作为一个支撑岗,只有少数的公司是将数据分析作为一个独立的部门。其差异性在于,前者的数据分析所能分析的内容仅限于自身部门所输出的指标,比如投诉部门只看投诉处理过程中的数据,销售部门只看销售过程中的数据,一旦涉及到需要将各类指标汇总分析的情况,这种组织架构就会带来极大的负面影响,由于不同部门具备自己部门指标导出的权限,且与其他部门的配合并不影响绩效任务,所以这种跨部门采集数据的过程往往效率奇低。而数据分析最关键的就在于汇集更多的数据和更多的维度来发现规律,所以以往的数据分析多是做最基础的对比分析以及帕累托分析,少有使用算法来对数据进行挖掘的动作,因为越少的指标以及越少的维度将会使得算法发挥的效果越差。
2指标维度少
在以往的企业中,数字化管理更多的体现在日常运维工作中,对于客户端的数据采集虽然从很早以前就已经开展,CRM系统的诞生已经有很久的时间了,但是一直以来客户端的数据维度却十分缺失,其原因在于上述这些途径所获得的数据多为客户与企业产生交互之后到交互结束之间的数据,但是这段时间只是这个客户日常生活中很少的一部分内容,客户在微博,微信上的行为特点,关注的领域或是品牌,自身的性格特点等,可以说一个客户真正的特点,习惯,仅通过与企业的交互是无从知晓的,因此难以挖掘出有效的结论。
3少使用算法
在上述制约条件下,可想而知数据分析人员对于算法的使用必然是较少的,因为数据分析依赖于大量的指标、维度以及数据量,没有这三个条件是难以发挥算法的价值的,而在排除掉算法后,数据分析人员更多的只能是针对有限的数据做最为简单的分析方法,得出浅显易懂的分析结论,为企业带来的价值则可以想象。
4数据分析系统较弱目前的数据分析多采用excel,部分数据分析人员能够使用到R或SPSS等软件,但当数据量达到TB或PB单位级别时,这些软件在运算时将会消耗大量时间,同时原始的数据库系统在导出数据时所花费的时间也是相当长的,因此对大数据量的分析工作,常规的系统支撑难以到达要求。
二、技术革命与数据挖掘
得益于互联网对于人们生活的影响逐渐增大,我们发现数据正在疯狂的增长。今天一个人一天的时间中有将近一半是在互联网中度过的,一方面这些使用互联网的交互都是能够被捕捉记录的,一方面由于碎片化时间的使用,客户与企业交互的机会也变的越来越频繁,进一步保障了客户数据的丰富。同时在大数据技术的支撑下,今天的系统能够允许对这些大规模的数据量进行高效的分析。
因此数据分析人员也能够开始使用一些较为抽象的算法来对数据做更为丰富的分析。所以数据分析正式进入到了数据分析2.0的时代,也就是数据挖掘的时代了。
三、数据处理流程
数据分析也即是数据处理的过程,这个过程是由三个关键环节所组成:数据采集,数据分析方法选取,数据分析主题选择。这三个关键环节呈现金字塔形,其中数据采集是最底层,而数据分析主题选择是最上层。
四、数据采集
数据采集即是如何将数据记录下来的环节。在这个环节中需要着重说明的是两个原则,即全量而非抽样,以及多维而非单维。今天的技术革命和数据分析2.0主要就是体现在这个两个层面上。
1全量而非抽样由于系统分析速度以及数据导出速度的制约,在非大数据系统支撑的公司中,做数据分析的人员也是很少能够做到完全全量的对数据进行收集和分析。在未来这将不再成为问题。
2多维而非单维另一方面则在于数据的维度上,这在前边同样提及。总之针对客户行为实现5W1H的全面细化,将交互过程的什么时间、什么地点、什么人、因为什么原因、做了什么事情全面记录下来,并将每一个板块进行细化,时间可以从起始时间、结束时间、中断时间、周期间隔时间等细分;地点可以从地市、小区、气候等地理特征、渠道等细分;人可以从多渠道注册账号、家庭成员、薪资、个人成长阶段等细分;原因可以从爱好、人生大事、需求层级等细分;事情可以从主题、步骤、质量、效率等细分。通过这些细分维度,增加分析的多样性,从而挖掘规律。
五、数据分析方法选取数据分析方法是通过什么方法去组合数据从而展现规律的环节。从根本目的上来说,数据分析的任务在于抽象数据形成有业务意义的结论。因为单纯的数据是毫无意义的,直接看数据是没有办法发现其中的规律的,只有通过使用分析方法将数据抽象处理后,人们才能看出隐藏在数据背后的规律。
数据分析方法选取是整个数据处理过程的核心,一般从分析的方法复杂度上来讲,我将其分为三个层级,即常规分析方法,统计学分析方法跟自建模型。我之所以这样区分有两个层面上的考虑,分别是抽象程度以及定制程度。
其中抽象程度是说,有些数据不需要加工,直接转成图形的方式呈现出来,就能够表现出业务人员所需要的业务意义,但有些业务需求,直接把数据转化成图形是难以看出来的,需要建立数据模型,将多个指标或一个指标的多个维度进行重组,最终产生出新的数据来,那么形成的这个抽象的结果就是业务人员所需要的业务结论了。基于这个原则,可以划分出常规分析方法和非常规分析方法。
那么另一个层面是定制程度,到今天数学的发展已经有很长的时间了,其中一些经典的分析方法已经沉淀,他们可以通用在多用分析目的中,适用于多种业务结论中,这些分析方法就属于通用分析方法,但有些业务需求确实少见,它所需要的分析方法就不可能完全基于通用方法,因此就会形成独立的分析方法,也就是专门的数学建模,这种情况下所形成的数学模型都是专门为这个业务主题定制的,因此无法适用于多个主题,这类分析方法就属于高度定制的,因此基于这一原则,将非常规分析方法细分为统计学分析方法和自建模型类。
1常规分析方法常规分析方法不对数据做抽象的处理,主要是直接呈现原始数据,多用于针对固定的指标、且周期性的分析主题。直接通过原始数据来呈现业务意义,主要是通过趋势分析和占比分析来呈现,其分析方法对应同环比及帕累托分析这两类。同环比分析,其核心目的在于呈现本期与往期之间的差异,如销售量增长趋势;而帕累托分析则是呈现单一维度中的各个要素占比的排名,比如各个地市中本期的销售量增长趋势的排名,以及前百分之八十的增长量都由哪几个地市贡献这样的结论。常规分析方法已经成为最为基础的分析方法,在此也不详细介绍了。
2统计学分析方法统计学分析方法能够基于以往数据的规律来推导未来的趋势,其中可以分为多种规律总结的方式。根据原理多分为以下几大类,包括有目标结论的有指导学习算法,和没有目标结论的无指导学习算法,以及回归分析。
其中有指导的学习算法简单说就是有历史数据里边已经给出一个目标结论,然后分析当各个变量达到什么情况时,就会产生目标结论。比如我们想判断各项指标需要达到什么水平时我们才认定这个人患有心脏病的话,就可以把大量的心脏病人的各项指标数据和没有心脏病的正常人的各项指标数据都输入到系统中,目标结论就是是否有心脏病,变量就是各项指标数据,系统根据这些数据算出一个函数,这个函数能够恰当的描述各个指标的数据与最终这个是否是心脏病人之间的关系,也就是当各个指标达到什么临界值时,这个人就有心脏病的判断,这样以后再来病人,我们就可以根据各项指标的临界值。这个案例中的函数就是算法本身了,这其中的算法逻辑有很多种,包括常见的贝叶斯分类、决策树、随机森林树以及支持向量机等,有兴趣的朋友可以在网上看看各种算法的逻辑是怎么样的。
另外无指导的学习算法因为没有一个给定的目标结论,因此是将指标之中所有有类似属性的数据分别合并在一起,形成聚类的结果。比如最经典的啤酒与尿布分析,业务人员希望了解啤酒跟什么搭配在一起卖会更容易让大家接受,因此需要把所有的购买数据都放进来,然后计算后,得出其他各个商品与啤酒的关联程度或者是距离远近,也就是同时购买了啤酒的人群中,都有购买哪些其他的商品,然后会输出多种结果,比如尿布或者牛肉或者酸奶或者花生米等等,这每个商品都可以成为一个聚类结果,由于没有目标结论,因此这些聚类结果都可以参考,之后就是货品摆放人员尝试各种聚类结果来看效果提升程度。在这个案例中各个商品与啤酒的关联程度或者是距离远近就是算法本身了,这其中的逻辑也有很多中,包括Apriori等关联规则、聚类算法等。
另外还有一大类是回归分析,简单说就是几个自变量加减乘除后就能得出因变量来,这样就可以推算未来因变量会是多少了。比如我们想知道活动覆盖率、产品价格、客户薪资水平、客户活跃度等指标与购买量是否有关系,以及如果有关系,那么能不能给出一个等式来,把这几个指标的数据输入进去后,就能够得到购买量,这个时候就需要回归分析了,通过把这些指标以及购买量输入系统,运算后即可分别得出,这些指标对购买量有没有作用,以及如果有作用,那么各个指标应该如何计算才能得出购买量来。回归分析包括线性及非线性回归分析等算法。
统计学分析方法还有很多,不过在今天多用上述几大类分析方法,另外在各个分析方法中,又有很多的不同算法,这部分也是需要分析人员去多多掌握的。
3自建模型自建模型是在分析方法中最为高阶也是最具有挖掘价值的,在今天多用于金融领域,甚至业界专门为这个人群起了一个名字叫做宽客,这群人就是靠数学模型来分析金融市场。由于统计学分析方法所使用的算法也是具有局限性的,虽然统计学分析方法能够通用在各种场景中,但是它存在不精准的问题,在有指导和没有指导的学习算法中,得出的结论多为含有多体现在结论不精准上,而在金融这种锱铢必较的领域中,这种算法显然不能达到需求的精准度,因此数学家在这个领域中专门自建模型,来输入可以获得数据,得出投资建议来。在统计学分析方法中,回归分析最接近于数学模型的,但公式的复杂程度有限,而数学模型是完全自由的,能够将指标进行任意的组合,确保最终结论的有效性。
六、数据分析主题选取
在数据分析方法的基础上,进一步是将分析方法应用在业务需求中,基于业务主题的分析可以涉及太多的领域,从客户的参与活动的转化率,到客户的留存时长分析,再到内部的各环节衔接的及时率和准确度等等,每一种都有独特的指标和维度的要求,以及分析方法的要求,以我个人的经验来看,主要分析主题都是围绕着营销、运营、客户这三大角度来开展的。
1营销/运营分析营销运营分析多从过程及最终的成效上来进行分析,包括营销活动从发布到客户产生购买的过程的分析,运营从客户开始使用到停止使用为止的过程中的分析,前者更倾向于分析客户行为的变动趋势,以及不同类型的客户之间的行为差异,后者更倾向于分析在过程中服务的及时率和有效率,以及不同类型的客户之间对于服务需求的差异。
在针对这部分分析主题时,多采用常规分析方法,通过同环比以及帕累托来呈现简单的变动规律以及主要类型的客户,但通过统计学分析方法,营销分析可以根据有指导的学习算法,得出营销成功与营销失败之间的客户特征的差异,而运营分析则可以根据无指导的学习算法,得出哪些特征的客户对哪些服务是有突出的需求的,另外营销和运营分析都可以通过回归分析来判断,各项绩效指标中,哪些指标是对购买以及满意度有直接影响的。通过这些深入的挖掘,可以帮助指导营销及运营人员更好的完成任务。
2客户分析客户分析除了与营销和运营数据关联分析时候使用,另外单独对于客户特征的分析也是有很大价值的。这一部分分析更多需要通过统计学分析方法中的有指导和无指导的学习算法,一方面针对高价值客户,通过有指导的学习算法,能够看到哪些特征能够影响到客户的价值高低,从而为企业锁定目标客户提供指导;另一方面针对全体客户,通过无指导的学习算法,能够看到客户可以大概分为哪几种群落,针对每个群落的客户展开焦点讨论和情景观察,从而挖掘不同群落客户之间的需求差异,进而为各个群落的客户提供精准营销服务。 通过以上这些的操作,一个企业的数据分析或者说数据挖掘工作的完整流程就呈现了出来。可以看到,无论是数据采集,还是分析方法,亦或是分析主题,在大数据和互联网的支撑基础上,在未来都将有大幅度的增加,数据分析人员将成为下一个阶段的关键企业支撑人员,也即是在未来,在各个领域中,都将产生大量的宽客,或者增长黑客这样的数据分析人员,来带动企业的发展。
‘叁’ 一文了解数据分析的方法都有哪些
常用的数据分析方法有以下几种:
一、漏斗分析法
漏斗分析法能够科学反映用户行为状态,以及从起点到终点各阶段用户转化率情况,是一种重要的分析模型。漏斗分析模型已经广泛应用于网站和APP的用户行为分析中,例如流量监控、CRM系统、SEO优化、产品营销和销售等日常数据运营与数据分析工作中。
二、留存分析法
留存分析法是一种用来分析用户参与情况和活跃程度的分析模型,考察进行初始行为的用户中,有多少人会进行后续行为。从用户的角度来说,留存率越高就说明这个产品对用户的核心需求也把握的越好,转化成产品的活跃用户也会更多,最终能帮助公司更好的盈利。
三、分组分析法
分组分析法是根据数据分析对象的特征,按照一定的标志(指标),把数据分析对象划分为不同的部分和类型来进行研究,以揭示其内在的联系和规律性。
四、矩阵分析法
矩阵分析法是指根据事物(如产品、服务等)的两个重要属性(指标)作为分析的依据,进行分类关联分析,找出解决问题的一种分析方法,也称为矩阵关联分析法,简称矩阵分析法。
想要了解更多关于数据分析方法的问题,可以咨询一下CDA认证中心。CDA行业标准由国际范围数据领域的行业专家、学者及知名企业共同制定并每年修订更新,确保了标准的公立性、权威性、前沿性。通过CDA认证考试者可获得CDA中英文认证证书。
‘肆’ 数据分析的基本方法有哪些
数据分析的三个常用方法:
1. 数据趋势分析
趋势分析一般而言,适用于产品核心指标的长期跟踪,比如,点击率,GMV,活跃用户数等。做出简单的数据趋势图,并不算是趋势分析,趋势分析更多的是需要明确数据的变化,以及对变化原因进行分析。
趋势分析,最好的产出是比值。在趋势分析的时候需要明确几个概念:环比,同比,定基比。环比是指,是本期统计数据与上期比较,例如2019年2月份与2019年1月份相比较,环比可以知道最近的变化趋势,但是会有些季节性差异。为了消除季节差异,于是有了同比的概念,例如2019年2月份和2018年2月份进行比较。定基比更好理解,就是和某个基点进行比较,比如2018年1月作为基点,定基比则为2019年2月和2018年1月进行比较。
比如:2019年2月份某APP月活跃用户数我2000万,相比1月份,环比增加2%,相比去年2月份,同比增长20%。趋势分析另一个核心目的则是对趋势做出解释,对于趋势线中明显的拐点,发生了什么事情要给出合理的解释,无论是外部原因还是内部原因。
2. 数据对比分析
数据的趋势变化独立的看,其实很多情况下并不能说明问题,比如如果一个企业盈利增长10%,我们并无法判断这个企业的好坏,如果这个企业所处行业的其他企业普遍为负增长,则5%很多,如果行业其他企业增长平均为50%,则这是一个很差的数据。
对比分析,就是给孤立的数据一个合理的参考系,否则孤立的数据毫无意义。在此我向大家推荐一个大数据技术交流圈: 658558542 突破技术瓶颈,提升思维能力 。
一般而言,对比的数据是数据的基本面,比如行业的情况,全站的情况等。有的时候,在产品迭代测试的时候,为了增加说服力,会人为的设置对比的基准。也就是A/B test。
比较试验最关键的是A/B两组只保持单一变量,其他条件保持一致。比如测试首页改版的效果,就需要保持A/B两组用户质量保持相同,上线时间保持相同,来源渠道相同等。只有这样才能得到比较有说服力的数据。
3. 数据细分分析
在得到一些初步结论的时候,需要进一步地细拆,因为在一些综合指标的使用过程中,会抹杀一些关键的数据细节,而指标本身的变化,也需要分析变化产生的原因。这里的细分一定要进行多维度的细拆。常见的拆分方法包括:
分时 :不同时间短数据是否有变化。
分渠道 :不同来源的流量或者产品是否有变化。
分用户 :新注册用户和老用户相比是否有差异,高等级用户和低等级用户相比是否有差异。
分地区 :不同地区的数据是否有变化。
组成拆分 :比如搜索由搜索词组成,可以拆分不同搜索词;店铺流量由不用店铺产生,可以分拆不同的店铺。
细分分析是一个非常重要的手段,多问一些为什么,才是得到结论的关键,而一步一步拆分,就是在不断问为什么的过程。
‘伍’ 数据分析的分析方法都有哪些
很多数据分析是在分析数据的时候都会使用一些数据分析的方法,但是很多人不知道数据分析的分析方法有什么?对于数据分析师来说,懂得更多的数据分析方法是很有必要的,而且数据分析师工作工程中会根据变量的不同采用不同的数据分析方法,一般常用的数据分析方法包括聚类分析、因子分析、相关分析、对应分析、回归分析、方差分析等,我们要学会使用这些数据分析之前一定要懂得这些方法的定义是什么。
第一先说因子分析方法,所谓因子分析是指研究从变量群中提取共性因子的统计技术。因子分析就是从大量的数据中寻找内在的联系,减少决策的困难。因子分析的方法约有10多种,如影像分析法,重心法、最大似然法、最小平方法、α抽因法、拉奥典型抽因法等等。
第二说一下回归分析方法。回归分析方法就是指研究一个随机变量Y对另一个(X)或一组变量的相依关系的统计分析方法。回归分析是确定两种或两种以上变数间相互依赖的定量关系的一种统计分析方法。回归分析方法运用十分广泛,回归分析按照涉及的自变量的多少,可分为一元回归分析和多元回归分析;按照自变量和因变量之间的关系类型,可分为线性回归分析和非线性回归分析。
接着说相关分析方法,相关分析是研究现象之间是否存在某种依存关系,并对具体有依存关系的现象探讨其相关方向以及相关程度。相关关系是一种非确定性的关系。
然后说聚类分析方法。聚类分析指将物理或抽象对象的集合分组成为由类似的对象组成的多个类的分析过程。聚类是将数据分类到不同的类或者簇这样的一个过程,所以同一个簇中的对象有很大的相似性,而不同簇间的对象有很大的相异性。聚类分析是一种探索性的分析,在分类的过程中,不需要事先给出一个分类的标准,聚类分析能够从样本数据出发,自动进行分类。
接着说方差分析方法。方差数据方法就是用于两个及两个以上样本均数差别的显着性检验。由于各种因素的影响,研究所得的数据呈现波动状。方差分析是从观测变量的方差入手,研究诸多控制变量中哪些变量是对观测变量有显着影响的变量。
最后说一下对应分析方法。对应分析是通过分析由定性变量构成的交互汇总表来揭示变量间的联系。可以揭示同一变量的各个类别之间的差异,以及不同变量各个类别之间的对应关系。对应分析的基本思想是将一个联列表的行和列中各元素的比例结构以点的形式在较低维的空间中表示出来。
通过上述的内容,我们发现数据分析的方法是有很多的,除了文中提到的聚类分析、因子分析、相关分析、对应分析、回归分析、方差分析等分析方法以外,还有很多的数分析方法,而上面提到的数据分析方法都是比较经典的,大家一定要多多了解一下此类相关信息的发生,希望这篇文章能够给大家带来帮助。
‘陆’ 统计数据分析有哪些方法
1、对比分析法
就是将某一指标与选定的比较标准进行比较,比如:与历史同期比较、与上期比较、与其他竞争对手比较、与预算比较。一般用柱状图进行呈现。
2、结构分析法
就是对某一项目的子项目占比进行统计和分析,一般用饼图进行呈现。比如:A公司本年度营业额为1000万,其中饮料营业额占33.6%、啤酒占55%,其他产品的营业额占11.4%。
3、趋势分析法
就是对某一指标进行连续多个周期的数据进行统计和分析,一般用折线图进行呈现。比如:A公司前年度营业额为880万,去年900万,本年度1000万,预计明年为1080万。
4、比率分析法
就是用相对数来表示不同项目的数据比率,比如:在财务分析中有“盈利能力比率、营运能力比率、偿债能力比率、增长能力比率”。
5、因素分析法
就是对某一指标的相关影响因素进行统计与分析。比如,房价与物价、土地价格、地段、装修等因素有关
6、综合分析法
就是运用多种分析方法进行数据的统计与分析,比如:5W2H分析法、SWOT分析法、PEST分析法、漏斗分析法等。
‘柒’ 数据分析方法与模型都有哪些
现在的大数据的流行程度不用说大家都知道,大数据离不开数据分析,而数据分析的方法和数据分析模型多种多样,按照数据分析将这些数据分析方法与模型分为对比分析、分类分析、相关分析和综合分析四种方式,这四种方式的不同点前三类以定性的数据分析方法与模型为主,综合类数据分析方法与模型是注重定性与定量相结合。
一、分类分析数据分析法
在数据分析中,如果将数据进行分类就能够更好的分析。分类分析是将一些未知类别的部分放进我们已经分好类别中的其中某一类;或者将对一些数据进行分析,把这些数据归纳到接近这一程度的类别,并按接近这一程度对观测对象给出合理的分类。这样才能够更好的进行分析数据。
二、对比分析数据分析方法
很多数据分析也是经常使用对比分析数据分析方法。对比分析法通常是把两个相互有联系的数据进行比较,从数量上展示和说明研究对象在某一标准的数量进行比较,从中发现其他的差异,以及各种关系是否协调。
三、相关分析数据分析法相关分析数据分析法也是一种比较常见数据分析方法,相关分析是指研究变量之间相互关系的一类分析方法。按是否区别自变量和因变量为标准一般分为两类:一类是明确自变量和因变量的关系;另一类是不区分因果关系,只研究变量之间是否相关,相关方向和密切程度的分析方法。
而敏感性分析是指从定量分析的角度研究有关因素发生某种变化时对某一个或一组关键指标影响程度的一种不确定分析技术。
回归分析是确定两种或两种以上变数间相互依赖的定量关系的一种统计分析方法。
时间序列是将一个指标在不相同的时间点上的取值,按照时间的先后顺序排列而成的一列数。时间序列实验研究对象的历史行为的客观记录,因而它包含了研究对象的结构特征以及规律。
四、综合分析数据分析法
层次分析法,是一种实用的多目标或多方案的决策方法。由于他在处理复杂的决策问题上的实用性和有效性,而层次分析数据分析法在世界范围得到广泛的应用。它的应用已遍及经济计划和管理,能源政策和分配,行为科学、军事指挥、运输、农业、教育、医疗和环境等多领域。
而综合分析与层次分析是不同的,综合分析是指运用各种统计、财务等综合指标来反馈和研究社会经济现象总体的一般特征和数量关系的研究方法。
上述提到的数据分析方法与数据分析模型在企业经营、管理、投资决策最为常用,在企业决策中起着至关重要的作用。一般来说,对比分析、分类分析、相关分析和综合分析这四种方法都是数据分析师比较常用的,希望这篇文章能够帮助大家更好的理解大数据。
‘捌’ 统计数据分析的基本方法有哪些
1、对比分析法
就是将某一指标与选定的比较标准进行比较,比如:与历史同期比较、与上期比较、与其他竞争对手比较、与预算比较。一般用柱状图进行呈现。
2、结构分析法
就是对某一项目的子项目占比进行统计和分析,一般用饼图进行呈现。比如:A公司本年度营业额为1000万,其中饮料营业额占33.6%、啤酒占55%,其他产品的营业额占11.4%。
3、趋势分析法
就是对某一指标进行连续多个周期的数据进行统计和分析,一般用折线图进行呈现。比如:A公司前年度营业额为880万,去年900万,本年度1000万,预计明年为1080万。
4、比率分析法
就是用相对数来表示不同项目的数据比率,比如:在财务分析中有“盈利能力比率、营运能力比率、偿债能力比率、增长能力比率”。
5、因素分析法
就是对某一指标的相关影响因素进行统计与分析。比如,房价与物价、土地价格、地段、装修等因素有关
6、综合分析法
就是运用多种分析方法进行数据的统计与分析,比如:5W2H分析法、SWOT分析法、PEST分析法、漏斗分析法等。