导航:首页 > 研究方法 > 界面力学的研究方法

界面力学的研究方法

发布时间:2022-08-14 16:56:01

A. 纳米和纹是什么材料

用晶体材料作试件,利用高空间分辨电子显微技术(HREM)记录晶格的变化,把它作为试件光栅,与一标准参考栅叠合形成云纹条纹。经光学滤波后,可以得到高质量的云纹图。根据云纹图可以观察纳观力学现象,如位错、层错、原子键裂,也可以在纳观尺度下定量测试位移、应变、晶体滑移等力学参数。该方法对应的测试灵敏度目前可达到0.1nm,还具有很高的条纹空间分辨率,可以在很高的应变梯度下测试几个纳米范围内的变形规律,具有定量、直观、相对大视场、高灵敏等优点,为纳观力学研究提供了新的实验手段。在典型试验中,用Au单晶作试件得到了高质量的云纹图,观察到了Au 单晶中的位错、层错、键裂等现象,测试了非晶态夹杂周围的变形场,实验证明了它的可行性。基于纳米云纹法这一新技术,本文做了以下工作:①研究了Si单晶中裂尖在纳观尺度下的力学行为,在裂尖前方的滑移带上首次观察到了着名的Peierls型位错的存在,并得到了微裂纹裂尖的纳观应变场,证实在裂尖前方 10个纳米之外,应变分布与线弹性断裂力学预测相吻合。裂尖的微观破坏过程可概括为:发射少量位错后裂纹发生解理破坏,并以阶梯方式向前扩展。②深入到位错结构内部及其周围邻近地区,研究Si和Au单晶中单个位错周围的位移场,将它与Peierls-Nabarro模型进行了比较。实验结果发现,一些位错与Peierls-Nabarro模型吻合较好,而另一些位错引起的晶格变形远比Peieris-Nabarro模型预测的要广泛,但应变集中程度没有理论预测那么剧烈。在同一种材料中不同位错的宽度可能不同。③在纳观尺度下研究了GaAs/Si界面附近的位错分布规律和变形场,在界面附近观察到了一些零星位错,它们是由制造过程中的温度效应造成的,测量了垂直于界面方向的应变规律。同时也证实,纳米云纹法可以被用来测量纳米级界面附近的变形场,为界面力学的研究提供一种实验手段。最后,用云纹干涉法研究了叠层复合材料层缩区的破坏机理,发现了层缩区的三种破坏模式。

B. 地球化学动力学研究步骤和方法

图4.11 地球化学动力学研究的步骤和方法框图

地球化学动力学研究步骤如图4.11所示:首先根据研究的地质-地球化学问题,视问题的主次,忽略次要的、突出主要的,使问题合理简化,形成地球化学动力学的概念模型(conceptual modesl)。如在研究热液成矿系统的热流体对流迁移过程时可侧重热驱动流体的动力学过程,而忽略流体与围岩的化学反应;在研究矿物蚀变导致矿物自中心到边缘成分变化、矿物与流体同位素交换等过程时则主要考虑组分的扩散和离子交换反应;研究矽卡岩化过程除考虑流体的渗滤外,还要考虑流体中主要组分K、Na、Ca、Mg、Si、lA的扩散和流体与围岩的化学作用。对经历了多期次、多阶段、多物质来源的地球化学作用的地球化学系统要重点研究主要阶段和主要物质来源。对诸如区域地球化学演化这样复杂的动力学问题,应对所涉及的各个子系统和过程分别建立动力学模型,从各个侧面去把握复杂体系的动力学行为。

图4.12 典型的水-岩反应动力学实验装置示意图

建立地球化学动力学概念模型,主要有两条研究途径:一是应用化学动力学、流体动力学等原理及其相应的数学表述,建立地球化学动力学的数学模型,也称动力学模型(dynamic models),并在此基础上,应用有限元、有限差分等数值计算方法,通过计算机数值模拟,获得动力学系统的演化规律;另一途径是地球化学动力学实验。目前主要限于两类地球化学动力学实验:一类是高温高压水-岩反应动力学实验,典型的实验装置和原理见图4.12,侧重于开放体系中流体与矿物或岩石颗粒之间的化学反应机制和反应速率研究;另一类实验是在一个大的容器(称tank)内通过激光摄像和各种探头实时检测容器内流体的运动和成分变化,可以模拟宏观尺度的地球化学输运-反应动力学过程,但较难控制温、压条件,大多在常压下实验。

无论是数值模拟还是实验模拟,都需先确定模型所需的各种动力学参数如流体的密度、粘度系数、围岩的孔隙度和渗透率、颗粒比表面积等,还要根据实验研究对象确定边界条件和初始条件。

数值模拟和实验模拟各有其长,可以相互补充。计算机模拟的优势是可以模拟较复杂的地球化学体系,且可以方便地修改模型,或改变动力学参数和边界、初始条件,得到各种模拟结果,从而研究不同条件下地球化学体系的演化规律。但数值模拟的成果取决于所建立数学模型的合理性和计算机软件系统的正确性,受研究者主观判断和水平的影响。实验模拟能较为宏观地模拟地球化学过程,结果更为可信,但受实验设备和实验条件等限制,实验研究只限于比较简单的地球化学过程和简单的边界条件,且较费时费力,目前研究比较成熟的主要限于水-岩反应动力学实验。

C. 力学的所有内容。

力学主要理论1.物体运动三定律。
2.达朗贝尔原理
3.分析力学理论
4连续介质力学理论
5.弹性固体力学基本理论
6.粘性流体力学基本理论 (1)固体力学
经典的连续介质力学将可能会被突破。新的力学模型和体系,将会概括某些对宏观力学行为起敏感作用的细观和微观因素,以及这些因素的演化,从而使复合材料(包括陶瓷、聚合物和金属)的强化、韧化和功能化立足于科学的认识之上。
固体力学将融汇力-热-电-磁等效应。机械力与热、电、磁等效应的相互转化和控制,目前大都还限于测量和控制元件上,但这些效应的结合孕育着极有前途的新机会。近来出现的数百层叠合膜“摩天大厦”式的微电子元器件,已迫切要求对这类力-热-电耦合效应做深入的研究。以“Mechronics”为代表的微机械、微工艺、微控制等方面的发展,将会极大地推动对力-热-电-磁耦合效应的研究。
(2)流体力学
今后,空天飞机和新一代的超声速民航机的成功研制将首先取决于流体力学的进展。在有关的高温空气动力学中必须放弃原先的热力学平衡的假定。吸气式发动机中H2,O2在超声速流动状态下的混合、点火等,都是过去的理论和实践未能解决的难题。超声速流边界层的控制、减阻以及降噪控制等也带来一系列新问题。
(3)一般力学
一般力学近来已开始进入生物体运动问题的研究,研究了人和动物行走、奔跑及跳跃中的力学问题。这种在宏观范围内对生物体进行的研究,已经带来了一些新的结果。亿万年生物进化的结果,的确把优化的运动机能赋与了生存下来的物种。对其进一步研究,可以提供生物进化方向的理性认识,也可为人类进一步提高某些机构或机械的性能提供方向性的指导。以下几个方面的问题应当给予充分重视:(1)固体的非平衡/不可逆热力学理论;(2)塑性与强度的统计理论;(3)原子乃至电子层次上子系统(原子键,位错,空位等缺陷)的动力学理论。为深入进行这些研究,应当充分利用与开发计算机模拟(如分子动力学)和现代宏、细、微观实验与观测技术。 工科离不开力学,在工科基础课中,开设了不同的力学课程:理论力学,假设物体不发生变形,用传统数学物理方法研究一切质点,物体的运动,静力学和动力学原理,机械原理的理论基础。材料力学,传统方法研究物体在各种载荷下,包括静力,静扭矩,静弯矩,振动,碰撞等,机械零部件和装配设计,机械加工的理论基础。流体力学,研究一切流体在容器、管道中运动规律和力学特性,液压、气动、热分析的理论基础。分析力学,使用计算数学方法分析力学有限元素法,把受力对象拆解成有限个元素,对每个元素进行受力分析,通过联立偏微分方程组,用泛函求解,计算出每个元素,每个节点的应力应变。联立方程组可化为刚度矩阵和自由度组成的矩阵方程。
(4)生物力学
当今生物力学发展正经历着深刻的变化。生命科学与包括力学在内的基础和工程科学交叉、融合目前已愈来愈成为当今生命科学的研究热点,同时也是力学学科的新生长点。基础研究逐步精细化及定量化,大量数据的积累要求模型化及数学化,为生物力学研究开辟了新的用武之地。现代分子和细胞生物学既提出大量新课题,又带来了许多新工具,推动着生物力学由宏观向微(细)观深入、并强调宏-微(细)观相结合。实际应用的不断涌现,催生着以解决与应用相关的工程技术问题为目标的新的生物工程学。这一新的生物工程学远远超出了基于微生物的、以发酵工程为标志的生物技术及以医疗仪器研发为目标的生物医学仪器这两个传统的领域。不断寻求新的力学和物理原理与方法,与生命科学及其它基础和工程科学进一步融合,已成为当今生物力学发展的主要特色。当今生物力学正经历从“X × Bio = Bio-X”(交叉)到“Bio × X = X-Bio”(融合)的转变。在基础研究层面上,它将与生物物理学、生物数学、生物信息学、生物化学等紧密结合,重点研究生物学的定量化和精确化问题;在应用研究层面上,组织工程、药物设计与输运、血流动力学、骨-肌肉-关节力学等正在或已经得到临床或工业界的认同,其核心是解决关键技术问题。
当前生物力学的发展特点可大致归纳为:内涵扩大(生物医学工程;生物工程),有机融合(生命科学与基础和工程科学),微观深入(细胞-亚细胞-分子层次;定量生物学),以及宏观-微观相结合(组织工程、器官力学;信息整合与系统生物学)。宏观生物力学研究仍为主流,但宏观-微观相结合、微观生物力学研究发展十分迅速。当前生物力学发展的前沿领域主要包括:1)细胞-分子力学;2)器官-组织力学;3)骨骼-肌肉-关节力学;4)生物力学新概念、新技术与新方法等。
(5)环境力学
环境力学是力学与环境科学相互结合而形成一门新兴交叉学科,主要研究自然环境中的变形、破坏、流动、迁移及其伴随的物理、化学、生物过程和导致的物质、动量、能量输运,定量化描述环境的演化规律和对人类生存环境的影响。环境力学的发展十分有利于深化人们对环境问题中的物理过程和基本规律的认识,促进环境问题的定量化研究。
21世纪的环境力学研究,既要注重学科发展的自身规律和要求,又要紧密结合国家需求和工程实际,将机理研究、规律分析与防治措施有机地结合起来。结合我国的经济和社会发展需求,我国的环境力学研究必须抓住一个基础(复杂介质流动和多过程耦合)、两个经济发展地区(西部和沿海)、三个方面(水环境、大气环境、灾害与安全),确立重点发展领域,促进学科的发展。
一方面,强调环境力学中的共性科学问题,包括:(1)环境流动与输运的基本方程和求解方法;(2)气、液、固界面的耦合;(3)多相、多组分、多过程,以及多尺度的耦合分析等;(4)“环境力学”中模型实验的尺度效应问题等。
另一方面,瞄准西部开发和沿海经济开发,以及重大工程和影响的实际环境问题,包括:(1) 西部干旱、半干旱环境治理的动力学过程 —土壤侵蚀机理、沙尘暴形成和输送机理、以及荒漠化治理;(2)以水或气为载体的物质输运过程—污染物排放过程的精确预报、河口海岸泥沙、污染物输运及其对生态环境的影响规律;(3)重大环境灾害发生机理及预报— 热带气旋、风暴潮/洪水预测、滑坡/泥石流产生机理、全球变暖等
【经典力学】
【释义】
1、研究物体机械运动规律及其应用的学科。
2、<书> 努力学习:力学不倦
【简介】
力学是研究物质机械运动规律的科学。自然界物质有多种层次,从宇观的宇宙体系,宏观的天体和常规物体,细观的颗粒、纤维、晶体,到微观的分子、原子、基本粒子。通常理解的力学以研究天然的或人工的宏观对象为主。但由于学科的互相渗透,有时也涉及宇观或细观甚至微观各层次中的对象以及有关的规律。
力学又称经典力学,是研究通常尺寸的物体在受力下的形变,以及速度远低于光速的运动过程的一门自然科学。力学是物理学、天文学和许多工程学的基础,机械、建筑、航天器和船舰等的合理设计都必须以经典力学为基本依据。
机械运动是物质运动的最基本的形式。机械运动亦即力学运动,是物质在时间、空间中的位置变化,包括移动、转动、流动、变形、振动、波动、扩散等。而平衡或静止,则是其中的特殊情况。物质运动的其他形式还有热运动、电磁运动、原子及其内部的运动和化学运动等。
力是物质间的一种相互作用,机械运动状态的变化是由这种相互作用引起的。静止和运动状态不变,则意味着各作用力在某种意义上的平衡。因此,力学可以说是力和(机械)运动的科学。

D. 复合材料界面的《复合材料界面》


ISBN:712208573
版 次:1
包 装:精装
开 本:小16开
页 数:208页
字 数:269千字 第1章 界面和界面的形成1
1.1 界面和界相1
1.2 界面的形成机理1
1.2.1 物理结合2
1.2.2 化学结合5
1.3 界面的作用6
参考文献8
第2章 复合材料界面的微观结构9
2.1 概述9
2.2 界面断裂面的形貌结构9
2.2.1 形貌结构的表征方法10
2.2.2 界面断裂面的形貌结构13
2.3 界面的微观结构15
2.3.1 表征方法15
2.3.2 陶瓷基复合材料21
2.3.3 金属基复合材料26
2.3.4 聚合物基复合材料28
2.4 界面的成分分析29
2.4.1 特征X射线分析29
2.4.2 背散射电子分析31
2.4.3 俄歇电子分析32
2.5 界面微观结构的AFM表征33
2.5.1 基本原理34
2.5.2 实验技术和图像解释34
2.5.3 碳纤维增强复合材料的界面37
2.5.4 聚合物纤维增强复合材料的界面38
2.6 界面微观结构的拉曼光谱表征40
2.6.1 界面碳晶粒的大小和有序度41
2.6.2 界面组成物的形成43
2.6.3 界面层组成物的分布43
参考文献45
第3章 复合材料界面微观力学的传统实验方法48
3.1 概述48
3.2 单纤维拉出(pull?out)试验49
3.2.1 试验装置和试样制备49
3.2.2 数据分析和处理50
3.3 微滴包埋拉出(microdroplet,microbonding)试验51
3.3.1 试验装置和试样制备52
3.3.2 数据分析和处理53
3.3.3 适用范围55
3.4 单纤维断裂(fragmentation)试验56
3.4.1 试样制备和实验装置57
3.4.2 数据分析和处理58
3.4.3 适用范围59
3.5 纤维压出(push?out,push?in,microdebonding)试验60
3.5.1 数据处理60
3.5.2 适用范围63
3.6 弯曲试验、剪切试验和Broutman试验63
3.6.1 横向弯曲试验63
3.6.2 层间剪切强度试验64
3.6.3 Broutman试验64
3.7 传统实验方法的缺陷64
参考文献65
第4章 界面研究的拉曼和荧光光谱术68
4.1 概述68
4.2 拉曼光谱和荧光光谱68
4.2.1 拉曼效应和拉曼光谱68
4.2.2 拉曼峰特性与材料微观结构的关系70
4.2.3 荧光的发射和荧光光谱73
4.3 纤维应变对拉曼峰频移的影响74
4.3.1 压力和温度对拉曼峰参数的影响74
4.3.2 拉曼峰频移与纤维应变的关系74
4.4 荧光峰波数与应力的关系75
4.4.1 荧光光谱的压谱效应75
4.4.2 单晶氧化铝的压谱系数及其测定76
4.4.3 多晶氧化铝纤维荧光峰波数与应变的关系78
4.4.4 玻璃纤维荧光峰波长与应变/应力的关系80
4.5 显微拉曼光谱术82
4.5.1 拉曼光谱仪82
4.5.2 显微系统84
4.5.3 试样准备和安置85
4.6 拉曼力学传感器86
4.6.1 碳纳米管86
4.6.2 二乙炔?聚氨酯共聚物87
4.7 弯曲试验88
4.7.1 四支点弯曲88
4.7.2 三支点弯曲88
4.7.3 悬臂梁弯曲89
参考文献89
第5章 碳纤维增强复合材料91
5.1 碳纤维表面的微观结构91
5.2 碳纤维形变微观力学94
5.3 碳纤维/聚合物复合材料的界面97
5.3.1 热固性聚合物基复合材料97
5.3.2 热塑性聚合物基复合材料103
5.4 碳/碳复合材料的界面105
5.5 碳纤维复合材料的应力集中108
5.5.1 应力集中和应力集中因子108
5.5.2 碳纤维/环氧树脂复合材料的应力集中110
参考文献113
第6章 碳纳米管增强复合材料115
6.1 概述115
6.2 碳纳米管的形变行为117
6.3 碳纳米管/聚合物复合材料的界面结合和应力传递122
6.3.1 界面应力传递122
6.3.2 界面结合物理125
6.3.3 界面结合化学128
6.4 碳纳米管/聚合物复合材料的界面能130
参考文献131
第7章 玻璃纤维增强复合材料134
7.1 概述134
7.2 玻璃纤维增强复合材料的界面应力135
7.2.1 间接测量法135
7.2.2 直接测量法139
7.3 界面附近基体的应力场140
7.4 纤维断裂引起的应力集中142
7.5 光学纤维内芯/外壳界面的应力场144
参考文献146
第8章 陶瓷纤维增强复合材料147
8.1 概述147
8.2 陶瓷纤维的表面处理147
8.2.1 涂层材料和涂覆技术147
8.2.2 碳化硅纤维的表面涂层148
8.2.3 氧化铝纤维的表面涂层150
8.3 陶瓷纤维的形变微观力学151
8.3.1 碳化硅纤维和单丝151
8.3.2 应变氧化铝纤维的拉曼光谱行为155
8.3.3 应变氧化铝纤维的荧光光谱行为157
8.4 碳化硅纤维增强复合材料的界面行为158
8.4.1 碳化硅纤维/玻璃复合材料158
8.4.2 压缩负载下SiC/SiC复合材料的界面行为162
8.4.3 纤维搭桥164
8.5 氧化铝纤维增强复合材料的界面行为167
8.5.1 氧化铝纤维/玻璃复合材料167
8.5.2 氧化铝纤维/金属复合材料174
8.5.3 纤维的径向应力175
8.5.4 纤维间的相互作用179
8.6 热残余应力181
8.6.1 理论预测181
8.6.2 实验测定182
参考文献184
第9章 高性能聚合物纤维增强复合材料187
9.1 高性能聚合物纤维的形变187
9.1.1 芳香族纤维和PBO纤维的分子形变187
9.1.2 超高分子量聚乙烯纤维的分子形变191
9.1.3 分子形变和晶体形变193
9.2 界面剪切应力194
9.2.1 概述194
9.2.2 芳香族纤维/环氧树脂复合材料195
9.2.3 PBO纤维/环氧树脂复合材料196
9.2.4 PE纤维/环氧树脂复合材料200
9.3 纤维表面改性对界面行为的作用202
9.3.1 PPTA纤维表面的化学改性203
9.3.2 PE纤维的等离子体处理204
9.4 裂缝与纤维相互作用引起的界面行为205
参考文献207 复合材料学是一门相对年轻的学科,涉及化学、物理学、力学、材料科学和工艺学等多学科领域。分散于各学科领域的复合材料工作者有一个共同关注的焦点——复合材料的界面。两种脆性材料通过弱界面结合可以组合成一种韧性材料,而两种材料的强结合则可能产生强度成倍增大的新材料,这是界面所起的作用。可以认为,对于给定的增强体和基体材料,界面是决定复合材料性能的决定性因素。长期以来,人们都努力于通过设计和制作结构和性能合适的界面以获得符合预定性能的复合材料。显然,充分了解界面行为是达到这一目标的前提。
有关复合材料的出版物十分丰富,然而却很少有专门讨论界面问题的书籍。关于界面问题的研究成果和最新进展又广泛分散于各个学科领域的众多出版物中,相关研究人员深感不便。本书试图将界面行为的最新理论、测试技术和数据处理方法集合在一起,填补这个欠缺。
全书包含9章,主要涉及纤维增强复合材料的界面微观结构和力作用下的界面行为,同时尽力将界面微观行为与材料宏观性能相联系(尽管迄今为止这种关系并不很清晰,仍然是研究人员努力探索的目标)。第1章简要阐述界面的定义,黏结机理和界面的作用。界面的微观结构及其表征方法安排在第2章;电子显微术是传统的基本方法,近10余年来发展迅速的原子力显微术和显微拉曼光谱术提供了界面结构更丰富的信息。第3章涉及界面微观力学研究的传统实验技术和数据处理方法以及主要几种界面微观力学理论,同时指出传统实验和分析方法的缺陷。将拉曼和荧光探针与传统的界面微观力学试验相结合,形成了一种全新的、功能更丰富和更完善的实验技术和数据分析方法,使界面微观力学研究获得重大进展。这是一个成功的、多学科合作的例子。第4章阐述该方法的基本原理和实验技术以及对界面力学研究的主要贡献。第5章~第9章分述几种高性能纤维增强先进复合材料的界面力学行为。许多高技术产业不可缺少的碳纤维复合材料安排在第5章。近年来纳米尺度增强体(纳米管或纳米纤维)的应用使复合材料界面研究面临一个新的领域;例如,碳纳米管的结构和表面性质与传统纤维有很大差异,加上它的小尺寸效应,使其与基体形成的界面与传统纤维增强复合材料的界面显着不同,似乎提示应建立新的界面理论。同时,也要求使用新的与传统方法不同的探索界面行为的方法,第6章阐述这一领域的最近进展。第7章涉及玻璃纤维增强复合材料,玻璃纤维仍然是目前使用量最大的增强纤维。陶瓷纤维增强复合材料是高温和其他恶劣或特殊环境下不可缺少的先进材料,在国防和其他高科技领域中具有重要地位。对这类复合材料,界面的作用主要以材料增韧为目标,因而与其他复合材料有显着不同的界面行为,这部分内容要安排在第8章。 复合材料的界面能否有效地传递负载,有赖于增强体与基体之间界面化学结合和物理结合的程度,强结合有利于应力的有效传递。界面结合的强弱显然与界相区域物质的微观结构密切相关。对于以增韧为目标的复合材料系统,则要求较弱的界面结合强度,期望在某一负载后发生界面破坏,引起界面脱结合(debonding),此后由增强体与基体之间的摩擦力承受负载。摩擦力的大小与脱结合后增强体和基体表面的粗糙度密切相关,而表面粗糙度则在一定程度上取决于界相区的形态学结构。
复合材料的结构缺陷,例如小孔、杂质和微裂缝,常常倾向于集中在界相区,这会引起增强复合材料性能的恶化。在材料使用过程中,由于湿气和其他腐蚀性气体的侵蚀,常常使界相区首先受到不可逆转的破坏,从而成为器件损毁的引发点。
基于上述原因,不论在制造还是在使用过程中,复合材料的界面结构情景都吸引了人们特别的关注,成为探索复合材料界面行为的焦点之一。
本章所述界面结构主要是指界相区的结构,也包含邻近界相区的基体和增强体的结构。许多复合材料的界相区与基体或增强体并无确切的边界。即便是同一种复合材料,界面结构也非均匀一致,有的是明锐的边界,有的是模糊的边界。界相区有时是一个结构逐渐过渡的区域。对界面结构的完整认识,应该包含对其邻近区域结构的检测。

E. 什么是界面力学,以及界面力学的发展现状

混凝土细观力学研究进展及评述

(1.北京工业大学分部,北京 100044;2.中国水利水电科学研究院 工程抗震研究中心,北京 100044)

摘要:本文介绍了混凝土细观力学的研究方法,总结了到目前为止在细观层次上对混凝土实验研究和数值模拟的研究成果,详细分析讨论了格构模型、随机骨料模型和随机力学特性模型3种细观力学数值模型的优缺点。目前混凝土细观力学的研究主要集中对细观数值模型的研究,已建立起来的细观数值模型仍待完善,同时尚缺乏系统的各相材料力学特性参数试验测定成果。用细观力学数值模拟取代部分试验任务还要做很多工作。
关键词:混凝土;细观力学;数值模拟;试验研究
中图分类号:TV313 文献标识码:A

1 引言

混凝土是由水、水泥和粗细骨料组成的复合材料。一般从特征尺寸和研究方法的侧重点不同将混凝土内部结构分为三个层次(如图1):(1)微观层次(Micro-level)。材料 的结构单元尺度在原子、分子量级,即从小于10-7cm~10-4cm着眼于水泥水化 物的微观结构分析。由晶体结构及分子结构组成,可用电子显微镜观察分析,是材料科学的研究对象;(2)细观层次(Meso-level)。从分子尺度到宏观尺度,其结构单元尺度变化范围在10-4厘米至几厘米,或更大些,着眼于粗细骨料、水泥水化物、孔隙、界面等细观结构,组成多相复合材料,可按各类计算模型进行数值分析。在这个层次上,混凝土被认为是一种由粗骨料、硬化水泥砂浆和它们之间的过渡区(粘结带)组成的三相材料。砂浆中的孔隙很小而量多,且随机分布,水泥砂浆力学性能可以看作细观均质损伤体。相同配合比、相同条件的砂浆试件,通常其力学性能也比较稳定,可以由试验直接测定。由泌水、干缩和温度变化引起粗骨料和水泥砂浆之间产生初始粘结裂缝,而这些细观内部裂隙的发展将直接影响混凝土的宏观力学性能;(3)宏观层次(Macro-level)。特征尺寸大于几厘米,混凝土作为非均质材料存在着一种特征体积,一般认为是相当于3~4倍的最大骨料体积。当小于特征体积时,材料的非均质性质将会十分明显;当大于特征体积时,材料假定为均质。有限元计算结果反映了一定体积内的平均效应,这个特征体积的平均应力和平均应变的关系成为宏观的应力应变关系。

图1 混凝土的层次结构示意

长期以来,人们对混凝土材料和构件宏观力学性能的劣化直至破坏全过程的机理、本构关系、力学模型和计算方法都非常重视,并且用各种理论和方法进行了研究。为了研究其材料组织结构和裂缝的开展以及在单轴、双轴、三轴应力的作用与强度之间的关系,人们作了大量试验。强度理论也从最简单的最大拉应力理论、最大拉应变理论,发展到单剪应力系列、八面体剪应力系列、双剪应力系列,直至现在的统一强度理论[1]。关于混凝土本构关系的研究也有大量文献,概括起来混凝土本构关系模型[2,3]主要有以下三种:(1) 弹性本构模型,包括线弹性和非线性弹性本构模型;(2)以经典塑性理论为基础的本构模型;(3)基于不可逆热力学的本构模型,包括内蕴时间模型和损伤力学模型。

对混凝土细观结构的研究表明,即使在加载以前,混凝土内部已有微裂缝存在。这种微裂缝一般首先在较大骨料颗粒与砂浆接触面(粘结带)上形成,即所谓的初始粘结裂缝。这是由于水泥砂浆在混凝土硬化过程中干缩引起的。砂浆和粗骨料接触面处是混凝土内部的薄弱环节,正是这种接触面导致混凝土具有较低的抗拉强度。粘结裂缝的数量取决于许多因素,包括骨料尺寸及其级配、水泥用量、水灰比、固化强度、养护条件、环境湿度和混凝土的发热量等。由于骨料和砂浆的刚度不同,在加载过程中,这种裂缝还将进一步发展,以致使混凝土在宏观上的应力应变曲线呈现出非线性。不均匀性是混凝土材料的最本质的特点,微裂缝是决定其性能的主导因素。

材料和物理学家从微观的角度研究微缺陷产生和扩展的机理,但是所得结果不易与宏观力学量相关联。而着眼于宏观裂纹分析的混凝土裂断力学理论和方法,主要研究裂纹尖端附近的应力场、应变场和能量释放率等,以建立宏观裂纹起裂、裂纹的稳定扩展和失稳扩展的判据。但是断裂力学无法分析宏观裂纹出现以前材料中微缺陷或微裂纹的形成及其发展对材料力学性能的影响。

为了建立混凝土细微观结构各种缺陷及其特性的不均匀性与其在宏观力学特性的关系,自20世纪70年代末[4],人们发展了混凝土细观力学研究方法。

2 混凝土细观力学的研究方法

细观力学将混凝土看作由粗骨料、硬化水泥胶体以及两者之间的界面粘结带组成的三相非均质复合材料。选择适当的混凝土细观结构模型,在细观层次上划分单元,考虑骨料单元、固化水泥砂浆单元及界面单元材料力学特性的不同,以及简单的破坏准则或损伤模型反映单元刚度的退化,利用数值方法计算模拟混凝土试件的裂缝扩展过程及破坏形态,直观地反映出试件的损伤断裂破坏机理。由于细观上破坏或损伤单元刚度的退化,使得混凝土试件所受荷载与变形之间的关系表现为非线性。

细观力学的研究需要将试验、理论分析和数值计算三方面相结合。试验观测结果提供了细观力学的实物物性数据和检验判断标准;理论研究总结出细观力学的基本原理和理论模型;数值模拟计算是细观力学不可少的有效研究手段。人们可以在细观层次上合理地采用各相介质本构关系的情况下,借助于计算机的强大运算能力,对混凝土复杂的力学行为进行数值模拟,而且能够避开试验机特性对于试验结果的影响。数值模拟可直观再现混凝土细观结构损伤和破坏过程。

当前混凝土细观力学数值模拟主要沿着两个方向进行:(1)将连续介质力学、损伤力学和计算力学相结合去分析细观尺度的变形、损伤和破坏过程,以发展较精确的细观本构关系和模拟细观破坏的物理机制;(2)基于对细观结构和细观本构关系的认识,将随机分析等理论方法与计算力学相结合去预测材料的宏观性质和本构关系,对混凝土试件的宏观响应进行计算仿真。

3 混凝土细观力学的试验研究

随着自动控制系统和电液伺服加载系统在结构试验中的广泛应用,从根本上改变了试验加载的技术,由过去的重力加载逐步改进为液压加载,进而过渡到低周反复加载、拟动力加载以及地震模拟随机振动台加载等。CT扫描,微波内部成像,声发射以及光纤应变传感器等已应用于解决应力、位移、裂缝、内部缺陷、损伤及振动的量测问题[5~14]。在试验数据的采集和处理方面,实现了量测数据的快速采集、自动化记录和数据自动处理分析等。与计算机联机的拟动力伺服加载系统可以在静力状态下量测结构的动力反应。由计算机完成的各种数据采集和自动处理系统可以准确、及时、完整地收集并表达荷载与试件材料行为的各种信息。

试验的作用有两个方面:一方面,为细观数值模拟提供基础数据,包括试样组成材料的细观力学性质、试样的尺寸等;另一方面,检验数值模拟结果的可靠性。在从细观层次入手进行混凝土的断裂过程模拟时,混凝土被视为由砂浆基质、粗骨料以及两者之间界面组成的复合材料,必须通过试验确定这三相组成材料的力学性质(包括 弹性模量、强度、本构关系等),以此为基础才能进行混凝土试样的断裂过程模拟,但是模拟结果还必须与真实试件的宏观试验结果进行比较,以验证其正确性和适用性。

但在细观层次上,研究混凝土各相材料的试验资料并不多。进行细观力学数值模拟试验要以基本试验数据为基础,数值模拟的结果最终还要得到宏观试验结果的验证。作者所见的国内最早进行水泥浆体与骨料界面结合能力试验研究是同济大学的吴科如等人[15],文献[15]设计了4种结合类型,分别测定了大理石粗骨料与水泥浆体结合面的劈拉强度和断裂能,并讨论了增强硬化水泥浆体-粗骨料界面结合力对混凝土断裂能的影响。刘光廷等[16]给出了粗骨料、水泥浆体及其结合面的抗拉强度、弹模等统计参数。宋玉普[17]介绍了全级配混凝土试件进行的系列试验,研究了全级配混凝土试件单轴抗拉、抗压、襞裂抗拉和抗折的强度及变形等特性,对试件的破坏形态及裂纹传播路径等进行了统计处理。van Mier J G M[18] Horsch T和Schlangen E[20,21]等[19]给出了混凝土三相组成材料的力学特性具有参考价值的试验资料。文献[18]系统地讨论了混凝土单轴压、单轴拉,剪切(Ⅱ,Ⅲ及混合型)微裂缝产生、扩展过程和细观力学机制,研究了骨料尺寸、类型、水灰比、养护条件以及压板摩擦约束和刚度对试验结果的影响。Hordijk D A[22]基于非线性断裂力学,比较系统地进行了素混凝土试件单轴拉伸和疲劳加载以及四点弯曲梁循环加载试验及数值模拟,绘出了应力变形全曲线,并总结了相应的本构关系。应该指出,上述文献有关骨料、固化水泥砂浆基质的力学特性都有一些试验统计数据,而水泥骨料结合面力学特性指标的试验研究则较为少见。组成混凝土各相材料的力学特性是进行数值模拟的基础。为了获得这些基本参数,有针对性地进行试验,特别是对水泥骨料结合面的力学特性开展研究是必不可少的。

“九五”期间,中国水利水电科学研究院结合小湾高拱坝工程,进行了大坝全级配混凝土静、动态试件的试验研究[23]。该项试验研究试件样本容量较少,但据此得出的初步结论表明:在与高拱坝长周期相应的加载速率下,全级配混凝土和湿筛混凝土的动态抗压强度及动态抗压弹性模量较静态值提高幅度不等,但都低于目前规范所规定的30%;在试验的加载速度下,全级配混凝土的动态弯拉强度和动态弯拉弹性模量较静态值提高幅度均低于30%。另外,特别值得注意的是,具有初始静载试验的极限弯拉强度并不小于动态弯拉强度,不同初始静载对极限弯拉强度未见有不利的影响。

混凝土是一种多相介质的复合材料,其力学特性与所采用的水泥标号、骨料质量、水灰比、混凝土的配合比、制作方法、养护条件以及混凝土龄期等有关。试验时采用的试件尺寸和形状、试验方法和加载速度不同,测得的数据也不同。因此,深入系统地进行全级配大坝混凝土的静、动态试验研究,弄清全级配混凝土和湿筛混凝土的力学特性及其在不同初始静载时的动强度变化规律对高拱坝抗震设计是至关重要的。这是我国强震区高拱坝抗震研究中的薄弱环节,急需加强。

4 细观力学数值模拟研究

混凝土力学试验是研究其断裂过程和宏观力学性质的基本手段。但是,由于试验条件的限制,往往其试验结果不能反映试件的材料特性,而只能反映整个试样-加载系统的结构特性。细观力学数值模拟,在计算模型合理和混凝土各相材料特性数据足够精确的条件下,可以取代部分试验,而且能够避开试验条件的客观限制和人为因素对其结果的影响。Wittmann F H[24]和Zaitsev Y V[4,25]把混凝土看作非均质复合材料,在细观层次上研究了混凝土的结构、力学特性和裂缝扩展过程。随着计算技术的发展,在细观层次上利用数值方法直接模拟混凝土试件或结构的裂缝扩展过程及破坏形态,直观地反映出试件的损伤破坏机理引起了广泛的注意。近十几年来,基于混凝土的细观结构,人们提出了许多研究混凝土断裂过程的细观力学模型,最具典型的有格构模型(Lattice model)、随机粒子模型(Random particle model)[26]、Mohamed A R[27]等提出的细观模型、随机骨料模型(Random aggregate model)及唐春安等人[28,29]提出的随机力学特性模型等。这些模型都假定混凝土是砂浆基质、骨料和两者之间的粘结带组成的三相复合材料,用细观层次上的简单本构关系来模拟复杂的宏观断裂过程。另外,文献[30~32]根据混凝土材料特性与分形维数的相关关系,运用分形方 法定量描述了混凝土的损伤演化行为。

4.1 格构模型 格构模型将 连续介质在细观尺度上被离散成由弹性杆或梁单元连结而成的格构系统,如图2。每个单元代表材料的一小部分(如岩石、混凝土的固体基质)。网格一般为规则三角形或四边形,也可是随机形态的不规则网格。单元采用简单的本构关系(如弹脆性本构关系)和破坏准则,并考虑骨料分布及各相力学特性分布的随机性。计算时,在外载作用下对整体网格进行线弹性分析,计算出格构中各单元的局部应力,超过破坏阈值的单元将从系统中除去,单元的破坏为不可逆过程。单元破坏后,荷载将重新分

图2 格构模型

配,再次计算以得出下个破坏单元。不断重复该计算过程,直至整个系统完全破坏,各单元的渐进破坏即可用于模拟材料的宏观破坏过程。

格构模型思想产生于50多年前,当时由于缺乏足够的数值计算能力,仅仅停留在理论上。20世纪80年代后期,该模型被用于非均质材料的破坏过程模拟[18,20,21,33~36]。后来,Schlangen E等人[20,21,33~36]将格构模型应用于混凝土断裂破坏研究,模拟了混凝土及其它非均质材料所表现的典型破坏机理和开裂面的贯通过程。van Mier J G M在文献[18]中用该模型模拟了单轴拉伸、联合拉剪、单轴压缩试验。在国内,杨强等人[37-39]采用格构模型模拟了岩石类材料开裂、破坏过程以及岩石中锚杆拔出试验。上述研究都是针对平面问题进行的,据有关资料介绍,van Mier J G M等人正将格构模型应用于混凝土开裂的三维问题研究。有关研究表明,利用格构模型模拟由于拉伸破坏所引起的断裂过程是非常有效的,但用于模 拟混凝土等材料在压缩荷载(包括单轴压缩和多轴压缩)作用下的宏观效应时,结果不够理想。另外,用该模型得到的荷载-位移曲线呈脆性,与混凝土的实际不符[35]。实际上,格构模型采用的杆单元的本构关系和破坏准则较为简单,但不能反映单元实际变形形态,单元的破坏为不可逆过程,因此很难反映卸载问题。

4.2 随机骨料模型 将混凝土看作由骨料、硬化水泥胶体以及两者之间的粘结带组成的三相非均质复合材料。借助由富勒(Fuller)三 维骨料级配曲线转化到二维骨料级配曲线的瓦拉文公式[40]确定骨料颗粒数,按照蒙特卡罗方法(Monte Carlo Method)在试件内随机生成骨料分布模型。将有限元网络投影到该骨料结构上(如图3),或对试件剖面内的粗骨料及水泥砂浆基底直接进行有限元网格剖分,然后根据骨料在网格中的位置判定单元类型(如:骨料单元、固化水泥砂浆单元及界面单元),并依单元类型赋予相应的材料特性。由于各相材料的弹性常数、强度不同,以及破坏单元刚度的变化,使得混凝土试件所受荷载与变形之间的关系表现为非线性。利用考虑混凝土弹性模量或强度退化的非线性有限元方法计算模拟混凝土试件的裂缝扩展过程及破坏形态,直观地反映试件的损伤断裂破坏机理。随机骨料模型未考虑各相材料力学特性分布的随机性,如何合理地选择破坏单元的本构关系和破坏准则或各相材料的损伤演化模型也需要进一步研究。
骨料单元(灰色);砂浆单元(无色);
界面单元(黑色)
图3 随机骨料模型及单元属性定义

目前的研究基本上限于平面问题。刘光廷[16]用随机骨料模型数值模拟了混凝土材料的断裂。宋玉普[17]基于随机骨料模型模拟计算了单轴抗拉、抗压的各种本构行为,计算了双轴下的强度及劈裂破坏过程,并引入了断裂力学的强度准则,模拟了各种受力状态下的裂纹扩展。黎保琨等人[41~43],对碾压混凝土细观损伤断裂进行了研究,模拟了碾压混凝土静力特性及试件尺寸效应。以上研究基于瓦拉文公式所确定的圆形骨料模型都假定骨料颗粒为球型。为了尽可能模拟实际骨料的形态,王宗敏[44]利用一种凸多边形骨料模型,按正交异性损伤本构关系,数值模拟了混凝土应变软化与局部化过程。高政国等[45]进一步研究了二维混凝土多边形随机骨料的投放算法,确定了以面积为标度的骨料侵入判断准则和凸多边形骨料生成方式,在此基础上形成二维混凝土骨料投放算法。现已提出以体积为标度的三维混凝土骨料随机投放方法[46]。

4.3 随机力学特性模型 该模型是唐春安等人[28,29]提出的(如图4)。为了考虑混凝土各相组分力学特性分布的随机性,将各组分的材料特性按照某个给定的Weibull分布来赋值。各个组分(包括砂浆基质、骨料和界面) 投影在网格上进行有限元分析,并赋予各相材料单元以不同的力学参数,从数值上得到一个力学特性随机分布的混凝土数值试样。用有限元法计算这些细观单元的应力和位移。按照弹性损伤本构关系描述细观单元的损伤演化。按最大拉应力(或者拉应变准则)和摩尔库仑准则分别作为细观单元发生拉伸损伤和剪切损伤的阈值条件。文献[29]利用该模型分别对混凝土单轴拉压、双轴拉压组合、拉伸Ⅰ型断裂、三点弯拉以及剪切断裂进行了较为系统的数值模拟。但没有考虑试件内各级配骨料分布的随机性。实际上混凝土的骨料级配及骨料空间分布的随机性,对计算结果均有影响。

图4 随机力学特性模型

到目前为止,在细观层次上对混凝土数值模拟大都为平面静力问题,并仅限于少级配小尺寸混凝土试件的研究,多数文献注重对破坏过程的数值模拟,距可以替代部分试验的目标还相差甚远,而模拟全级配混凝土在静、动力作用下的破坏过程仍是一项空白。

5 结束语

迄今为止,尽管应用格构模型进行数值模拟的成果较多,并且有很多优点,但该类模型不能反映单元实际变形形态,单元的破坏为不可逆过程,很难反映卸载和动力反复加载问题。随机骨料模型未考虑各相力学特性在计算域内的随机分布,而随机力学特性模型未考虑骨料颗粒在计算域内的随机分布。实际上,粗骨料颗粒在试件域内的随机分布及各相细观材料的力学特性在试件域内的随机分布对混凝土试件的宏观力学特性均有一定影响,因此,这些细观模型均有待改进。混凝土细观力学是建立在实际试验基础上的,混凝土各相介质的力学特性、损伤本构关系及其损伤演化规律都必须经过试验测定。 将连续介质力学、损伤力学和计算力学相结合,输入参数的不定性与概率统计理论相结合,试验与计算相结合的细观力学方法,已经架起了混凝土微观结构与宏观力学特性的连接桥梁,试验观测手段的改进和计算机技术的飞速 发展给混凝土细观力学的研究展示了广阔的前景。

你到这里看一下或许有你需要的资料喔。

F. 何其昌的主要研究方向

(1) 界面力学
(2) 细观力学
(3) 接触力学
(4) 断裂力学

G. 地质力学和板块构造学理论与研究方法之比较

通过比较研究,我们可以体会到地质力学和板块构造学有许多共同点,如都强调水平运动、都坚持力学性质的研究、都重视建造与改造的研究、目前都只能说明中生代以来的地质构造问题等[1]。但是,我们也看到了它们之间有许多不同,特别是在研究思路和理论体系方面存在许多不同,其中重要的有如下几点:

(1)地质力学从大陆构造开始研究,所以有人又称其为大陆动力学。它强调地壳的表层滑动;而板块构造则是从海洋构造开始研究,强调岩石圈深部带动表层构造的运动。

(2)地质力学重视构造形变研究,认为只有构造形变是不存在多解性的地壳运动的历史记录。它研究地壳运动的思路是从构造形迹的共生组合确定构造型式和构造体系,从构造型式和构造体系反演地壳运动的程式,再从地壳运动的程式探求地壳运动的力源。这是一条严谨的认识路线。这条认识路线是李四光及其科研集体经过艰辛探索才形成的,它有别于传统大地构造学只研究大块体的运动,而有很大的优越性。从某种意义上讲,它代表着构造地质学未来的发展方向,因为只要是研究地质构造就必须研究其力学的本质,追究其力的来源。但也有它的局限性,即主要只强调大陆构造和表层构造的研究,对于海洋构造和深部构造的研究比较薄弱;而地壳和岩石圈的运动既有来自天体方面的原因,也有来自地球自身的原因,单纯强调地球自转速率的变化,就显得不够全面。板块构造理论重视块体的运动,通过古地磁纬度记录、古生物地理的变化来反演块体的水平运动,通过各种岩石学标志和构造遗迹来确定古板块的边界和古板块的地质运动。板块构造学说所运用的这些方法虽然有些本身还存在理论论证问题(如古地磁学)或存在多解性(如某些建造分析方法),但以其方法的多样性和综合性能够最大限度地引用当代地学各分科的最新科学技术方法和手段,使其能够解决许多在这以前无法解决的地质构造问题,特别是使其能够进入地学和构造地质学许多前缘课题的研究,如岩石圈深部的研究,借助岩石圈探针和地球物理学、同位素地质学等许多最新研究手段向岩石圈深部软流圈乃至地核进军。如前述及的地幔柱等方面的研究已经成为板块构造研究的前缘课题,它显示板块构造学开始突破岩石圈的范围,而与地球的核、幔、壳演化研究结合起来。

(3)地质力学与板块构造学的理论体系存在很大的不同:地质力学创始人非常明确学科要解决的理论问题是地壳运动问题,为了解决地壳运动问题,科学地探索出解决这一理论问题的方法学和认识路线,由此形成了自己的理论体系。如果我们回顾地质力学大陆车阀说的形成过程,我们就不难看出它是从总结区域和全球构造型式和构造体系的空间展布规律发现全球构造格局的纬向、经向和扭动构造型式的展布所反演的全球水平构造力的作用,再进而追索这些构造力的来源与地球自转速率变化的关系。这样就形成了一个从地球的整体运动—地球的自转—控制和发动地球的表层—地壳的运动,再由地壳的运动形成各种构造体系和构造型式的严谨的科学和理论认识体系。事实上,总结全球构造格局的基本特征,不仅全球规模的经向和纬向构造与地球自转轴有严格的几何关系,而且极区的同心圈状、放射性断裂系,大陆内部的共轭剪切断裂系,EW向的大洋中脊转换断层与地球纬度带(愈近赤道,走滑断距愈大)也都表现出与地球自转轴有严格的几何关系、与地球的自转有成因联系。

但是,由这样一个理论认识体系所提出的地球动力机制如同当年的大陆漂移说一样碰到了极大的困难,即计算表明,李四光所认为的地球自转速率变化所产生的经向惯性离心力和纬向惯性力就其强度和数量级而言,都不足以发动一场大规模的构造运动和全球规模的构造形变。王仁等[2~4]曾按分层均质流变体模型(缓变模型)计算分析了地球自转速率变化所致的全球构造应力场。结果表明,地球自转速率变化所导致的构造应力的量级(10-2~nPa)与现今不同方法实测所得的古、今构造应力量级(MPa)相比,都显得太小,几乎可以忽略不计(快速模型所获得的量级更小)。很难想象,如此小的构造应力能驱动地壳与岩石圈块体的水平运动。因此,王仁等[2~4]、李东旭(1986)、高庆华(1996)都曾先后认为实际地球体在长时间尺度内表现出流变特性,用缓变模型描述更为合理,且在缓变模型中,应考虑应力随时间的长期积累效应。若地球在10Ma内长期保持加速或减速,则自转速率变化所致的应力积累至MPa量级这样的构造应力就足以产生显着的构造效应[2~4]。但对于构造应力能否随时间加大而积累的问题,尚缺乏实验依据,许多地质、地球物理与力学专家对此尚持否定态度[5]

李四光提出的地球自转速率变化所引起的地球动力学机制遇到了重大的挑战,这种挑战推动了对地球自转动力作用的研究,地球科学界在否定过高估计地球惯性力(经向离心惯性力和纬向惯性力)的同时,对其他作用力进行了科学评估。

已经提出的驱动岩石圈地壳运动的动力有地幔对流、重力和热动力、洋脊推力、板块负浮力、碰撞挤压力、地球自转所致惯性离心力、周期性引潮力、西向引潮力、科里奥里力等。

科里奥里力的数量级非常小,对地壳构造运动几乎不起作用,可以忽略不计。理论计算分析表明,地幔对流能产生MPa量级的构造应力,但地幔对流模式存在很多问题,难以说明地球内部特别是大陆内部的动力学过程,而且受到地幔分层性、大陆巨厚山根等新研究成果的反对和制约。板块俯冲或陆陆碰撞所产生的构造应力属于次一级的构造应力场,而非驱动板块运动的构造应力。热动力和重力是重要的构造力量,但在驱动板块运动时主要表现在洋脊推力和地幔对流之中。看来能够对板块的拉张与挤压起到驱动作用的主要是西向引潮力和周期性的引潮力,两者所致的构造应力都能达到104~105Pa的量级,而且这两种应力都属于交变应力。周期性引潮力应力大小与方向都随时间变化作周期性变化,属于对称循环交变应力;西向引潮力仅应力大小随时间作周期性变化,而应力方向始终向西,属于脉动交变应力。如前所述,交变应力能降低岩石强度和疲劳极限,而且这两种交变应力的循环次数均达1010次的量级,因此这两种构造动力的实际动力学效应相当于105~106Pa以上的静态构造动力,有显着的构造动力学意义。但周期性引潮力所致的应力,由于其方向也随时间作周期性变化,所以对构造过程仅有触发作用,而无驱动作用;而西向引潮力仅应力大小作周期性变化,应力方向是基本恒定的以西向为主,所以对驱动岩石圈水平运动有重要意义,是导致岩石圈总体西向运动的主要动力,属全球构造运动的基本驱动力之一[5]

由此可见,驱动构造运动的基本动力仍然与地球自转有关,只不过不是李四光原来意义上的离心惯性力而是西向引潮力,它可以很好地解释经向大洋中脊的展布及洋脊推力的产生。

王仁等[3]指出,日、月引潮力,钱德勒摆动和地球自转速率的短期变化所引起的地应力,在一个范围内正负交替作用周期性变化不能积累。因此尽管引潮力所引起的应力较大(10-1N/cm的量级),最多只能起到触发构造运动的作用。要推动构造运动必须依靠非周期性的力,造成应力的积累。有人认为地球自转轴可能有过大范围的移动,地轴只要有20°左右的移动,就足以积累所引起构造运动的应力了。王仁曾采用缓变地球模型(厚度为80~400km的线性黏弹性壳体,内部为不可压缩流体)进行计算,约在106年左右可将地壳看成完全弹性的,进行应力叠加,将应力积累到10MPa的数量级,它足以引起拉张破裂和垂直于压应力的褶皱。按王仁的分析,若地球自转速度在106年内保持同一加速率变化,将在中低纬度产生足够的东西向拉应力造成洋中脊和全球性剪切破裂网络,同一时期的减速率将可造成极圈的同心弧和放射状断裂。问题在于会不会有这样的加速率时期[6]。交变应力对构造形变的意义是一些构造学者所关注的。众所周知,滴水可以穿石,岩石在长时间的交变应力作用下会减低强度而易于变形。一方面是客观上存在着全球性的纬向构造,另一方面形成这种构造的力量又不够大。这个矛盾看来也只有借助于长期的岩石流变了。张文佑等[6]从天文地质和地球表面形态、构造形迹等方面进一步系统论证地质力学的理论观点。他指出,月球、水星、火星等表面反射光像图所显示的线状构造和环形山、火山的排列,也大多为经向和纬向两种方位,一个旋转着的天体,其表面构造与其旋转轴之间必定有很大的联系。离极力的量级虽小,但在漫长的地质历史期内,我们不应该用常温常压常速条件下岩石力学的概念来理解地质历史中的岩石在特殊温压条件下的长期蠕变。另一方面,地球各圈层的物理、化学性质有差异,可使应力在不均一处集中,离极力的量级可以增大,这一点不容忽视。现在已经确定,有许多纬向构造带具有平移性质,而且有愈近赤道,平移距离愈大的趋势。南极大陆有逆时针旋转的现象,而北冰洋周围的大陆,又略似有顺时针旋转的现象。李四光早年曾提出由于地球自转速率变化所引起的岩石圈与水圈之间的相对扁率的变化,张文佑认为这种相对扁率的变化不仅可发生在岩石圈与水圈之间,而且还可能发生在岩石圈与软流圈之间,地幔与地核之间,以及一切具有不同密度和黏滞系数的地球各圈层界面之间。这种相对扁率的变化对岩石圈构造变形会发生什么样的影响是很值得研究的。李四光认为,在角动量基本守恒的前提下,地球内部物质向地心运动,这将使地球转动角动量矩变小,从而使自转角速度加快;反之,若地球内部物质向外运动,地球转动量矩则变大,从而导致自转角速度变慢。在这种质量再分配过程中(同时加上外部天体的影响),地球自转轴也可能发生一定程度的偏转。地球自转速度与自转轴的摆动又将导致离极力、科里奥里力、旋转速度不均一效应的变化与极移应力的产生,以及地球内部各圈层间相对扁率的变化和滑动。地球表面南极为大陆,北极为海洋,其形态如鸭梨状,而重力均衡则呈倒置鸭梨型;洋脊扩张带和海沟消减带大致均呈经向和纬向;极扩张轴与旋转轴相交,又大致与地球赤道面和黄道面夹角相等(图1)。约为地轴摇摆角的倍数,这些现象都似乎与地球自转有关[6]

西向引潮力的存在只能解释经向构造的形成,而离极力和经向切向力量级又太小,不足以形成纬向构造,看来形成纬向构造的构造动力只有另找答案。马宗晋等[7]提出全球表层构造格架具有N/S半球与0°/180°半球双重胀缩非对称性,本书作者认为从中可能找到形成纬向构造的动力:正是由于南半球地球的膨胀大于北半球,形成环南极洲的大洋中脊,南半球成为水半球;北半球收缩相对大于南半球,从而大陆块聚集于北半球,成为陆半球,并在北半球形成挤压性的纬向构造。李四光在他的大陆车阀说中也谈到在角动量等恒定律的支配下,当地球自转速率加快时,地球会相对收缩;当自转速率减弱时,地球会相对膨胀,因此地球的胀缩除了地球内部能量的集散和重力、热力的原因以外,地球自转速率的变化也是一个可能的诱发因素。

图1 板块沿球面的旋转运动( 据 F. Press et al. ,1978) Fig. 1 The rotational movement alongthe global surface( After F. Press et al. ,1978),

近年来积累起来的一些对地质构造现象规律性的认识也进一步揭示地球自转动力作用的意义,例如Meyerhoff等[8]通过对全球许多构造带的调查,总结出54种朝东定向的构造现象,其中如火山弧和弧后盆地集中在西太平洋,弧顶指向东方,许多褶皱带中SN向火山深成岩带随时间向东迁移,SN向褶皱带和盆地中心随时间向东迁移等。还有,按李四光的说法,大规模的地壳运动发生在地球自转的加速期和减慢期,但地球自转速度变化的总趋势是长期减慢,因而学者们提出是否存在能够积累应变的长期加速段值得怀疑。不过,地质历史上的地质陈迹揭示出地球确实存在相对的不均匀膨胀和收缩,这是否可以间接论证地球自转速率有过周期性的加速与减慢?当代固体地球科学的一个重要发现是地球内部内核、外核、地幔的自转速度是不等的,并由此产生了一系列重要的地球动力现象,诸如地磁场及其极性倒转,地幔柱、热点的移动,地球内部一系列径向构造和圈层构造等。结合地球内部物质结构等新资料,充分考虑岩石圈的自转、核幔自转和岩石圈不同块体间自转的差异性,看来是推动地球自转动力说的一条途径[9]。Raralli等[10]论证了地幔与液态外核之间的角速度差可以解释所观测到的地磁场中心长期缓慢向西漂移现象。

综上所述可知,随着科学的进步和对地球自转动力作用的深入研究,尽管李四光原来的一些观点和结论受到置疑和修正,但就其理论体系的核心———地球自转及其变化的动力作用学说来说不仅没有削弱,反而得到加强。全球构造型式和构造体系的展布与地球旋转轴有严格的几何关系是不容置疑的客观事实,其成生与地球的自转有关,暂时不能阐明并不等于这种客观的生因不存在,这就是地质力学理论体系的优越之处。它的优越性不只是表现在它的整体论和系统论的科学观方面,而且还在于它是建立在对(或深刻揭示出)自然界对立统一的法则认识之上。

地质力学除了在动力学机制问题上受到挑战外,在解释地质构造的演化历史方面也受到严重的挑战。李四光一再申明,他所建立的构造体系是中生代以来的,也就是说他的全球构造格局也主要是中生代以来的,他的全球构造格架与地球自转轴有严格的几何关系,一旦地球自转轴发生变动,全球构造格局也就会发生变动,地质力学对地质历史上发生的超级大陆的形成与裂散、大洋的形成与消减和陆块的漂移至少在目前还无能为力加以合理的解释。

至于谈到板块构造的理论体系,如前所述,板块构造说是在海底扩张和大陆漂移等地质事实的基础上总结出来的。板块构造的开合机制,是根据岩石圈板块的开合推导出地幔流是其动力学机制。近年来对热点的研究和地幔柱构造学的发展,似乎为岩石圈板块的开合找到了深层的动力学机制。如前文曾经提到的,岩石圈地壳运动的原因既有来自宇宙天体运动方面的原因,也有来自地球内部的原因,板块说侧重从地球内部寻找岩石圈地壳运动的原因,应该说这也是一个重要的方面,这方面正是地质力学考虑不够之处。诚然,20世纪70年代,人造卫星的空间重力测量已经证实在地幔深处确实存在地幔流。但是由于地球内部的多层结构,这种对流体的规模究竟能有多大?特别值得提出质疑的是那些长达上万公里的洋中脊如果是由深处地幔流推开的,那么又是什么力量能造成地幔内部有如此长的定向性非常强的地幔流圈?卫星激光测量已经可以测出现今板块的运动速率,它远远大过地幔流的运动速率。极其缓慢的地幔流如何能使驮托其上的板块以较快的速度运移?以上只是涉及板块开合的地幔流机制还不能得到科学的阐明,更不要谈到板块在形态上和空间展布上有哪些规律,以及支配这些空间分布规律的动力学机制。

上述这些板块构造论者解释不了的问题会不会隐藏着因果倒置的问题?如果反过来,用表层构造运动来解释板块的运动问题可能迎刃而解。张文佑就用表层一对共轭剪切断裂受到EW向的拉张应力而形成近南北向的洋中脊[6]。拉张减压从而造成深处处于潜在状态的地幔物质转化成液态而上涌,由于表层构造的定向性从而诱发深部地幔流的定向性。较快运动的表层板块拖曳导致深部地幔发生缓慢的蠕变流动。这样看来,板块构造的空间展布及其运动规律恐怕还要借助于地质力学的理论和方法才能解释清楚。近来,地幔动力学的研究趋向于认为对流拖曳在板块运动中不是重要的驱动力。一些新的观测资料又重新引起对地球自转动力作用的重视,地球自转的动力作用还可能是岩石圈板块运动变化的原因[11]。Doglioni(1990)从地球自转的角度对板块运动提出了这样一种解释:岩石圈与下伏地幔间去耦程度的差异,可能是板块运动变化的原因。他根据世界不同地区板块运动方向的资料绘制了软流圈向东流动和板块朝西运动的流线图来说明岩石圈与软流圈相对运动的结果。流线的全球性大起伏可能是由于地球自转轴不稳定的摆动引起的(转引自马宗晋,2003)[11]。但是,板块的扩张和俯冲机制也不是凭空想象出来的,它是根据地壳岩石圈的构造形变、地震和建造记录反演的,特别是它能很好地说明幔壳是如何演化的,洋壳是如何形成的,如何通过俯冲机制和碰撞机制实现陆壳与洋壳各自物质的各自循环与更新;洋壳物质如何转化为陆壳物质;洋陆壳物质之间如何转化;大陆如何裂解和增生,等等。在地质历史方面,即便是在前中生代,对海陆变迁、超级大陆的聚合和分裂、沉积盆地的开合和造山带的形成用板块构造的理论模式仍然能够得到很好的解释。一句话,在阐明岩石圈物质的演化和大陆、海洋构造的演化历史方面,至少在目前板块构造学是远胜于地质力学的。

综上所述,通过以上地质力学与板块构造学理论体系、研究方法的系统比较,我们不仅了解到它们之间的异同,更重要的是了解到它们之间有较强的互补性。为了更全面地认识地质构造,对于我们,它们不应该成为互相排斥的学说,而应该互相融合,这方面将在本书的后述章节中做进一步的阐述。

(4)为生产实践、国民经济、环境保护服务方面:地质力学强调构造体系和构造型式的研究,而这些地质构造实体对矿产资源的展布、工程地基的稳定性、地质灾害的预报与防治等都具有控制和启示意义。因而尽管地质力学在理论上还有动力机制问题尚未解决,但产业部门如地质勘探和工程地质、水文地质等部门仍照用不误,这也说明地质力学在指导生产实践和服务于生产实践和国民经济、人民生活方面有极大的优势;而板块构造学由于它的研究对象是大的地质块体(板块),因而它对生产实践和国民经济的意义往往是战略性和方向性的,不能太具体到每一个微细的地质构造。例如,地震主要发生在活动板块的板缘地带,如俯冲带和碰撞带,这些地带就成为地震的多发区。目前,许多国家也多用板块构造理论来研究地震和预报地震(地质力学则用活动体系来预报地震),而沿板缘地带常是金属成矿带,因而这些地带也就成为找矿勘探优选的地区。总的说来,由于板块构造学研究的是大块体的运动,因而它在地质找矿、工程地质勘测与环境保护方面没有地质力学那样具体实用,但是,由于板块构造对区域构造的控制,因而在地质找矿、环境保护和防灾减灾方面往往具有区域规划方面的战略意义。

总而言之,板块构造学是战略性的,在战术性或可操作性方面较弱;地质力学则既有战略性又有战术性。

但是,尽管地质力学与板块构造学在为实践服务的领域里在研究思路和所能解决的问题方面有这些差异,我们都无妨让它们按照各自的研究思路对各自的研究对象进行研究并由此为生产实践、国民经济和环境保护方面作出贡献,而同时求得互补,我想这对全人类和地球科学都是有益的。

参考文献

[1] 朱夏 . 活动论构造历史观 . 上海地质 . 1991 ( 2) : 1 ~ 38.

[2] 王仁,何国琦,王永法 . 地球动力学简介———现状与展望 . 见: 构造地质学进展 . 北京: 科学出版社 . 1982,166~ 173.

[3] 王仁,何国琦,王永法 . 地球自转速率变化推动全球构造运动的可能性 . 见: 国际交流学术论文集 . 北京: 地质出版社 . 1988.

[4] 王仁,丁中一 . 轴对称情况下地球自转速率变化及引潮力引起全球应力场 . 地质力学论丛 . 1982 ( 6) ,193 ~ 198.

[5] 吴珍汉,旋转地球动力学 . 北京: 地质出版社 . 1997,95 ~ 138.

[6] 张文佑,钟嘉猷 . 介绍断裂与断块大地构造学的理论发展与实际意见 . 见: 构造地质学进展 . 北京: 科学出版社. 1982,12 ~15.

[7] 马宗晋,杜品仁,高祥林 . 便于构造研究的思考地学前缘 . 2003,10 ( 特刊) : 1 ~ 4.

[8] Meyerhoff A A,Taner I,Morris A E L,et al. Surge Tectonics. a new hypothesis of Earth dynamics. In: Chatterjees etal. eds. New Concepts in Global Tectonics. lubbock: Texas Tech. Unir. press. 1992.

[9] 杨学祥,陈震,刘淑琴等 . 地球内核快速旋转的发现与全球变化的轨道效应 . 地学前缘,1997,4 ( 2) : 187 ~193.

[10] Raralli & Murphy DC. Rheological stratification of the Lithosphere. 1987,132: 281 ~ 295.

[11] 马宗晋 . 地球构造与动力学 . 广州: 广东科技出版社 . 1973.

H. 许金泉的获得成就

主要研究方向:1. 界面力学:结合材料界面的力学性能,界面破坏的定量评价,结合材料强度评价与界面形状及结合强度的优化,涂层材料(coating)力学性能评价2. 疲劳寿命评估:损伤与疲劳,等寿命设计,剩余寿命评估,微动疲劳。3. 断裂与破坏:结构强度优化,断裂路径预测,新材料的强度评价方法承担过的主要科研工作国家自然科学基金课题三项。 国家教委优秀年轻教师基金一项。教育部博士点基金一项,日本文部省科研基金(即日本的国家自然科学基金) 一项。关于海洋平台强度与寿命的横向课题两项。主要研究成果通过系统和长期的研究工作,建立了界面力学的理论体系。在界面力学及相关方向上,发表论文100余篇,出版专着2部。94年曾获日本机械学会研究奖(个人奖)。被多次应邀到日本着名大学作界面力学方面的专题报告。
研究成果: 建立了界面力学的理论体系。累计共发表杂志论文100余篇。专着2部。

I. 薛强的个人成就

至2014年底,近5年来,主持国家973课题、国家自然科学基金重点基金项目及面上项目(5项)、国家水专项课题、国家“十一五”科技支撑子课题、中国科学院重大设备专项、创新团队和人才基金、湖北省/武汉市重大科技专项、湖北省创新团队和杰出青年人才基金、武汉市黄鹤人才计划及现场工程项目32项。在国内外重要期刊和国际学术会议上发表学术论文153篇,其中被SCI收录34篇,EI收录93篇;主编《生活垃圾土土工试验技术规程》等国家标准与规范6项,技术导则1部,参编《生活垃圾填埋技术规范》等5项;作为第一负责人申请《气压温控式填埋场污染物传输特性测试试验系统》等国家专利56项(其中发明专利47项),已授权《易挥发性有机物污染土异位修复方法及专用装置》等专利35项;《污泥原位固化处置系统》软件着作登记6项;《填埋气体运移的多场耦合理论与应用》等着作4部(专着2部)。先后作为主持人获得《垃圾填埋场运行过程灾变机理与控制技术及工程应用》等湖北省科技进步一等奖、二等奖各1项,武汉市科技进步一等奖、辽宁省科技进步二等奖和辽宁省自然科学三等奖等科技奖励6项。2008年获得首届武汉市青年科技奖,2009年获第九届获湖北省青年科技奖,2010年获武汉市政府专项津贴,2011年获湖北省五四青年奖章,2012年获得湖北省自主创新“双百计划”岗位特聘人选,2013年获得埃尼奖(EniAward2013)提名,2014年获得中国岩石力学与工程学会青年科技奖金奖和武汉市“黄鹤英才计划”岗位特聘人选。
研究方向:
主要围绕垃圾填埋场、污泥淤泥处置场和污染渣土堆存场中的污染泥土安全处置与资源循环利用的应用基础理论、生态设计方法和关键处置技术开展的研究方向:
1、环境界面力学:赋存多场环境条件下固、液、气多相介质界面作用过程的力学行为研究
2、泥土固稳方法:污染泥土精细化测试分析、生态设计及固化稳定化方法研发
3、资源高值技术:低品位固体废弃物高值化利用的一体化(工艺--材料-设备)技术开发

J. 许金泉的生平简介

男,1963年5月生于浙江绍兴,教授,博导。
研究方向:
1.界面力学
2. 疲劳与断裂
3.计算力学与结构优化
4.纳米力学
主要研究内容:
1) 不同材料结合材(如薄膜涂层材料)的应力分析及强度评价,界面端奇异性,评价准则。2) 应用界面力学理论研究微动疲劳强度寿命
1983年毕业于浙江大学,1989年获东京大学硕士,1992年获东京大学博士,1992年任东京大学生产技术研究所研究员,1994年获日本机械学会研究奖,1995年任浙江大学力学系教授,1996年获博导资格,2002年6月从浙江大学调入上海交通大学。现为上海交大固体力学学科带头人,兼任华东基础力学与应用协会副理事长、固体力学学报编委 ,兼任华东基础力学与强度协会副理事长。

阅读全文

与界面力学的研究方法相关的资料

热点内容
海蜇头的制作方法步骤 浏览:861
如何做腰背肌锻炼方法 浏览:544
用什么方法教大班二十内加减法 浏览:974
土壤doc的计算方法 浏览:454
毛巾折的方法视频 浏览:149
快速治疗宝宝便秘的最佳方法 浏览:14
如何判断议论文论证方法 浏览:975
扑克牌魔术方法大全视频教程 浏览:949
财富最简单的方法 浏览:564
如何做贺卡很简单的方法 浏览:866
羊绒衫缩绒剂使用方法视频教程 浏览:512
配电箱控制柜的安装方法 浏览:2
吸尘器抽真空使用方法 浏览:65
做人流方法什么好 浏览:974
说话与沟通的方法有哪些 浏览:624
招聘谈钱技巧和方法 浏览:8
怎么补色最快的方法 浏览:380
痛风解决方法有哪些 浏览:364
门牌调换最佳方法 浏览:22
什么方法快速消红 浏览:667