1. 硫酸镍和氨水反应现象是什么
反应方程式:①NiSO+2NH·HO=Ni(OH)↓+(NH)SO ,②生成鲜红色的螯合物(DMG代表丁二酮肟)。简写成:Ni+2DMG→(NH·HO) →Ni(DMG) (s)(红色)。
氨水能够促进反应,但是中间产物不能够长期存在,第一步反应实际上是瞬时发生的,氨水就相当与催化剂,这里为反应提供一个溶剂环境有利于反应快速进行。
硫酸镍加热至103°C时失去六个结晶水。易溶于水,微溶于乙醇、甲醇,其水溶液呈酸性,微溶于酸、氨水,有毒。主要用于电镀工业,是电镀镍和化学镍的主要镍盐,也是金属镍离子的来源,能在电镀过程中,离解镍离子和硫酸根离子。
硫酸镍:
1、硫酸镍是一种无机物,化学式为NiSO4,主要用于电镀、镍电池、催化剂以及制取其他镍盐等,并用于印染媒染剂、金属着色剂等。制法将水合硫酸镍NiSO4·7H2O或NiSO4·6H2O先在100℃左右加热一段时间,然后将温度渐渐升高至280℃,使其完全脱水,即可制得无水硫酸镍。
2、主要用于电镀工业,是电镀镍和化学镍的主要镍盐,也是金属镍离子的来源,能在电镀过程中,离解镍离子和硫酸根离子。硬化油生产中,是油脂加氢的催化剂。
3、医药工业用于生产维生素C中氧化反应的催化剂。无机工业用作生产其他镍盐如硫酸镍铵、氧化镍、碳酸镍等的主要原料。印染工业用寻生产酞青艳蓝络合剂,用作还原染料的煤染剂。另外,还可用于生产镍镉电池等。
2. 重量法分析镍时丁二铜肟的加入量过多对分析结果有什么影响
丁二酮肟重量法测镍一、适用范围:本标准适用于碳钢、中、低、高合金钢、精密合金、高温合金中镍量的测定,测定范围:2%以上。 二、原理方法:在乙酸铵缓冲溶液中,用亚硫酸钠将铁还原至二价,酒石酸做络合剂,在PH6.0-6.4时,镍和丁二酮肟完全生成沉淀,与铁、钴、铜、锰、钼、铬、钨、钒等元素分离,丁二酮肟镍经145±5℃烘干并称至恒重。 三、主要试剂:无水亚硫酸钠溶液(20%):用时配置,过滤后使用。 硫代硫酸钠溶液(20%):用时配置,过滤后使用。 丁二酮肟乙醇溶液(1%):过滤后使用。 四、分析步骤: 1、制样:称取试样小于2g以内(控制镍含量10-50mg范围内),以水湿润,加入王水,盖上表面皿,缓慢加热溶解,加高氯酸(每g试样加12-15ml,含硅还需加氢氟酸),加热蒸发至冒烟(含铬量超过40mg可用盐酸分次出去),移至低温处继续冒高氯酸烟回流10-15min,取下稍冷,加10ml盐酸,100ml热水,加热溶解盐类,用滤纸过滤至≥500ml烧杯中,并洗涤滤纸和沉淀8次,使溶液控制在250ml内。 2、加30ml酒石酸溶液(50%)(试样小于1g不含钴减为20ml), 3、边搅拌变滴加氢氧化铵调节PH至9(含钨、钼较高是,溶液温度不超过 70℃);放置片刻。 4、在不断搅拌下,加盐酸(1+1)酸化至PH3.5左右。 5、加20ml无水亚硫酸钠溶液(20%),搅拌片刻。 6、用氨水调节溶液PH4.5。 7、加热至45-50时,加入硫代硫酸钠(20%)(Cu30mg内加10ml,超过30mg,加20ml),搅拌片刻,放置5min, 8、加丁二酮肟乙醇溶液(1%)(按每1mg镍、钴、铜加丁二酮肟乙醇溶液 0.6ml,在过量10ml), 9、在不断搅拌下,加20ml乙酸铵(50%),PH应为6.0-6.4(低于用氨水调节),调节溶液总体积在400ml(含钴、铜控制在500ml), 10、 静置陈化30-60min(温度50℃,根据钴、铜含量控制陈化时间)。 11、 冷却至室温,已恒重玻璃坩埚负压抽滤,用冷水洗涤烧杯和沉淀各8 次,洗涤溶液控制200ml, 12、 将玻璃坩埚置于145±5℃烘干,称重。 五、分析结果计算: Ni%=(M1-M2)*0.2032*100/M; 式中:M1为玻璃坩埚和丁二酮肟镍沉淀的质量,g M2为玻璃坩埚的质量,g M为试样量,g 0.2032为丁二酮肟镍换算镍的换算因数。 备注:镍允许误差在0.06-0.5%。
3. 如果镍的含量低于标准 释放量会超标吗
一 对镍含量的标准要求:
1.规定和人体皮肤长期直接接触的产品中镍的释放量不得超过0.5μg/cm2/week,这些产品包括:耳环,项链,手镯和手链,脚镯,指环,表链,表带和表上的收紧装置,以及服装中的纽扣、紧固件、铆钉、拉链及其它金属标志。(两年正常使用)
2.耳朵或身体其它部位被刺穿后,在上皮形成的过程中,穿进耳朵的耳饰,或穿过人身体的其它部位皮膜的饰钉,不论最终去除与否均要求这类饰物和人体皮肤组织不排斥,且其中的镍的质量含量不得超过0.05%,否则禁止使用。其中EN1810 (镍含量检测方法)EN1181/EN12472(镍释放检测方法)为该标准的协助标准。2004/96/EC指令:上述94/27/EC的第2条款将镍总含量0.05%的要求修改为:其中的镍的释放不得超过0.2μg/cm2/week
二 钢 铁 中 镍 的 测 定
丁二铜肟比色法
(一)试 剂
硝酸1∶3
酒石酸钾钠20%
过硫酸铵3%
丁二铜肟1% [二甲基乙二醛肟]
丁二铜肟1克于5%氢氧化钠溶液100毫升。
氢氧化钠5%
镍标准溶液:
取高纯度金属镍0.1000克溶于10毫升浓硝酸中,然后用水稀释至1升摇匀。
(二)分 析 手 续
称试样0.1克,置于250毫升锥形三角瓶中,加10mL 1∶3硝酸(或加1∶4 5 ml H2SO4 再加H2O 5 ml ),移入250 ml容量瓶以水稀至刻度摇匀,用移液管吸出10毫升溶液二份,各置于100毫升容量瓶中,按下法分别处理。
着色溶液:加酒石酸钾钠10毫升,加氢氧化钠7 ~ 8毫升摇匀,再加过硫酸铵10毫升,继续摇匀,并加入丁肟10毫升,放置7分钟后,以水稀至刻度摇匀。
空白溶液:加酒石酸钾钠10毫升,加氢氧化钠10毫升,放置7分钟,以水稀至刻度摇匀。
将上项溶液分别注入比色皿中,530毫米,并读出其消光度。
标准曲线的绘制:
用含镍量量不同的标准钢样,或以不含镍的试样加入不同量的镍标准溶液,按照上述分析方法,测量其光度并绘制标准曲线。
4. 氧化镍和硫酸反应方程式
NiO+H2SO4==NiSO4+H2O
氧化镍(NiO)是绿色粉末,不溶于水和碱液,是碱性氧化物,能溶于酸和氨水。
氧化镍用作搪瓷的密着剂和着色剂,陶瓷和玻璃的颜料。用作电子元件材料、催化剂、搪瓷涂料和蓄电池材料。
5. 金属镍怎样按含量计算
一:牌号:n4纯镍/ni201镍棒/n6镍带/ni200镍板/nickel200/nickel201/2.4068/2.4066/n02201
n02200/n4(ni201) / n6(ni200)/镍棒镍板镍带
二:化学成分:
Ni%=99.5%-99.6% C%=0.10%Max
纯镍的耐腐蚀性能
特别能耐碱的腐蚀,不论在高温或熔融的碱中都比较稳定,所以主要用于制碱工业。在常温下,镍在海水和盐类溶液及有机介质(如脂肪酸、酚、醇等)中极为稳定。不耐无机酸腐蚀,在醋酸和蚁酸中也不稳定。
三:应用范围应用领域:
用途:充电电池组中的连接片、极耳、引出片、截流片、镍氢电池,锂电池,极耳,电动工具,组合电池、聚合物电池、动力电池、电子产业、手提电脑、手机、无绳电动工具、电动自行车。电动助力车、传呼机、MP3、数码相机及录像机、镍镉、镍氢、镍电池、组合电池及仪器仪表,电讯、电真空、特种灯泡等。
四:概况:
纯镍在许多酸性和碱性的环境中都表现出良好的耐蚀性,多被应用在还原性介质中。
镍的特点是耐碱性介质的腐蚀,如苛性钾,苛性钠等,此被广泛应用于离子膜烧碱工艺。与大多数合金相比,镍在干燥的氟中的耐蚀性良好。镍还成功应用于常温到540℃的干燥氯气和氯化氢中。也可应用在静止的氢氟酸溶液。具有优秀的力学性能和优良的耐腐蚀性,较高的热和电导率,低气体含量和
6. 氧化镍的生产方法
1、将NiCO3或Ni(NO3)2·6H2O置于铂坩埚内,在1000~1100℃加热6h,然后在不含O2的N2中冷却。若在空气中冷却,表面会结皮(Ni2O3),它可以用H2在100℃还原除去。
NiCO3NiO+CO2↑
Ni(NO3)2·6H2ONiO+2HNO3+4H2O
2、将NiCO3放在一个梨形分解器中,用不含O2的N2反复充入和抽去,以除去其中的空气。然后在100℃下将装置抽成高真空,再加热至350℃,维持90min。产物转移至事先准备好的玻璃泡内,随即密封。
NiCO3 NiO+CO2↑
3、采用碳酸镍法和氨法。碳酸镍法是将金屑镍在硫酸或硝酸中溶解,加入纯碱生成碳酸镍,再经洗涤、干燥、燃烧而得。氨法是将镍废料破溶,加入硫酸铵生成硫酸镍铵,再经脱水、煅烧、粉碎而得。
Ni+H2SO4====NiSO4+H2↑
NiSO4+Na2CO3====Na2SO4+NiCO3
NiCO3NiO+CO2↑
4、镍盐煅烧分解法将镍合金下脚料(含铁、铜、铬等)经用硫化氢、双氧水、碳酸钠、氨水除去铜、铁、锰、铬等杂质后,与硫酸反应制成硫酸镍铵,再经焙烧、粉碎,制得一氧化镍成品。
(NH4)2Ni(SO4)2=====NiO+SO3+(NH4 )HSO4+NH3
7. 锍镍试金分离富集-电感耦合等离子体质谱法测定铂、钯、铑、铱、锇、钌、金
方法提要
试样与混合熔剂于1100℃熔融,铂族元素进入镍扣与基体分离。用盐酸溶解镍扣,滤出不溶于盐酸的铂族元素硫化物,在封闭溶样器中用王水溶解,ICP-MS测定,其中锇用同位素稀释法测定。取样20g时测定下限为0.01~0.2ng/g。
仪器和装置
电感耦合等离子体质谱仪。
试金用高温炉、300mL黏土坩埚及铸铁模具。
负压抽滤装置滤膜孔径0.45μm。
PFA封闭溶样器容积10mL。
试剂
锍镍试金熔剂及配方见表84.40。
表84.40 锍镍试金熔剂配比(单位:g)
盐酸。
硝酸。
王水盐酸和硝酸按(3+1)比例混合均匀。
氯化亚锡溶液(1mol/L,介质6mol/LHCl)制备后一个月内使用。
碲共沉淀剂ρ(Te)=0.5mg/mL称取0.1072g碲酸钠(Na2TeO4·2H2O)溶解于100mL3mol/LHCl。
钌、铑、钯、铱、铂、金的单元素标准储备溶液ρ(B)=100.0μg/mL。
铂标准储备溶液ρ(Pt)=100.0μg/mL称取0.1000g光谱纯(99.99%)铂丝,置于100mL烧杯中,加入15mLHCl、5mLHNO3,盖上表面皿,放在电热板上加热溶解后,加入5滴200g/LNaCl溶液,在水浴上蒸干。用盐酸赶硝酸3次。加入10mLHCl和20mL水,加热溶解后移入1000mL容量瓶中,补加90mLHCl,用水稀释至刻度,摇匀。
钯标准储备溶液ρ(Pd)=100.0μg/mL称取0.1000g光谱纯钯丝(99.99%),置于100mL烧杯中,加入15mLHCl、5mLHNO3,盖上表面皿,放在电热板上加热溶解后,加入5滴200g/LNaCl溶液,在水浴上蒸干。用盐酸赶硝酸3次。加入10mLHCl和20mL水,加热溶解后移入1000mL容量瓶中,补加90mLHCl,用水稀释至刻度,摇匀。
铑标准储备溶液ρ(Rh)=100.0μg/mL称取38.56mg光谱纯氯铑酸铵〔(NH4)3RhCl6·1/2H2O〕置于100mL烧杯中,加入20mL水,加20mLHCl,溶解后移入100mL容量瓶中,用水稀释至刻度,摇匀。
铱标准储备溶液ρ(Ir)=100.0μg/mL称取57.35mg光谱纯氯铱酸铵〔(NH4)2IrCl6〕,置于100mL烧杯中,加入25mL水,再加25mLHCl,温热使其溶解,取下冷却。移入250mL容量瓶中,补加25mLHCl,用水稀释至刻度,摇匀。
钌标准储备溶液ρ(Ru)=100.0μg/mL称取8.22mg光谱纯氯钌酸铵(NH4)2Ru(H2O)Cl5,置于100mL烧杯中,用水润湿,加入0.5g硫酸亚铁铵、5mL(1+1)H2SO4,搅拌使之溶解,盖上表面皿,于中温电热板上加热至微冒白烟。取下冷却。用水洗烧杯壁及表面皿,再加热至冒白烟并继续保持5min,取下,冷却后用1mol/LH2SO4移入500mL容量瓶中,并稀释至刻度,摇匀。
金标准储备溶液ρ(Au)=100.0μg/mL称取纯金0.1000g,置于50mL烧杯中,加入10mL新配制的王水,放在沸水浴上溶解并蒸发至小体积。移入1000mL容量瓶中,加入100mL王水,用水稀释至刻度,摇匀备用。
组合元素标准储备溶液ρ(B)=10.0μg/mL由钌、铑、钯、铱、铂、金的单元素标准储备溶液制备组合稀释配制,介质(1+9)王水,存放期限为一年。
组合元素标准工作溶液根据试样中的实际含量稀释为适当浓度的混合元素工作溶液,一般为ρ(B)=5.00ng/mL,(1+9)王水介质。保存期限为两周。
190Os稀释剂从美国橡树岭实验室购置的稀释剂190Os金属粉末,190Os丰度为97.04%,192Os丰度为1.61%,制备为锇含量适当的溶液(约100ng/mL),介质为0.5mol/LNaOH。用同位素稀释法,加入普通锇标准溶液,准确标定稀释剂溶液中锇的浓度。也可采用其他适当的锇稀释剂。
内标元素混合溶液含In、Tl各10ng/mL,在测定过程中通过三通在线引入。
仪器调试溶液含Co、In、U各1.0ng/mL。
分析步骤
1)试样处理。称取10~20g(精确至0.1g)试样,置于锥形瓶中,加入混合熔剂,充分摇动混匀后,转入黏土坩埚中,准确加入适量锇稀释剂(含锇量与试样中锇相当),覆盖少量熔剂,放入已升温至1100℃的高温炉中熔融1.5h。取出坩埚,将熔融体注入铸铁模具,冷却后,取出镍扣,转入加有水的烧杯中,待扣松散成粉末后,加入60mLHCl,加热溶解至溶液变清且不再冒泡为止。加入0.5~1mL碲共沉淀剂。1~2mLSnCl2溶液,继续加热半小时出现沉淀并放置数小时使碲沉淀凝聚,然后用0.45μm滤膜进行负压抽滤,用(1+4)HCl和水洗涤沉淀数次。将沉淀和滤膜一同转入PFA封闭溶样器中,加入1~2.5mL王水,封闭。于100℃左右溶解2~3h,冷却后转入10~25mL比色管,用水稀释至刻度,摇匀待测。
2)上机测定。ICP-MS的仪器操作和数据获取参数见表84.41。
表84.41 电感耦合等离子体质谱仪工作参数
注:以TJAPQ-ExCellICPMS为例。
测量同位素选择:101Ru/115In、103Rh/115In、105Pd/115In(注:含铜高的样品,应选用106Pd或108Pd)、193Ir/205Tl、195Pt/205Tl、197Au/205Tl、192Os/190Os。
点燃等离子体后稳定15min后,用仪器调试溶液进行最佳化,要求仪器灵敏度达到计数率大于2×104s-1。同时以CeO/Ce为代表的氧化物产率<2%,以Ce2+/Ce为代表的双电荷离子产率<5%。
以高纯水为空白,用组合标准工作溶液对仪器进行校准,然后测定试样溶液。在测定的全过程中,通过三通在线引入内标溶液。
在测定过程中,计算机始终在监测内标元素的信号强度,如发生变化(可能因仪器漂移或试样溶液基体的变化引起),则对所有与此内标相关联的元素进行相应补偿。
计算机根据标准溶液中各元素的已知浓度和测量信号强度建立各元素的校准曲线公式,然后根据未知试样溶液中各元素的信号强度,以及预先输入的试样称取量和制得试样溶液体积,直接给出Ru、Rh、Pd、Ir、Pt和Au的含量。同时给出试样溶液中的192Os/190Os比值,根据以下同位素稀释法计算公式计算试样中Os的含量:
岩石矿物分析第四分册资源与环境调查分析技术
式中:w(Os)为试样中Os的质量分数,ng/g;R为测得的192Os/190Os比值;mS为稀释剂加入量,ng;K为试样中Os的原子质量与稀释剂中Os的原子质量之比(使用本190Os稀释剂时,该值为1.10015);AS为稀释剂中192Os的同位素丰度(本稀释剂为0.0161);BS为稀释剂中190Os的同位素丰度(本稀释剂为0.9704);AX为试样中192Os的同位素丰度,其值为0.41;BX为试样中190Os的同位素丰度,其值为0.264;m为称取试样的质量,g。
计算机给出的测定结果没有扣除流程空白。每批试样必须同时进行数份空白分析,最终随同试样上机测定,根据测定结果进行适当的空白修正。
192Os存在192Pt的同量异位素干扰,按下式校正:
岩石矿物分析第四分册资源与环境调查分析技术
式中:I192Os为192Os的计数率;I192为192质量数的总计数率;0.023为192Pt和195Pt两种同位素的天然同位素丰度比值。
注意事项
1)本法不适用于含铼高的试样中锇的测定,因为高铼试样中可能存在较高含量的放射成因187Os,而本法是基于普通同位素组成的锇进行稀释法测定。
2)对于超痕量铂族元素的分析,试剂空白是主要的制约因素,作为捕集剂的镍是试剂空白的主要来源,对于低含量试样的准确测定影响很大。羰基镍的空白很低,可以满足要求。若使用一般氧化镍或金属镍试剂,需预先测定其铂族元素空白值进行筛选,并进行必要的提纯。具体提纯方法为:按锍镍试金流程空白处理,其中Ni2O3加入量为15g,硫粉10g,其余试剂量不变。高温熔融后,溶解镍扣,碲共沉淀两次。用0.45μm滤膜过滤除去铂族元素硫化物沉淀。提纯后的镍溶液在电热板上加热浓缩至较小体积,加入Na2CO3中和至pH8,生成碳酸镍沉淀,水洗至中性,离心,弃清液,将沉淀转入瓷皿,于105℃烘干,再放入高温炉,于500℃焙烧2h,得黑色Ni2O3粉末。提纯后Ni2O3用于超痕量贵金属分析后,再回收每次溶扣后滤液循环使用。在此循环流程中,镍粉中金的含量可能逐渐增高,故按此法提纯的氧化镍不能用于金的分析。
3)本法对金的回收率约为80%。可能的原因为盐酸溶解镍扣时,部分金被溶解,且不能随金属碲完全共沉淀。可根据同时分析的标准物质的结果进行适当校正。
4)用同位素稀释法测定锇是必要的。一方面不能确保封闭溶解过程没有锇的泄漏损失,另一方面由于不同氧化程度的锇在ICP技术中灵敏度的巨大差异,采用标准溶液标化会造成分析结果的极大误差。为了便于保存,锇的标准溶液一般制备为低价(+4价),其灵敏度与其他元素相当。试样在制备过程中可能全部或部分被氧化为高价(+8价),其灵敏度会有不同程度的提高。在同位素稀释法中,从试金开始加入稀释剂,经历了高温熔融,锍镍捕集,HCl溶扣,王水溶渣全流程,试样中锇与加入的稀释剂充分平衡,保持了一致的氧化态,从而保证了分析结果的可靠性。
5)为了提高回收率,在溶解锍镍扣后加入Te使少量溶解的贵金属随碲共沉淀。