① 分子遗传学的研究方法
用遗传学方法可以得到一系列使某一种生命活动不能完成的突变型,例如不能合成某一种氨基酸的突变型、不能进行 DNA复制的突变型、不能进行细胞分裂的突变型、不能完成某些发育过程的突变型、不能表现某种趋化行为的突变型等。正象40年代中在粗糙脉孢菌中利用不能合成某种氨基酸的突变型来研究这一种氨基酸的生物合成途径一样,也可以利用上述种种突变型来研究 DNA复制、细胞分裂、发生过程和趋化行为等。不过许多这类突变型常是致死的,所以各种条件致死突变型特别是温度敏感突变型常是分子遗传学研究的重要材料。
在得到一系列突变型以后,就可以对它们进行遗传学分析,了解这些突变型代表几个基因,各个基因在染色体上的位置,这就需要应用互补测验(见互补作用、基因定位),包括基因精细结构分析等手段。 抽提、分离、纯化和测定等都是分子遗传学中的常用方法。在对生物大分子和细胞的超微结构的研究中还经常应用电子显微镜技术。对于分子遗传学研究特别有用的技术是顺序分析、分子杂交和重组DNA技术。核酸和蛋白质是具有特异性结构的生物大分子,它们的生物学活性决定于它们的结构单元的排列顺序,因此常需要了解它们的这些顺序。如果没有这些顺序分析,则基因DNA和它所编码的蛋白质的线性对应关系便无从确证;没有核酸的顺序分析,则插入顺序或转座子两端的反向重复序列的结构和意义便无从认识(见转座因子),重叠基因(见基因)也难以发现。
DNA分子的两个单链具有互补结构,DNA和通过转录产生的mRNA之间也具有互补结构。凡具有互补结构的分子都可以形成杂种分子,测定杂种分子的形成的方法便是分子杂交方法。分子杂交方法可以用来对DNA和由DNA转录的RNA进行鉴定和测量。它的应用范围很广泛,例如用来测定两种生物的DNA的总的相似程度,某一mRNA分子从DNA的哪一部分转录等。
重组DNA技术的主要工具是限制性核酸内切酶和基因载体(质粒和噬菌体)。通过限制性内切酶和连接酶等的作用,可以把所要研究的基因和载体相连接并引进细菌细胞,通过载体的复制和细菌的繁殖便可以取得这一基因DNA的大量纯制品,如果这一基因得以在细菌中表达,还可以获得这一基因所编码的蛋白质。这对于分子遗传学研究是一种十分有用的方法。此外,在取得某一个基因以后,还可以在离体条件下通过化学或生物化学方法使它发生预定的结构改变,然后再把突变基因引入适当的宿主细胞,这一方法有助于对特定基因的结构和功能的研究。
和其他学科的关系 分子遗传学是从微生物遗传学发展起来的。虽然分子遗传学研究已逐渐转向真核生物方面,但是以原核生物为材料的分子遗传学研究还占很大的比重。此外,由于微生物便于培养,所以在分子遗传学和重组DNA技术中微生物遗传学的研究仍将占有重要的位置。
分子遗传学方法还可以用来研究蛋白质的结构和功能。例如可以筛选得到一系列使某一蛋白质失去某一活性的突变型。应用基因精细结构分析可以测定这些突变位点在基因中的位置;另外通过顺序分析可以测定各个突变型中氨基酸的替代,从而判断蛋白质的哪一部分和特定的功能有关,以及什么氨基酸的替代影响这一功能等等。例如乳糖操纵子的调节基因产物是一种既能和操纵基因 DNA结合又能和乳糖或其他诱导物结合的阻遏蛋白。分子遗传学研究结果说明阻遏蛋白的氨基端的60个氨基酸和DNA的结合有关,其余部分和诱导物的结合有关,而且还说明这一部分蛋白质呈β片层结构,片层结构的顶端暴露部分最容易和诱导物相结合。麦芽糖结合蛋白的信号序列、λ噬菌体的阻遏蛋白等的结构和功能问题也都曾用分子遗传学方法进行研究而取得有意义的结果。目前基因分离和DNA顺序分析方法进展迅速,而一些以微量存在的蛋白质却难以分离纯化。在这种情况下,根据DNA 顺序分析结果和遗传密码表便可以得知这一蛋白质分子的氨基酸顺序。
生物进化的研究过去着眼于形态方面的演化,以后又逐渐注意到代谢功能方面的演变。自从分子遗传学发展以来又注意到 DNA的演变、蛋白质的演变、遗传密码的演变以及遗传机构包括核糖体和tRNA等的演变。通过这些方面的研究,对于生物进化过程将会有更加本质性的了解(见分子进化)。
分子遗传学也已经渗入到以个体为对象的生理学研究领域中去,特别是对免疫机制和激素的作用机制的研究。随着克隆选择学说的提出,目前已经确认动物体的每一个产生抗体的细胞只能产生一种或者少数几种抗体,而且已经证明这些细胞具有不同的基因型。这些基因型的鉴定和来源的探讨,以及免疫反应过程中特定克隆的选择和扩增机制等既是免疫遗传学也是分子遗传学研究的课题。
将雌性激素注射雄鸡,可以促使雄鸡的肝脏细胞合成卵黄蛋白。这一事实说明雄鸡和雌鸡一样,在肝脏细胞中具有卵黄蛋白的结构基因,激素的作用只在于激活这些结构基因。激素作用机制的研究也属于分子遗传学范畴,属于基因调控的研究。
个体发生过程中一般并没有基因型的变化,所以发生问题主要是基因调控问题,也属于分子遗传学研究范畴。
分子遗传学研究的方法,特别是重组DNA技术已经成为许多遗传学分支学科的重要研究方法。分子遗传学也已经渗入到许多生物学分支学科中。以分子遗传学为基础的遗传工程则正在发展成为一个新兴的工业生产领域。
② 生态遗传学的研究方法
数学与统计学方法
在对群体作抽样调查的基础上,对群体中基因的频率和由于不同交配类型
所造成的各种基因型在数量上的分布进行分析。这一方法又可分为静态的和动态的两种。静态的方法研究的是群体在同样生态条件下不同基因型所发生的遗传变化,或是群体中相同的基因型个体在不同生态条件下所发生的遗传变化。动态的方法研究的是群体的遗传结构和生态环境两方面都发生改变的情况下生物对环境的适应和反应。
野外群体研究方法
最常见的是捕捉某些野生动物如昆虫、鸟类、鱼类和小型兽类进行观察,对它们施加某种标记后释放回去,经过一段时期再行捕捉。根据再次捕捉中有标记动物和无标记动物的比例,可以大致估计这一地区某种动物的数量和活动范围等。如果施加的标记带有无线电接受器,还可以跟踪它们的活动范围。
实验室群体研究方法
在实验室的条件下,对某些已知遗传结构的群体进行选择、杂交、随机漂变、基因型与环境互作等试验,以观察群体适应度和基因频率的变化。
计算机模拟
无论是对野外群体还是实验室群体,人类在一生中所能观察到的世代数是很有限的,不可能对千百年生态条件作用下生物的遗传变化进行实际观察。应用计算机可以模拟不同的选择压、突变率、迁移率、繁殖率、近交和随机漂变等因素作用下遗传变异的长期效应,从而对种群进化(或退化)和动植物遗传资源的保护、利用作出预测。
分子遗传学方法
从分子水平研究生态遗传学的方法。例如对果蝇作热应激的处理,然后从DNA的变化上来研究对热处理的反应,从而探讨适应的遗传基础。
③ 研究人类遗传学常用的方法有哪些
人类遗传学的主要研究方法是:
①系谱分析。用于研究决定人类性状或疾病的基因的传递规律。
②数理统计。通过群体的调查和系谱分析并将获得的资料经过数学处理,可以测定人类某些性状或疾病基因的分布频率,了解其传递规律及与种族、群体、环境、迁移、婚配方式之间的关系。
③细胞遗传学方法。染色体技术和人类性染色质(X染色质和Y染色质)的研究结果可广泛应用于染色体异常疾病的诊断、性别鉴定、产前诊断和遗传咨询等。医学细胞遗传学的研究为人类遗传学积累了大量的资料(见核型)。
④体细胞遗传学方法。在人类基因定位中得到广泛的应用,也常应用于肿瘤遗传学的研究。
⑤生物化学方法。层析、电泳、色谱分析 、同位素示踪等被广泛应用于先天性代谢缺陷、血红蛋白异常和各种综合征的研究。这些方法非但可应用于出生后成长过程中的个体,也可以应用于孕妇羊水及其脱屑细胞的产前诊断,以便在孕期中就去除先天性代谢异常的胎儿,这对预防遗传疾病有重要意义。
⑥免疫学方法。人类体细胞免疫学特性的研究是人类遗传学的重要内容。它为同种异体脏器的移植提供了理论基础,同时也可揭示它与某些遗传性疾病发生的关联。并为阐明免疫球蛋白的多样性来源问题开辟了新的途径。
⑦双生儿法。通过双生儿之间的异同对比研究遗传和环境对个体表型的相对效应的方法,它是人类遗传学研究中的经典方法。
④ 简述遗传学的研究内容及其发展方向
1、研究内容:遗传学(Genetics)是研究基因及它们在生物遗传中的作用的科学分支。其研究任务是阐明生物遗传和变异现象及其表现的规律;探索遗传变异的原因、物质基础及其内在规律;指导动植物和微生物的改良,提高医学水平,为人民谋福利。
2、发展方向:1991-1997年,中国曾邦哲[杰](Zeng BJ.)发表《结构论-泛进化理论》系列论文,阐述系统医药学(systems medicine)、系统生物工程(system biological engineering)与系统遗传学(system genetics)的概念,提出经典、分子与系统遗传学发展观,以及于2003年、2008年于国际遗传学大会,采用结构(structure)、系统(system)、图式(pattern)遗传学的词汇来描述系统科学方法、计算机技术研究生物系统遗传结构、生物系统形态图式之间的“基因型-表达型”复杂系统研究领域,以细胞信号传导、基因调控网路为核心研究细胞进化、细胞发育、细胞病理、细胞药理的细胞非线性系统动力学.2003年挪威科学家称之为整合遗传学(integrative genetics)并建立了研究中心,2005年,国际上Cambien F.和 Laurence T.发表动脉硬化研究的系统遗传学观,Morahan G.,Williams RW.等2007年(Bock G.,Goode J.Eds.)论述系统遗传学将成为下一代遗传学.2005-2008年,国际系统遗传学飞速发展,欧美建立了许多系统遗传学研究中心和实验室.2008年在美国召开了整合与系统遗传学国际会议,2009年荷兰举办了系统遗传学国际会议,2008年美国国立卫生研究院(NIH)设立了肿瘤的系统遗传学研究专项基金.系统遗传学,采用计算机建模、系统数学方程、纳米高通量生物技术、微流控芯片实验等方法,研究基因组的结构逻辑、基因组精细结构进化、基因组稳定性、生物形态图式发生的细胞发生非线性系统动力学.
⑤ 遗传学的研究方法
杂交是遗传学研究的最常用的手段之一,所以生活周期的长短和体形的大小是选择遗传学研究材料常要考虑的因素。昆虫中的果蝇、哺乳动物中的小鼠和种子植物中的拟南芥,便是由于生活周期短和体形小而常被用作遗传学研究的材料。大肠杆菌和它的噬菌体更是分子遗传学研究中的常用材料。
生物化学方法几乎为任何遗传学分支学科的研究所普遍采用,更为分子遗传学所必需。分子遗传学中的重组DNA技术或遗传工程技术已逐渐成为遗传学研究中的有力工具。
系统科学理论(systems theory)、组学生物技术、计算生物学与合成生物学是系统遗传学的研究方法。
⑥ 肿瘤遗传学的研究方法
人类恶性肿瘤中只有少数种类是按单基因方式遗传的,这些单基因遗传的肿瘤的特点是发病年龄轻而且是双侧发生或多发性的,例如遗传性的视网膜母细胞瘤、神经母细胞瘤、Wilm瘤和嗜铬细胞瘤等肿瘤是以常染色体显性方式遗传的。动物实验中发现在同一外界致瘤因素刺激下,不同基因型的动物发病率不同。人类某些肿瘤有明显家族遗传倾向。如结肠多发性息肉、视网膜母细胞瘤、神经纤维瘤、肾母细胞瘤等。也有一些患者有肿瘤家族史,父母兄妹中易患肿瘤,但肿瘤类型可各不相同。肿瘤家族史或遗传因素在肿瘤发病中仅是一种“易感性”,作为环境致癌因素作用的基础。
某些单基因遗传的综合征常和肿瘤的发生联系在一起。人类3000多种单基因的遗传性疾病中,有240多种综合征都有不同程度的患肿瘤倾向,肿瘤是组成该综合征的一部分。这类单基因遗传病属遗传性癌前疾病,常被称为遗传性肿瘤综合征,大部分按常染色体显性方式遗传,部分属常染色体隐性或X性连锁遗传,如家族性结肠息肉病、基底细胞痣综合征、多发性内分泌腺肿瘤综合征等。 多基因遗传的肿瘤大多是一些常见的恶性肿瘤,这些肿瘤的发生是遗传因素和环境因素共同作用的结果。例如多基因遗传的乳腺癌、胃癌、肺癌、前列腺癌、子宫颈癌等,患者的一级亲属的发病率显着高于群体的发病率。
染色体畸变与肿瘤先天性染色体异常疾病与恶性肿瘤的发生也密切相关,例如先天愚型(唐氏综合征)患者易患白血病,克氏综合征常伴发男性乳腺癌,特纳氏综合征易发卵巢癌。此外,还有一些具有自发性染色体断裂和重组为特征的常染色体隐性遗传疾病,如毛细血管扩张共济失调症、着色性干皮病、范可尼贫血和勃劳姆综合征等,这些患者极易发生皮肤癌、白血病和淋巴肉瘤。
⑦ 研究人类遗传学常用的方法有哪些
1.系谱法
2、双生子法
3、跟踪调查法
4、数据统计法
5、锡细胞遗传学方法
6、生物化学方法
7、种族差异
比较法
8、关联分析法
9、免疫学法
10、DNA分析法
⑧ 人类遗传学的研究方法 系谱分析
人类遗传学研究中的基本方法之一﹐用于研究决定人类性状或疾病的基因的传递规律。所谓系谱或称家系图﹐是指某一家族各世代成员数目﹑亲属关系与该基因表达的性状或疾病在该家系中分布情况的示意图。系谱的调查一般都从最先发现的具有某一症状或性状的先证者入手﹐进而追索其直系和旁系的亲属。系谱分析法常用于单基因遗传性状和单基因疾病遗传方式包括常染色体显性和隐性以及性连锁显性和隐性遗传方式的分析(见人类遗传性疾病)。
⑨ 遗传学的研究技术
黑腹果蝇(Drosophila melanogaster)是一种流行于遗传学研究中的模式生物。
一开始遗传学家们的研究对象很广泛,但逐渐地集中到一些特定物种(模式生物)的遗传学上。这是由于新的研究者更趋向于选择一些已经获得广泛研究的生物体作为研究目标,使得模式生物成为多数遗传学研究的基础。模式生物的遗传学研究包括基因调控以及发育和癌症相关基因的研究。
模式生物具有传代时间短、易于基因操纵等优点,使得它们成为流行的遗传学研究工具。目前广泛使用的模式生物包括:大肠杆菌(Escherichia coli)、酿酒酵母(Saccharomyces cerevisiae)、拟南芥(Arabidopsis thaliana)、线虫(Caenorhabditis elegans)、果蝇(Drosophila melanogaster)以及小鼠(Mus musculus)。 医学遗传学的目的是了解基因变异与人类健康和疾病的关系。当寻找一个可能与某种疾病相关的未知基因时,研究者通常会用遗传连锁和遗传系谱来定位基因组上与该疾病相关的区域。在群体水平上,研究者会采用孟德尔随机法来寻找基因组上与该疾病相关的区域,这一方法也特别适用于不能被单个基因所定义的多基因性状。一旦候选基因被发现,就需要对模式生物中的对应基因(直系同源基因)进行更多的研究。对于遗传疾病的研究,越来越多发展起来的研究基因型的技术也被引入到药物遗传学中,来研究基因型如何影响药物反应。
癌症虽然不是传统意义上的遗传病,但被认为是一种遗传性疾病。癌症在机体内的产生过程是一个综合性事件。机体内的细胞在分裂过程中有一定几率会发生突变。这些突变虽然不会遗传给下一代,但会影响细胞的行为,在一些情况下会导致细胞更频繁地分裂。有许多生物学机制能够阻止这种情况的发生:信号被传递给这些不正常分裂的细胞并引发其死亡;但有时更多的突变使得细胞忽略这些信号。这时机体内的自然选择和逐渐积累起来的突变使得这些细胞开始无限制生长,从而成为癌症性肿瘤(恶性肿瘤),并侵染机体的各个器官。 琼脂平板上的大肠杆菌菌落,细胞克隆的一个例子,常用于分子克隆。
可以在实验室中对DNA进行操纵。限制性内切酶是一种常用的剪切特异性序列的酶,用于制造预定的DNA片断。然后利用DNA连接酶将这些片断重新连接,通过将不同来源地DNA片断连接到一起,就可以获得重组DNA。重组DNA技术通常被用于在质粒(一种短的环形DNA片断,含有少量基因)中,这常常与转基因生物的制造有关。将质粒转入细菌中,再在琼脂平板培养基上生长这些细菌(来分离菌落克隆),然后研究者们就可以用克隆菌落来扩增插入的质粒DNA片断(这一过程被称为分子克隆)。
DNA还能够通过一个被称为聚合酶链锁反应(又被称为PCR)的技术来进行扩增。利用特定的短的DNA序列,PCR技术可以分离和扩增DNA上的靶区域。因为只需要极少量的DNA就可以进行扩增,该技术也常常被用于DNA检测(检测特定DNA序列的存在与否)。 DNA测序技术是遗传学研究中发展起来的一个最基本的技术,它使得研究者可以确定DNA片段的核苷酸序列。由弗雷德里克·桑格和他的同事于1977年发展出来的链终止测序法现在已经是DNA测序的常规手段。在这一技术的帮助下,研究者们能够对与人类疾病相关的DNA序列进行研究。
由于测序已经变得相对廉价,而且在计算机技术的辅助下,可以将大量不同片断的序列信息连接起来(这一过程被称为“基因组组装”),因此许多生物(包括人类)的基因组测序已经完成。这些技术也被用在测定人类基因组序列,使得人类基因组计划得以在2003年完成。随着新的高通量测序技术的发展,DNA测序的费用被大大降低,许多研究者希望能够将测定一个人的基因组信息的价格降到一千美元以内,从而使大众测序成为可能。
大量测定的基因组序列信息催生了一个新的研究领域——基因组学,研究者利用计算机软件查找和研究生物的全基因组中存在的规律。基因组学也能够被归类为生物信息学(利用计算的方法来分析生物学数据)下的一个领域。
⑩ 人类遗传学研究方法有哪些